磁流变抛光发展历程共16页文档
机械轴与虚拟轴复合的磁流变抛光

光学精密工程Optics and Precision Engineering第 29 卷 第 2 期2021年2月Vol. 29 No. 2Feb. 2021文章编号 1004-924X( 2021)02-0286-11机械轴与虚拟轴复合的磁流变抛光张韬,何建国,黄文,樊炜*,张云飞(中国工程物理研究院机械制造工艺研究所,四川绵阳621900)摘要:传统的磁流变抛光工艺采用抛光缎带的固定位置对工件进行法向加工,由于机床转轴的行程限制,工件陡度较高 区域不可达,当前基于等效磁场原理的变切触点抛光方法存在着等效磁场实现成本高,没有充分发挥机械轴与虚拟轴相 结合的抛光能力等问题。
本文针对这些问题提出了一种用于加工高陡度曲面元件的方法,分析了保证去除函数稳定的 磁场特点,通过磁场测量实验验证了磁场的稳定范围,通过采斑实验确定了去除函数稳定的虚拟轴范围为士 12°,提出了将虚拟轴与机械轴复合使用的加工方法,并基于刚体变换实现了该加工方法下的坐标解算。
最后,通过增加倾角的球面件抛光实验,将球面元件95% 口径的PV 值收敛为0.096久,RMS 值收敛为0.012A ,实验结果表明虚拟轴和机械轴复合抛光方法具有针对高陡度曲面的修形能力。
关 键 词:磁流变抛光;变切触点;机械轴;虚拟轴;高陡度曲面中图分类号:TH706文献标识码:Adoi :10. 37188/OPE. 20212902.0286Magnetorheological finishing method that combinesmechanical and virtual axesZHANG Tao , HE Jian -guo , HUANG Wen , FAN Wei * , ZHANG Yun -fei('Institute of M echanical M a n u fa c turing Technology , China Academy of E ngineering Physics ,Mianyang 621900, China )* Corresponding author , E -mail : :weifan 1127@hust. edu. cnAbstract : The conventional magnetorheological finishing employs a fixed position of the polishing ribbonto perform normal processing on the workpiece. However , the processing area of the workpiece is greatly restricted by the limited stroke of the machine tool rotary axis. Recently , shortcomings of the current pol ishing method have been identified based on the principle of equivalent magnetic fields , which implies a high cost for realizing an equivalent magnetic field and insufficient polishing ability due to the fact that the mechanical and virtual axes are not combined. A method for processing a high -gradient curved surface wasthus proposed in this study. The characteristics of the magnetic field that ensure the stability of the remov al function were then analyzed , and the magnetic field stability range was verified through a magnetic fieldmeasurement experiment. The study also conducted a spot -taking experiment , which determined that thefeasible range of the virtual axis for the removal function stability was 士 12°. A machining method thatcombines the virtual and mechanical axes was then proposed , and a coordinate calculation for the machin-收稿日期:2020-10-28;修订日期:2020-11-20.基金项目:国家自然科学基金资助项目(No. 61605182);中国工程物理研究院创新发展基金资助项目(No. K1267-2022-TCF );科学挑战计划资助项目(No. TZ2016006-0502-03)第2期张韬,等:机械轴与虚拟轴复合的磁流变抛光287ing method was realized based on rigid body transformation.Finally,the study conducted a spherical polishing experiment with an greater inclination angle.Results shows that the peak-valley(PV)value of the spherical workpiece with a95%aperture size converges to0.096A,and the root mean square(RMS)value converges to0.012久,indicating that the proposed composite polishing method of virtual and mechanical axes can obtain a high-gradient surface.Key words:magnetorheological finishing;variable normal-contact;virtual axis;mechanical axis;high-gradient surface1引言随着现代科学技术的不断发展,复杂曲面光学元件在科学实验和国防领域中的应用越来越广泛。
超精密磁流变复合抛光技术研究进展

超精密磁流变复合抛光技术研究进展肖晓兰;阎秋生;潘继生;于鹏;梁华卓;陈润【摘要】对超精密磁流变复合抛光技术的国内外研究进展进行了评述,介绍了当前主要应用的几种超精密磁流变复合抛光技术的加工原理和发展现状。
重点介绍了磁流变射流复合抛光、超声波磁流变复合抛光、化学机械磁流变复合抛光以及集群磁流变复合抛光的加工技术内涵,从加工效率、加工表面均匀性、加工精度、加工适合的材料与形状等方面对上述几类超精密磁流变复合抛光方法进行比较和评述。
最后对超光滑无损伤超精密磁流变抛光技术的发展方向进行了预测。
%Research on magnetorheological finishing technology at home and abroad is reviewed .Accord-ing to the development of magnetorheological finishing technology , the current main application of ultra-precision machining principle and progress of magnetorheological compound polishing technology are elab -orated , mainly focusing on Magnetorheological Jet Polishing , Ultrasonic-magnetorheological Compound Polishing, Chemo-mechanical Magnetorheological Finishing and Cluster of MRF processing methods and mechanism of material removal .Then the MRF method is compared in terms of surface precision machi-ning , surface integrity and processing efficiency .Finally , a discussion is conducted on how to improve the precision polishing efficiency , forecasting the development of ultra-precision magnetorheological fin-ishing and pointing out the key research direction in the future .【期刊名称】《广东工业大学学报》【年(卷),期】2016(033)006【总页数】6页(P28-33)【关键词】超精密;加工;磁流变;复合抛光;技术发展【作者】肖晓兰;阎秋生;潘继生;于鹏;梁华卓;陈润【作者单位】广东工业大学机电工程学院,广东广州 510006;广东工业大学机电工程学院,广东广州 510006;广东工业大学机电工程学院,广东广州 510006;广东工业大学机电工程学院,广东广州 510006;广东工业大学机电工程学院,广东广州 510006;广东工业大学机电工程学院,广东广州 510006【正文语种】中文【中图分类】TH709精密光学、核能、大规模集成电路、激光和航空航天等尖端技术中所用的硬脆性材料元件常常需要非常高的表面精度以及非常小的加工损伤层.高表面精度及表面完整性可以保证光学元件良好的成像质量, 较小的加工损伤层可以减少光学元件在高能应用中的损坏.超精密加工对工件的材质、加工设备与加工工具、测量和环境等条件都有特殊的要求,需要综合应用精密机械、精密伺服系统、计算机控制技术、精密测量以及其他先进技术才能获得良好的加工效果.超精密加工技术主要有超精密切削、超精密磨削、超精密特种加工和超精密抛光,而超精密抛光是最终得到超光滑表面的有效加工方法(当被加工表面的尺寸波动范围在0.1~0.2 nm之间,具有这种特征的表面称为“超光滑表面”).超精密抛光以获得极限的形状尺寸精度、表面粗糙度以及极少的表面损伤(残余应力、组织变化、微裂纹缺陷等)为目标,利用微细磨粒的机械作用和化学作用,在软质抛光工具或电/磁场、化学抛光液等辅助作用下,减少或完全消除加工变质层,获得高表面质量[1].世界各国都在积极研究超精密抛光加工技术,提出了许多新的抛光方法,比如悬浮抛光、电泳抛光、水合抛光、超声抛光、化学机械抛光、应力盘抛光、离子束抛光、射流抛光、气囊抛光、磁流变抛光等.本文对能够实现确定量抛光、加工效率高、表面粗糙度低并且不产生亚表面损伤层的超精密磁流变抛光技术进行评述,介绍几种常见的超精密磁流变复合抛光技术的加工原理及加工实例,从加工效率、加工表面均匀性、加工精度、加工适合的材料与形状等方面对上述几类超精密磁流变复合抛光方法进行比较,并预测今后的重点研究方向.磁流变抛光(Magnetorheological Finishing,MRF)技术的创始人是苏联科学家W.I.Kordonski,他与合作者们将流体动力学理论与电磁学理论结合起来,开创了磁流变抛光这一新的技术领域,其加工原理如图1所示.在磁极3所产生的高强度梯度磁场作用下,磁性粒子被磁化产生偶极矩成链状分布,形成半固体状的Bingham体柔性抛光膜;微细磨料颗粒因为非磁性会受到磁场的排斥而从抛光液中析出来,镶嵌在柔性抛光膜的表层.当含有微细磨料的磁流变抛光液2被抛光轮1带入由工件5表面与抛光盘4所构成的狭小收缩区域时,会对工件表面产生较大的剪切力,从而实现对工件表面的抛光.磁流变体(Bingham体)具有黏弹性,能有效约束磨粒对工件表面的材料进行抛光去除.磨粒在抛光时处于半固着状态,Bingham体能使粒度分布不均匀的大、小磨粒均匀作用于加工表面,避免了由于磨粒不均匀导致的划痕和亚表面损伤.另外,由于磁链串对磨粒的柔性夹持作用,即便抛光时选用去除效率较高的硬磨粒(如金刚石粉),也能产生高质量的抛光表面.因此,磁流变抛光技术是一种非常好的光学材料精密加工方法,具有抛光效果好、不产生亚表面损伤、适合复杂表面加工等传统抛光所不具备的优点,广泛应用于大型光学元件、半导体晶片、LED基板、液晶显示面板等材料.Rabinow[2] 在1948年将微米尺寸的磁极化颗粒分散于非磁性液体中形成悬浮液.在零磁场情况下,该悬浮液与普通流体相似,表现为流动性良好的液体,但在强磁场作用下可于短时间(毫秒级)内将表观黏度增加两个数量级以上并呈现类固体特性(迅速变硬).这种变化连续且可逆可控,即去掉磁场后又恢复成原来可以流动的流体状态.人们把这种悬浮液称为磁流变液,但是此后的三十多年间由于没有认识到它的剪切应力特性,其发展一直非常缓慢.20世纪90年代,前苏联学者Kordonski与美国罗切斯特大学光学制造中心的Golini、Jacobs等人一起将磁流变抛光(MRF)理论逐步完善与实用化.他们于1994年制作出第一台MRF机床样机,对磁流变抛光液在抛光过程中的特性作了微观解释,用流体动力学润滑理论对磁流变抛光进行了初步的理论分析,并通过大量的实验将工件轴在各个角度抛光不同面形和材料的工件所形成的抛光区编成代码储存起来,为实现数控加工打下基础.1998年4月,他们与QED公司合作,将快速文本编辑程序(QED)技术引入磁流变抛光机中,研制出了第一台磁流变抛光机Q22-X,使MRF技术走向了商业化.我国从20世纪90年代末期逐步开始磁流变抛光的加工研究.中科院长春光学精密机械与物理研究所、国防科技大学、中国科技大学、中国工程物理研究院、哈尔滨工业大学、北京理工大学、清华大学、大连理工大学、湖南大学、东北大学以及广东工业大学等高校及科研院所对磁流变抛光技术进行了深入的研究,研制出各具特色的磁流变抛光实验装置,并不断深入探索磁流变抛光的加工机理.中国工程物理研究院机械制造工艺研究所的唐小会等人[3]根据磁流变抛光工艺特点,设计了缎带标定和工件位姿测量等自动化工艺过程,并基于华中数控系统实现了缎带标定和端面测量等工艺过程固定循环G代码.广东工业大学的阎秋生等人自主研制了集群磁流变平面抛光加工试验装置,并在集群磁流变平面抛光加工试验装置的基础上提出了集群磁流变-化学机械复合抛光加工方法和基于动态磁场的集群磁流变抛光方法.初始表面粗糙度Ra为107 nm的单晶碳化硅基片,在经过60 min的集群磁流变-化学机械复合抛光后,基片的表面粗糙度Ra降至0.71 nm,材料最高去除率(MRR)达到98 nm/min[4].在磁流变抛光加工机理方面,长春光学精密机械研究所张峰等人[5]建立了磁流变抛光的材料去除模型,并研制出一种具有优良流变性和较高抛光效率的新型磁流变抛光液以及一种适合大口径非球面反射镜加工的带式磁流变抛光机,还提出一种基于矩阵代数运算模型的磁流变抛光驻留时间求解算法.国防科技大学石峰等人进行了磁流变抛光去除磨削亚表面损伤层的实验研究.他们将直径为100 mm的K9材料平面玻璃经过156 min的磁流变粗抛,去除了50 μm深度的亚表面损伤层,表面粗糙度Ra提升至0.926 nm;再经过17.5 min磁流变精抛,去除玻璃表面200 nm厚的材料,并消除磁流变粗抛所产生的抛光纹路,表面粗糙度Ra提升至0.575 nm[6].东北大学的孙百万等人[7]提出并设计了一种往复式动磁场磁流变抛光试验方法,试验结果证明了往复式动磁场磁流变抛光方法的有效性.湖南大学的尹韶辉等人[8]分析了磁流变化学抛光的加工机理,对蓝宝石基片的磁流变化学抛光进行了试验研究,利用磁流变化学抛光方法加工蓝宝石基片可获得Ra为0.3 nm的超光滑表面.美国罗切斯特大学的光学制造中心(Center for Optics Manufacturing, COM)最先提出磁流变射流抛光(Magnetorheological Jet Polishing, MJP)技术,用来抛光高陡度的深凹面或内腔表面.其加工原理如图2所示,混有微细磨料的磁流变液在喷嘴出口附近的外加局部轴向磁场作用下,在毫秒量级的时间内转化为黏塑性的Bingham流体,形成准直的硬化射流束,喷射到一定距离外的工件表面进行抛光加工.外加局部轴向磁场主要起到汇聚射流束的作用,射流束的直径在较长距离内基本保持不变,如图3所示.抛光加工时,根据试验获得的射流聚束曲线选择相应的聚束磁场.射流速度越大材料去除率越高,但表面粗糙度也会增大,需要选择适当大小的射流速度,以使表面粗糙度达到最优.COM的研究人员Tricard M等人对熔石英平面工件用MJP方法抛光后的表面面形P-V值为13 nm,表面粗糙度RMS为2 nm,其加工效果如图4所示.国防科技大学戴一帆等人使用MJP技术加工直径48.8 mm、顶点曲率半径25.45 mm的凹形光学表面,面型P-V值由0.57 μm收敛至0.25 μm[9].哈尔滨工业大学的张飞虎等人首先提出了超声波磁流变复合抛光技术(Ultrasonic-magnetorheological Compound Polishing).他们研制了一套五轴四联动的超声波磁流变复合抛光装置,其加工原理如图5所示.利用插补算法在该装置上对光学玻璃K9进行抛光加工实验,可以稳定地获得表面粗糙度小于1 nm的K9玻璃表面[10].超声波磁流变复合抛光方法的材料去除率是普通磁流变抛光的3.1倍[11] ,将超声波磁流变复合抛光技术与计算机数字控制技术相结合,可望实现精度和效率都较高的小曲率半径非球面及自由曲面元件的数控加工.Jain V K等基于磁流变效应与化学效应提出了化学机械磁流变复合抛光(Chemo-mechanical Magnetorheological Finishing,CMMRF)技术.将氧化剂、催化剂、磨料等混入磁流变液作为抛光液,在外加磁场作用下使抛光盘表面形成黏弹性抛光垫以约束游离磨料.化学机械磁流变复合抛光的加工原理如图6所示.抛光过程中,工件表面与抛光液会发生化学反应,加工表面的反应物不断被磨粒机械剥离并随抛光液带走,新裸露的被加工表面又被氧化和去除.Jain V K以硅片为实验材料,在自主研制的CMMRF平台上进行实验加工,原始工件的表面粗糙度Ra由13.4nm最终降至0.5 nm[12].广东工业大学的阎秋生团队为了实现高效率超光滑平坦化加工,提出了集群分布式磁性体构成抛光工具形成集群磁流变效应抛光(Cluster Magnetorheological Polishing)的新方法.他们将多个小磁性体有规则地排列在非磁性体圆盘上,形成集群磁流变效应平面抛光盘,其加工原理及加工实验装置如图7所示[13].研制了集群磁流变效应平面试验装置并进行了K9光学玻璃和硅片的抛光加工试验.结果表明,集群磁流变效应平面抛光加工方法可以实现高精度抛光,K9玻璃最终表面粗糙度Ra可以达到0.005 μm,硅片可以达到0.016 μm.同时具有高效率,利用10 min 时间可以实现表面粗糙度下降一个数量级,50 min可以实现K9玻璃降低表面粗糙度3个数量级、硅片降低表面粗糙度1个数量级[14].在磁流变抛光工作液中掺杂大尺寸磨粒对K9光学玻璃与硅片进行抛光加工实验,发现在粒径为0.6 μm的磨粒中掺杂粒径为1.8 μm的金刚石粉进行抛光后的表面质量优于粒径为1.1 μm的磨粒加工的表面质量,且发现随着掺杂磨粒尺寸的增大,加工表面的Ra、Rv值虽有增大,但增长幅度远小于同等状况下游离磨粒加工的增长幅度[15].集群磁流变柔性抛光垫的“容没”效应,可以容许粒径不一致的大、小磨粒均匀作用于加工表面,不易导致加工表面的划伤和亚表面损伤,可选择硬度高的磨粒以增加其材料去除效率.为获得原子级的超光滑平坦表面,需要磨粒对工件表面的切入深度足够小并做到塑性状态去除,就要采用超细的亚微米/纳米级磨粒和磁性粒子进行磁流变抛光,但是这样会导致磁流变效应急剧减弱,对加工表面的抛光压力减小,使抛光效率显著降低.另外,由于磁流变液的黏弹性,工件经过集群磁流变抛光垫后会把凸起的柔性抛光垫压下而无法恢复,从而失去了对工件的压力,使得工件边缘与其他区域的材料去除率相差极大,并且磨料在黏弹性抛光垫中难以更新,进一步降低了加工效果.基于以上问题,阎秋生团队提出了基于动态磁场的集群磁流变抛光方法,其抛光原理如图8所示[16].当主轴电机带动偏心主轴旋转,会驱使同步旋转的偏心轴固定盘发生转动,偏心轴固定盘的转动使各柔性偏心转动轴同步转动,进而带动各磁极在磁铁转动偏心距下转动,实现磁极端面的静态磁场向动态磁场转变.通过调节偏心套筒的旋转角度,可以调节磁铁的转动偏心距,进而调节动态磁场.该抛光方法通过使磁极阵列有规律地偏心转动,形成动态磁场,可以实现集群磁流变柔性抛光垫的形状修复以及磨料向柔性抛光垫表面富集自锐,从而改善磁流变柔性抛光垫的加工性能,进一步提高集群磁流变的抛光效率,实现工件表面材料的高效率超光滑平坦化抛光.综上分析,从加工表面精度、加工效率、加工表面均匀性和加工适合的材料与形状等方面将上述的超精密磁流变复合抛光技术进行比较,归纳如表1所示.超精密磁流变抛光技术在近年来得到迅速发展,纳米水平的加工精度使其占有越来越重要的地位.但是针对磁流变抛光的微观尺度加工机理的研究仍然处于定性分析阶段,目前的加工方案主要是经验性的总结,还缺乏系统性的理论研究,对实现新一代半导体材料的高效率平坦化加工和超光滑无损伤表面抛光的研究尚未建立起完整的超精密加工体系,还需要进一步创新理论和加工方法.后续将从磁场产生和作用机理方面、磁流变液的动态微观结构方面、磁流变加工过程的作用力(抛光力)、磨粒的作用机制和运动轨迹等方面来进行深入系统地研究,从而定量寻求超光滑无损伤超精密磁流变抛光技术的加工工艺方案.YUAN J L, ZHANG F H, DAI Y F, et al. Development research of science and technologies in Ultra-precision machining field[J]. Journal of Mechanical Engineering, 2010, 46(15): 161-177. (in Chinese)TANG X H, CHEN H, ZHENG Y C, et al. The design and development of the craft process of magnetorheological polishing machine tool based on central China numerical control[J]. Manufacturing Technology & Machine, 2015 (8): 168-172.ZHANG F. Research progress of magnetorheological finishing technology at CIOMP[J]. Laser & Optoelectronics Progress, 2015 (9): 266-272.SHI F, DAI Y F, PENG X Q, et al. A new technique for eliminating subsurface damage layer of grinding surface with magnetorheological finishing[J].Optics and Precision Engineering, 2010, 18 (1): 162-168.SUN B W, LI S Q, WANG R S, et al. Reciprocating dynamic magnetic rheological polishing mechanism and polishing liquid preparation[J]. Mechanical Design and Manufacture, 2016 (7):81-84.YIN S H, WANG Y Q, LI Y P, et al. Experimental study on magnetorheological finishing of sapphire substrate[J]. Journal of Mechanical Engineering, 2016, 52 (05): 80-87.DAI Y F, ZHANG X C, LI S Y, et al. Deterministic magnetorheological jet polishing technology[J]. Journal of Mechanical Engineering, 2009, 45 (5): 171-176.BAI Z W, YAN Q S, LU J B, et al. Study on the mechanism of the effect of polishing pad on the magnetorheological effect of the cluster[J]. China Mechanical Engineering, 2014,25(20):146-152.。
磁流变抛光技术研究进展

磁流变抛光技术研究进展
戴立达;张争艳;乔国朝
【期刊名称】《机械设计与制造》
【年(卷),期】2024()3
【摘要】表面质量是精密零部件最重要的性能之一,零件的表面质量主要是由加工过程中不同的工艺参数和方法决定的。
传统的磨抛工艺由于作用在工件上的力很大、嵌入的磨料颗粒、对工艺的控制有限等原因很难使表面粗糙度降低到精密零部件的要求精度。
磁流变抛光(MRF)提供了一种新型高效的方法使工件加工质量达到预期的精度水平。
MRF对工艺控制具有更大的灵活性,并且可以在不破坏表面形貌的情况下完成加工。
综述了磁流变抛光液组分对加工效果的影响、材料去除模型的建立和发展、不同的MRF加工方式和未来磁流变抛光技术发展的新方向,最后总结了目前MRF技术存在的问题总结,并提出了MRF技术未来可能的发展方向。
【总页数】7页(P254-260)
【作者】戴立达;张争艳;乔国朝
【作者单位】河北工业大学机械工程学院;国家技术创新方法与实施工具工程技术
研究中心;中国电子科技集团公司第五十三研究所
【正文语种】中文
【中图分类】TH16;TH161.14
【相关文献】
1.双抛光头磁流变抛光技术与装备研究进展
2.超精密磁流变复合抛光技术研究进展
3.基于磁流变抛光法的光学元件抛光专利技术综述
4.磁流变抛光技术的研究进展
5.磁流变抛光关键技术及工艺研究进展
因版权原因,仅展示原文概要,查看原文内容请购买。
磁流变抛光发展历程

[1] Y.tian and K.Kawata, “development of High-Efficiency fine finishing process using magneitc fluid”,Annals of the CIRP,Vol.33,217-220(1984) [2]
张峰. 磁流变抛光技术的研究[D].中国科学院长春光学 精密机械与物理研究所,博士学位论文,2000 彭小强. 确定性磁流变抛光的关键技术研究[D]. 国防科 技大学,博士学位论文,2004 康桂文,磁流变抛光硬脆材料去除特性及面形控制技 术研究[D]. 哈尔滨工业大学,博士论文,2005. 程灏波,冯敬之,王英伟.磁流变抛光超光滑光学表面 [J].哈尔滨工业大学学报,2005,37(4):42-44 王伟.面接触式磁流变抛光方法的研究[D]. 西安工业大 学,硕士学位论文,2007 孙恒五. 液体磁性磨具光整加工技术研究[D].太原理工 大学,博士学位论文,2008
2.1.2磁场辅助精密抛光
磁场辅助精密抛光是八十年代初Kurobe等 人[4]提出来的,原理图如下:
柔性的橡胶垫将铜盘槽底部的磁性液体密 封,抛光液放在铜盘槽中橡胶垫的上方, 工件浸与抛光液中。在磁场作用下,磁性 液体受力并作用到橡胶垫抛光盘上,柔性 的橡胶垫抛光盘受力变形,其形状与工件 表面形状吻合来对工件进行抛光。抛光后 表面粗糙度由10μm(峰谷值)降到了几个 μm,1989年,Suzuki等人[5]用这种方法使表 面粗糙度从1500Å降低到了100Å,面形误差 从0.4μm降到了0.3μm。1993年, Suzuki等人 用这种方法对40mm直径的非球面玻璃抛光, 材料去除率达到了2-4 μm/h。
基于磁流变抛光法的光学元件抛光专利技术综述

基于磁流变抛光法的光学元件抛光专利技术综述磁流变抛光(MRF)是一种基于磁流变流体的技术,用于光学元件的抛光和表面改善。
它以其高效、精确和可控的特点,成为光学加工中不可或缺的一种手段。
本文将对磁流变抛光法的相关专利技术进行综述。
磁流变抛光法的原理是利用磁流变流体的流变特性实现对光学元件表面的精密抛光。
磁流变流体是一种可以根据外加磁场的强度和方向改变其流变特性的流体。
当磁场施加到磁流变流体上时,它的黏度和流动性会发生变化,从而可以实现对光学元件表面的精细抛光。
这种抛光方法既可用于玻璃、陶瓷等硬质材料的抛光,也可以用于软性材料的抛光。
磁流变抛光法的专利技术主要包括以下几个方面:1. 磁流变流体的制备技术:磁流变流体是磁流变抛光法的核心。
专利技术中涉及了磁流变流体的成分、比例和制备方法等。
一些专利技术提出了采用特定的胶体颗粒和稳定剂来制备高性能的磁流变流体。
2. 磁流变抛光机械装置:磁流变抛光需要一定的机械装置来施加磁场和控制磁流变流体的流动。
专利技术中提出了各种不同的磁流变抛光机械装置,如采用永磁体或电磁铁制造的磁极等。
3. 光学元件的抛光方法:磁流变抛光法可以用于不同类型的光学元件的抛光,如透镜、棱镜、反射镜等。
专利技术中介绍了不同的抛光方法,包括逐点抛光、逐面抛光、全表面抛光等。
这些方法在实际加工中可以根据元件的形状和要求进行选择。
4. 磁流变抛光工艺参数的优化:专利技术中还涉及了磁流变抛光的工艺参数的优化方法。
这些参数包括磁场强度、磁场方向、磁流变流体流量和压力等。
通过优化这些参数,可以实现对光学元件表面的高效、精确抛光。
磁流变抛光法的专利技术不仅应用于光学元件的抛光,还可以用于其他领域的表面改善。
磁流变抛光法可以用于金属材料的抛光、半导体材料的抛光和微机电系统(MEMS)器件的抛光等。
这些应用拓宽了磁流变抛光法的应用领域,也促进了磁流变抛光技术的持续发展和改进。
磁流变抛光发展历程

化学抛光
通过化学反应对工件表面 进行腐蚀和溶解,以达到 抛光效果。
电化学抛光
利用电化学原理,通过电 流作用对工件表面进行抛 光。
磁流变抛光技术的概念提
• 20世纪90年代,科学家们开始探索磁流变抛光技术,利用磁场控制抛光液的流变特性,实现对工件表面的高效抛光。
磁流变抛光技术的初步研究
初步研究主要集中在磁场控制、抛光液的制备和优化、以及磁流变抛光工艺等方面。
随着对磁流变现象的深入了解,科学家们逐 渐掌握了利用磁场控制流体行为的原理,为 磁流变抛光技术的诞生奠定了基础。
应用的扩展与深化
应用的领域扩展
磁流变抛光技术的应用领域不断 扩展,从光学玻璃、宝石等硬材 料抛光,逐渐拓展到金属、陶瓷、
塑料等材料的表面处理。
应用的深化
在应用过程中,磁流变抛光技术不 断被优化和改进,提高了加工精度、 效率和质量。
技术推广与应用
如何将磁流变抛光技术更 好地应用于实际生产中, 提高生产效率和产品质量。
技术的前沿与趋势
复合抛光技术
结合磁流变抛光与其他抛光技术,如化学机械抛光、超声波抛光等,以提高抛 光效果。
智能抛光系统
利用人工智能、机器学习等技术,实现抛光过程的自动控制和智能监测。
技术的前沿与趋势
• 高能束流抛光技术:利用激光、离子束等高能束流进行精 密抛光,实现超光滑表面加工。
期待建立磁流变抛光技术的标准 化体系,推动产业的规范化发展。
03
国际合作与交流
期待加强国际合作与交流,共同 推动磁流变抛光技术的进步与发 展。
05 结论
CHAPTER
磁流变抛光技术的贡献与影响
提高了抛光效率
降低表面粗糙度
磁流变抛光技术利用磁场控制抛光液的流 变特性,实现了高效、精准的抛光,提高 了加工效率。
基于磁流变抛光法的光学元件抛光专利技术综述

基于磁流变抛光法的光学元件抛光专利技术综述磁流变抛光是一种通过利用磁流变流体的特性来实现表面抛光的技术。
它可以用于光学元件的抛光,以改善其表面质量和光学性能。
本文将综述基于磁流变抛光法的光学元件抛光专利技术。
磁流变抛光技术利用磁流变流体的流变特性,通过调节磁场的强度和方向来控制流体的流动行为,从而实现对光学元件表面的抛光。
磁流变流体一般由磁流变材料和基础流体组成,当施加磁场时,磁流变材料会发生类似于液体变固体的相变,使流体具有较高的黏度和流变性能。
1.磁场控制技术:磁场是磁流变抛光的关键因素,磁场的强度和方向会直接影响磁流变流体的流动行为。
相关专利技术主要涉及磁场控制装置的设计和优化,如磁铁的布置、磁场的稳定性和均匀性等方面。
2.抛光材料选择和制备技术:抛光材料是磁流变抛光的另一个重要方面,它既需要具备较高的磁流变效应,又要具备适当的硬度和表面平整度,以保证对光学元件表面的均匀抛光。
相关专利技术探索了不同的抛光材料和制备方法,如磁流变材料的合成、涂覆和粒度控制等。
3.抛光工艺优化技术:磁流变抛光的工艺参数对抛光效果有着重要的影响,如磁场的强度和方向、抛光时间、抛光速度等。
相关专利技术通过设计合适的工艺参数和优化工艺流程,以提高抛光效率和表面质量。
4.表面检测和评估技术:对抛光后的光学元件进行表面检测和评估是确保抛光效果的关键步骤。
相关专利技术涵盖了不同的表面检测方法和设备,如光学显微镜、激光扫描等,以及表面质量评估的指标和标准。
基于磁流变抛光法的光学元件抛光专利技术主要集中在磁场控制技术、抛光材料选择和制备技术、抛光工艺优化技术以及表面检测和评估技术等方面。
这些专利技术的发展为提高光学元件的表面质量和光学性能提供了重要的技术手段。
磁流变抛光技术及应用.

磁流变抛光技术的发展及应用摘要:阐述了磁流变抛光技术的原理,综述了磁流变抛光技术的国内外研究现状与研究进展,并详细介绍了磁流变液的性能评价标准,及依据这一标准选取磁流变液的各组分,配置出标准的光学用磁流变抛光液。
然后,介绍了磁流变抛光技术的研究方向。
最后对磁流变抛光技进行了前景展望。
关键词:磁流变抛光;磁流变液;光学加工The Development and Application of Magnetorheological Finishing (The Institute of Mechanical and Electrical Engineer, Xi'an Technological University,Xi’an710032,China)Abstract: This paper first introduces the principle of magnetorheological finishing, then its research status and progress at home and abroad are reviewed. A standard is also suggested for evaluation of fluid finishing of optical glass. The elements of MR fluid were chosen according to the standard and MR fluid was prepared for optical finishing. Finally, the prospect of the MFR technique is discussed.Key words:magnetorheological finishing; magnetorheological fluid;optical machining1引言:随着现代科学技术的发展,对应用于各种光学系统中的光学元件提出了越来越高的要求。