列车制动技术 第二章自动空气制动机综述
《车辆空气制动机》课件

随着环保意识的提高,未来的车辆空气制动机将更加注重环保性能。采用更高效、低能耗 的设计,减少对环境的影响,同时降低运营成本。
智能化与自动化
随着智能化技术的发展,车辆空气制动机将与智能技术深度融合,实现自动化控制和远程 监控。这将大大提高制动机的可靠性和安全性,减少人工干预和故障率。
感谢您的观看
制动阀的工作原理是通过控制 压缩空气的流量和流向来实现 制动和缓解的控制。
03
车辆空气制动机的工作过 程
制动准备
准备阶段
确保车辆空气制动机处于正常工作状 态,检查各部件是否完好无损,确保 制动管路畅通无阻,保证制动系统内 压力稳定。
调整制动缸
根据需要调整制动缸的位置,以便在 制动施加时能够提供足够的制动力。
制动力解除
随着活塞杆的回缩,制动蹄片与车轮制动盘分离,制动力逐渐减小直至完全解除 。
制动保压
保压阶段
在驾驶员松开制动踏板后,制动系统进入保压阶段。此时, 制动管路内的压力保持稳定,使车轮保持一定的制动力,防 止车辆滑动或溜车。
保压状态
在此状态下,制动系统内的压力保持稳定,直到驾驶员再次 踩下制动踏板进行下一次制动操作。
THANKS
作用
在列车运行过程中,根据需要施 加或缓解制动,确保列车安全、 准确地停车。
工作原理
压缩空气存储
缓解过程
车辆空气制动机通过压缩机将压缩空 气存储在储气罐中。
当需要缓解制动时,压缩空气经过缓 解阀排出,活塞在弹簧的作用下复位 ,闸片离开制动盘,制动解除。
制动控制
当需要施加制动时,压缩空气经过制 动阀,进入制动缸,推动活塞,使闸 片与制动盘产生摩擦力,从而实现制 动。
更换。
06
《列车制动》复习题1-西南交大版

2.紧急制动时,GK型制动机制动缸压力分 3 阶 段上升。
3.F—8分配阀有充气缓解位、常用制动位、制动 保压位、 缓解保压位 、紧急制动位五个作 用位置。
二、简答题
1.简述104型空气制动机紧急阀的作用原理。
答: 由于列车管急剧减压,紧急活塞下移,压开
答:
作用原理。 制动:工→容;副→制 缓解:列→副,列→工;容→大气,制大气
优点: 长大下坡道制动缸漏泄时副风缸可以自动给 制动缸补风而没有发生自然缓解的问题。
闸瓦磨耗后制动缸行程增大时,制动缸压强 不会降低。因为制动缸空气压力参与了第二 活塞的平衡。
第三章 客货车辆制动机
一、填空题
制信号,去控制设在分配阀与制动缸之间的一 个中继阀,再由中继阀来控制制动缸鞲鞴面积 的大小或制动缸压力的大小。
二、综合题
1.与闸瓦制动相比,盘形制动有哪些优缺点? 答: • 优点
–大大减轻车轮踏面的热负荷和机械磨耗; –可按制动要求选择最佳摩擦副; –运行平稳,无噪声。 • 缺点 –轮轨粘着将恶化; –制动盘使簧下重量及其引起的冲击振动增大,
2.简述缓解稳定性和制动灵敏度的概念。
答:
缓解稳定性:制动机不会因列车管的正常泄 漏而造成意外制动的特性。缓解稳定性要求 的减压速度临界值为0.5~1.0kpa/s,意味 着列车管的减压速度在此临界值之下,就不 会发生制动作用。
制动灵敏度指的是当司机施行常用制动而操 纵列车管进行减压时,制动机则必须发生制 动作用。制动灵敏度要求的减压速度临界值 为5~10kpa/s。
放风阀,产生强烈的局部减压。
紧急室的排风时间 规定为15s左右 ;
列车制动第2章自动空气制动机综述讲解

制动力的调节方式
直接控制
通过直接控制制动缸内的空气压力来 调节制动力的大小。
电子控制
通过电子控制系统对制动力进行精确 控制,实现制动力的实时调节和优化 。
比例控制
通过调节制动缸内的空气压力与列车 速度之间的关系,实现制动力随速度 变化的自动调节。
防滑控制的工作原理
检测车轮速度
通过安装于车轮上的传感器实时 监测车轮的速度。
比较前后轮速度
比较同一轴上前后车轮的速度,判 断是否存在滑行状态。
控制制动压力
当检测到滑行状态时,控制系统会 降低制动压力或施加适当的缓解作 用,以减少车轮的滑行损失。
04
自动空气制动机的性能与测试
性能指标
01
制动响应时间
指从制动指令发出到制动器开始产 生制动力所需的时间。
制动距离
指从制动指令发出到列车完全停止 所行驶的距离。
制动调节
根据列车运行状态和制动 要求,调整制动缸的压力 ,实现制动力的调节。
紧急制动
在紧急情况下,通过截断 塞门的操作,实现列车的 紧急制动。
辅助功能
防滑控制
在制动过程中,根据车轮的转速 和减速度,控制制动缸的压力, 防止车轮滑行。
监控与故障诊断
对自动空气制动机的工作状态进 行实时监控,发现故障及时报警 和处理。
测试设备
包括制动实验台、压力传感器、位移传感器、数据采集与分析系统等。
测试环境
需要模拟列车制动时的实际环境,如温度、湿度、气压等参数,以确保测试结果 的准确性和可靠性。
05
自动空气制动机的发展趋势与 展望
技术创新与改进方向
智能化控制
利用先进的传感器和算法,实现 制动系统的智能化控制,提高制 动响应速度和准确性。
《列车制动技术》第二章自动空气制动机综述培训讲学

• 紧急(制动)灵敏度:减压速度达到紧急灵敏 度指标时制动机必须起紧急制动的性质。
2020/8/21
二、常用(制动)安定性和紧急(制动)灵敏 度的指标
• 常用安定性要求的列车管减压速度临界值 范围一般在31~36kPa/s之间。制动灵敏 度是常用制动时列车管减压速度的下限, 常用安定性则为上限,列车管减压速度高 于制动灵敏度指标,低于常用安定性指标 ,则制动机只能发生常用制动。
2020/8/21
• 紧急局减时让列车管压力空气通往制动缸 的弊端:制动缸压强的上升较快,紧急局 减停止较快,现代机车车辆制动机已改为 将列车管的风排向大气既可获得强烈可靠 的紧急局减,又可防止制动力过大导致车 轮滑行擦伤。
2020/8/21
第三节 常用安定性和紧急灵敏度
一、 常用(制动)安定性和紧急(制动)灵敏度 的概念
2020/8/21
• 紧急灵敏度的范围一般在50~80kPa/s之 间。如果列车管减压速度高于紧急灵敏度 指标,则制动机一定要发生紧急制动。
• 常用(制动)安定性和紧急(制动)灵敏度的指 标同样是对列车管减压速度的要求,列车 管的减压速度可由司机通过制动阀来控制 。
2020/8/21
三、常用安定性和紧急灵敏度的影响因素。
2020/8/21
– 制动:列车管减压,工作风缸的空气压力推 动主活塞上移,使活塞杆上方端接触供排气 阀,将排气的小阀口(活塞杆中心孔上端)关 闭,活塞杆继续上移,顶起供排气阀,副风 缸的压力空气→制动缸;
– 保压:列车管停止减压,制动缸不断增压, 当列车管、工作风缸、制动缸的压力处于新 的平衡状态时,活塞杆稍稍下移,关闭供排 气阀,活塞杆中心孔上端仍贴在供排气阀上 ,处于关闭状态。副风缸停止向制动缸供风 ,制动缸也没有连通大气。
列车制动第2章自动空气制动机综述讲解

提高制动性能
自动空气制动机可以根据 列车的行驶状态和需要自 动调节制动缸的压力,从 而提高列车的制动性能。
提高安全性
自动空气制动机可以避免 因人为操作不当或设备故 障导致的制动失误,从而 提高列车的安全性。
降低维护成本
自动空气制动机具有较长 的使用寿命和较低的维护 成本,可以降低整个列车 制动系统的维护成本。
列车制动第2章 自动空气制动机 综述讲解
汇报人: 日期:
contents
目录
• 自动空气制动机概述 • 自动空气制动机的基本原理 • 自动空气制动机的分类与特点 • 自动空气制动机的应用场景与未来发展 • 自动空气制动机的维护与保养 • 列车制动第2章自动空气制动机综述讲解
总结与展望
01
CATALOGUE
04
CATALOGUE
自动空气制动机的应用场景与未来发展
自动空气制动机的应用场景
高速列车
高速列车运行速度快,对制动系统的要求更高,自动空气 制动系统能够实现快速、稳定的制动效果,提高列车的安 全性能。
城市轨道交通
城市轨道交通运行线路短,停靠站点多,自动空气制动系 统能够实现精确的停车控制,提高列车的运行效率和乘客 的乘车体验。
空压机
用于产生压缩空气,为整个制 动系统提供动力。
制动阀
用于控制制动缸的压力,实现 列车的制动和缓解。
制动管路
连接各个车厢的制动缸,使压 缩空气能够传递到每个车厢的 制动缸。
制动缸
接收来自制动管的压缩空气, 并将其转化为机械能,使车轮 产生摩擦,从而实现列车的制
动。
自动空气制动机的作用
01
02
03
02
CATALOGUE
铁路车辆空气制动系统研究

铁路车辆空气制动系统研究铁路车辆的制动系统是保证行车安全的重要部件之一。
其中,空气制动系统是目前主流的制动方式。
本文将对铁路车辆空气制动系统的研究进行分析探讨。
一、空气制动系统的概念和原理空气制动系统是铁路车辆制动系统中的一种。
它是利用制动风缸内气压力的变化来控制制动鞋或制动体以达到制动目的的一种制动方式。
通俗点讲,就是利用空气压缩来实现车辆的制动。
该系统由制动阀组、制动管路组、制动设备组等组成。
制动阀组是控制制动操作的控制中心,它接收制动指令,控制主风管和制动风管的开关,从而控制制动。
二、空气制动系统的分类根据不同的分类标准,空气制动系统可分为多种类型。
常见的分类方式有以下几种:1.按照控制方式分类:(1)直接控制制动系统。
(2)间接控制制动系统:又称为C-IBS制动系统,是目前主流的制动系统。
该系统通过制动指令来控制车辆前部和末部的阀组,以实现车辆制动。
2.按照制动方式分类:(1)手动空气制动系统。
(2)自动空气制动系统:该系统可分为自重应答式自动空气制动和计程应答式自动空气制动。
其中,计程应答式自动空气制动是目前使用最广泛的一种自动制动系统。
3.按照在车辆中的位置分类:(1)行车制动系统:又称为本车制动,是控制车辆自身制动的装置。
(2)列车制动系统:控制车辆之间的制动,以保证列车行车安全。
三、空气制动系统的优缺点分析空气制动系统作为目前主流的制动方式,具有如下优缺点:优点:1.制动响应迅速,制动效果好。
2.系统结构简单,维护方便。
3.适用范围广,可用于多种类型的车辆。
缺点:1.依赖空气作为动力源,空气泄漏引起制动失灵的风险较大。
2.制动器使用寿命(即制动摩擦片的耐磨程度)不长,需要频繁更换。
四、空气制动系统的应用和发展随着时代的发展,铁路车辆制动系统的技术不断改进和升级。
未来,空气制动系统在以下方面有望得到进一步改进和应用:1.应用新型材料,提高制动器的使用寿命。
2.应用新型控制技术,提高控制精度。
列车制动 (2)
第二章自动空气制动机综述●一、简答题● 1.简述直接作用的二压力制动机的特点。
●答主活塞的动作与否决定于作用在它两侧的空气压力平衡与否。
副风缸既参与主活塞的平衡,又承担在制动时向制动缸供风的任务。
制动与否还取决于列车管减压速度。
列车管是副风缸唯一的风源,具有一次轻易缓解性能,缓解较快。
● 2.简述缓解稳定性和制动灵敏度的概念。
●答:缓解稳定性:制动机不会因列车管的正常泄漏而造成意外制动的特性。
缓解稳定性要求的减压速度临界值为0.5~1.0kpa/s,意味着列车管的减压速度在此临界值之下,就不会发生制动作用。
制动灵敏度指的是当司机施行常用制动而操纵列车管进行减压时,制动机则必须发生制动作用。
制动灵敏度要求的减压速度临界值为5~10kpa/s。
● 3.什么是局部减压,三通阀的紧急局减是如何实现的?答:定义:对于机车或车辆上受列车管控制而且只控制本车制动作用的阀,排列车管的风时,就认为是局部减压。
原理:递动弹簧紧急部● 4.简述直接作用的三压力制动机的特点。
●答:主活塞的动作与否决定于三种压力的平衡与否。
副风缸只承担在制动时向制动缸供风的任务而不参与主活塞的平衡。
具有阶段缓解的性能,但缓解比较慢。
具有彻底的制动力不衰减性。
制动与否只取决于列车管减压量而与减压速度无关,即缓慢减压也制动。
● 5.自动制动阀对列车管空气压强的间接控制是如何实现的?●答:在自动制动阀与列车管之间插进了一个固定容积的均衡风缸和一个中继机构。
控制关系:自动制动阀→均衡风缸→中继阀→列车管压强。
内燃机车JZ—7型制动机和电力机车DK—1型制动机用的“膜板活塞加双阀口”而且带过充的中继阀。
● 6.简述软性制动机的特点。
●答:具有一定的缓解稳定性。
具有必要的制动灵敏度。
如果列车管压力高于副风缸20~30kPa,制动机一次缓解完毕。
适用于不同的列车管定压。
●7.什么是制动波和制动波速?●答:制动波:列车在制动时,制动作用一般是沿列车长度方向由前向后逐次发生的,这种制动作用的传播称为制动波。
第二章自动空气制动机综述
03
性能特点与优势分析
性能特点介绍
01
02
03
快速响应
自动空气制动机能够迅速 对空气压力变化做出反应 ,确保制动和缓解操作的 及时性。
精确控制
通过调节空气压力,自动 空气制动机可以实现对制 动力的精确控制,提高制 动效果和安全性。
自动化程度高
自动空气制动机能够自动 完成制动和缓解操作,减 少人工干预,提高工作效 率。
安全操作规程遵守建议
在进行维护保养时,必须遵守 相关安全操作规程,确保自身 和他人的安全。
在进行维修作业时,必须使用 合适的工具和设备,避免因操 作不当造成损坏或伤害。
在进行空气制动机的调试和试 验时,必须按照规定的程序进 行,确保调试和试验的安全性 和准确性。
THANKS型的轨道车辆,如地铁、轻轨、有轨电车等。
限制条件
在某些特定情况下,如极端温度、高海拔地区等,自动空气制动机可能受到一定影响,需采取相应措施进行优化 和改进。
04
常见故障诊断与排除方法
常见故障类型及原因分析
制动失效
可能由于制动管路泄漏、制动阀 故障或制动缸故障等原因导致。
制动不灵
可能由于制动缸活塞磨损、制动管 路堵塞或制动阀故障等原因导致。
制动后跑车
可能由于制动缸故障、制动管路泄 漏或制动蹄片磨损等原因导致。
诊断方法介绍
观察法
通过观察制动管路、制动阀、制动缸等部件的外观, 判断是否存在泄漏、松动或其他异常现象。
听觉法
通过听制动系统工作时产生的声音,判断是否存在异 响或异常声音。
与传统制动机比较优势分析
操作简便
自动空气制动机操作简单 ,易于掌握,可减少操作 失误和事故风险。
可靠性高
《列车制动技术》第章自动空气制动机综述课件 (二)
《列车制动技术》第章自动空气制动机综述
课件 (二)
- 自动空气制动机是列车上的一种重要的制动装置,它能够在列车行
驶过程中实现快速制动,保证列车行车安全。
- 自动空气制动机的工作原理是通过车头司机室内的制动阀门控制制
动气缸内的气压,从而使制动鞋与车轮接触,实现制动。
- 自动空气制动机分为单元制动和分散制动两种类型。
单元制动是指
整列车同时制动,而分散制动则是指每节车厢的制动独立控制。
- 自动空气制动机还可以根据列车的行驶状态和速度进行自适应调节,以达到最佳制动效果。
- 自动空气制动机的故障诊断和维护需要专业人员进行,一般需要进
行定期检查和保养。
- 自动空气制动机是列车上不可或缺的重要装置,它的作用是保障列
车行车安全,减少事故发生的可能性。
因此,在列车制动技术中,自
动空气制动机的研究和应用也越来越重要。
车辆空气制动机
要点二
供气过程
产生的压缩空气经过滤清器和调压阀,供给制动系统使用 。
调压阀的调压过程
调压阀的作用
调压阀负责对供给的压缩空气进行调压,以满足制动缸所需的压力。
调压过程
调压阀根据制动信号和系统压力反馈,对压缩空气进行减压或增压,以实现所需的制动 压力。
安全阀的安全保障
安全阀的作用
安全阀用于在制动系统压力过高时,释 放多余的压缩空气,以防止系统过载。
03
车辆空气制动机的工作流程
制动信号的接收与处理
制动信号的接收
车辆空气制动机通过接收制动指令或压力信号来启动制动过程。
制动信号的处理
接收到制动信号后,制动机对信号进行解析和处理,确定制动方式和制动强度 。
空气压缩机的启动与供气
要点一
空气压缩机的启动
根据制动信号,空气压缩机开始工作,产生压缩空气。
工作原理
通过控制压缩空气的释放和传递 ,使制动缸内的空气压力发生变 化,从而产生制动或缓解的作用 力,实现对列车速度的控制。
车辆空气制动机的重要性
安全保障
车辆空气制动机是列车制动系统的核 心部件,对于列车的安全运行至关重 要。在紧急情况下,它可以迅速地降 低列车速度,防止事故发生。
节能减排
通过精确控制制动和缓解,车辆空气 制动机可以有效地减少列车的能耗, 降低排放,对环境保护具有积极意义 。
致。
故障诊断方法与流程
01
02
03
04
初步检查
检查制动系统外观,查看是否 有明显的破损或泄漏。
气压测试
使用气压表测试制动系统的气 压,判断是否符合标准。
听诊
通过听制动系统的声音,判断 是否有异常响动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
? 结论:
– 保证制动机的缓解稳定性和制动灵敏度往往是 相互矛盾的。
– 设计制动机时,缓解稳定性和制动灵敏度必须 统筹兼顾,既要保证在列车管减压速度低于缓 解稳定性要求的临界值时不会发生自然制动, 又要保证在减压速度达到制动灵敏度规定的临 界值时必定能起制动作用。
2020/7/20
第二章 自动空气制动机综述
? 本章的主要内容:
– 自动空气制动机的基本性能、机构形式和 控制方法;
– 提高制动机性能的主要手段; – 列车管内的空气波、空气波速率; – 列车的制动波、制动波速率;
2020/7/20
第一节 缓解稳定性和制动灵敏度
一、三通阀发生制动作用的条件 ? 列车管开始排风减压。 ? 足够快的减压速度。 ? 一定的动作时间。
2020/7/20
? 紧急局减时让列车管压力空气通往制动缸 的弊端:制动缸压强的上升较快,紧急局 减停止较快,现代机车车辆制动机已改为 将列车管的风排向大气既可获得强烈可靠 的紧急局减,又可防止制动力过大导致车 轮滑行擦伤。
2020/7/20
第三节 常用安定性和紧急灵敏度
一、 常用(制动)安定性和紧急(制动)灵敏度 的概念
? 递动弹簧的刚度: – 递动弹簧的刚度太大,常用安定性要 好,但不易起紧急;递动弹簧的刚度 太小,紧急灵敏度要好,常用安定性 就差可能发生意外的紧急制动。
第二节 列车管局部减压
一、早期三通阀的问题 ? 列车管减压只是靠机车制动阀排风来实现的。
排风口大则排风速度快,列车管减压速度也快 。 ? 常用制动和紧急制动的区别。机车制动阀排风 口由一变二,排风速度的不同,可让列车管获 得两种不同的减压速度。受列车管空气压强控 制的机车车辆的各个三通阀据此区分常用制动 与紧急制动。
注意:缓解稳定性和制动灵敏度都是对列车管
减压速度的要求。
2020/7/20
四、 影响缓解稳定性和制动灵敏度的因素
? 充气沟横断面的大小。充气沟横断面的大, 逆流速度快,缓解稳定性就好,但制动灵敏 度就差一些。
? 主活塞移动阻力。阻力小则阀的制动灵敏度 高,如果阻力太小了,缓解稳定性又可能不 合格了。
2020/7/20
? 自然缓解。列车编组加长,如果机车制动阀排 风口过大,排风速度太快,则列车前部减压速 度虽然可以很快,但是沿列车长度的减压速度 衰减也很厉害,列车后部的压力空气向前涌时 列车前部的空气压强将回升并发生自然缓解。
2020/7/20
? 解决这个问题的办法
– 在机车制动阀排风减压之后,每辆车的三通 阀动作时,使列车管压力空气在该阀也获得 一个排气出口,或让列车管的风排一部分到 制动缸去,既可以逐辆加强列车管减压,又 可以使每辆车的制动缸获得一定程度的增压 。
2020/7/20
? 紧急灵敏度的范围一般在50~80kPa/s之 间。如果列车管减压速度高于紧急灵敏度 指标,则制动机一定要发生紧急制动。
? 常用(制动)安定性和紧急(制动)灵敏度的指 标同样是对列车管减压速度的要求,列车 管的减压速度可由司机通过制动阀来控制 。
2020/20
三、常用安定性和紧急灵敏度的影响因素。
原因:当三通阀主活塞在缓解位时,列车管和
副风缸在充气沟处是相通的。列车管减压速度 低,副风缸的风可经过充气沟向列车管逆流; 减压速度高,则逆流来不及。
2020/7/20
二、缓解稳定性和制动灵敏度的概念
? 缓解稳定性:制动机不会因列车管的正常 泄漏而造成意外制动的特性(列车管容积 很大,不可能保持绝对密封,少量泄漏是 难免的)。
? 常用(制动)安定性:列车管的减压速度没有 超过常用(制动)安定性指标时要求制动机只 能起常用制动而不能起紧急制动的性质。
? 紧急(制动)灵敏度:减压速度达到紧急灵敏 度指标时制动机必须起紧急制动的性质。
2020/7/20
二、常用(制动)安定性和紧急(制动)灵敏 度的指标
? 常用安定性要求的列车管减压速度临界值 范围一般在31~36kPa/s之间。制动灵敏 度是常用制动时列车管减压速度的下限, 常用安定性则为上限,列车管减压速度高 于制动灵敏度指标,低于常用安定性指标 ,则制动机只能发生常用制动。
? 制动灵敏度:同样是对制动机性能的要求 ,指的是当司机施行常用制动而操纵列车 管进行减压时,制动机则必须发生制动作 用。
2020/7/20
三、 缓解稳定性和制动灵敏度的极限值
? 缓解稳定性要求的减压速度临界值为0.5~
1.0kpa/s,意味着列车管的减压速度在此临界 值之下,就不会发生制动作用。 ? 制动灵敏度要求的减压速度临界值为5~ 10kpa/s,意味着列车管的减压速度超过此临 界值,就必须发生制动作用。
2020/7/20
二、局部减压
? 定义:对于机车或车辆上受列车管控制而 且只控制本车制动作用的阀,排列车管的 风时,就认为是“附加排气”或“局部减 压”(简称“局减”)。机车制动阀是控制列 车管空气压强从而操纵全列车制动作用的 阀,它的排风减压就不是“局部减压”。
2020/7/20
? 机构设计及工作原理:
– 为了使每个三通阀都能 实现紧急局部减压,在 主活塞的外侧加了一个 “递动弹簧”,在阀的下 部加了一个紧急部。 参看图2—1。
– 工作原理 :
2020/7/20
? 初充风: ? 列车管紧急减压:
– 副风缸的风→r孔→制动缸; – 副风缸的风→t孔→压下紧急活塞→紧急活塞杆压下紧急
阀→紧急阀口开放; – 紧急阀室Y的压力空气→开放的紧急阀口→制动缸; – 紧急阀室Y的空气压强骤降,低于列车管的空气压强,止
回阀被顶开:列车管的压力空气→止回阀→紧急阀室Y→ 开放的紧急阀口→制动缸;
2020/7/20
? 列车管常用减压:主活塞两侧压差较小,无力 压缩递动弹簧,t孔不开放,紧急局减作用不会 发生。
? 紧急局减停止:紧急制动时列车管空气压强要 一直减到零,主活塞始终在紧急制动位。紧急 活塞上方的副风缸空气压强和列车管的空气压 强都不断降低,紧急活塞下方的制动缸空气压 强不断增加,紧急活塞上下压差不断缩小,紧 急阀和紧急活塞在紧急阀和止回阀之间的弹簧 作用下,会向上移动,紧急阀关闭,止回阀也 随之关闭,紧急局减停止。