焊接应力产生的原因及处理方法

合集下载

焊接应力集中产生的原因

焊接应力集中产生的原因

焊接应力集中产生的原因
焊接应力集中产生的原因有以下几个:
1. 焊接过程中的热应力:焊接时,焊缝周围会发生瞬时的加热和快速冷却,导致焊缝区域出现热应力。

由于焊接瞬时温度变化大,热应力也会集中在焊缝周围的细小区域上。

2. 结构变形引起的机械应力:焊接过程中,金属结构会经历热膨胀和快速冷却的过程,导致结构变形。

这些变形会引起机械应力的集中,尤其是在焊缝附近。

3. 材料的残余应力:焊接完成后,由于金属的瞬时热胀冷缩以及变形,会在焊接区域产生残余应力。

这些应力会集中在焊缝附近,导致焊后应力集中。

4. 焊接接头的几何形状:焊接接头的几何形状也是影响应力集中的因素之一。

例如,焊缝的形状、厚度变化、形状不规则等都会导致应力在局部区域集中。

焊接应力的集中会导致焊接接头的强度减小,并可能引起裂纹的产生和扩展。

为了减少焊接应力集中,可以采取一些措施,如合理设计焊接接头的几何形状、采用适当的焊接工艺、预热和后热处理等。

焊件焊接应力分析及防变形的工艺措施

焊件焊接应力分析及防变形的工艺措施

焊件焊接应力分析及防变形的工艺措施摘要:焊接是一种特殊而又重要的加工工艺,随着焊接技术的发展,一个重要技术课题是控制焊接件的焊接变形以提高产品制造精度,使焊件焊后加工量减少或不加工即可用于精度要求高的机械产品中,因此,了解焊接应力产生机理,掌握结构件焊接变形规律,在焊接工艺中采取措施进行控制和消除,从而保证焊接质量。

本文主要探讨了焊接应力与焊接变形产生的原因及控制措施,以供参考。

关键词:控制焊接变形;焊接应力;措施1焊接变形的概念焊接变形主要是指在焊接过程中由于焊接工作而导致的焊接件变形。

焊接变形的开始时间是焊接开始的一瞬间。

焊接变形结束的节点是焊接结束后焊接件的温度降低到焊接初始温度。

焊接变形有两种情况,第一种是焊接过程中出现的焊接变形;第二种是焊接完成后出现的焊接变形。

2.随焊挤压旋转控制法在对铝合金框架车身弧焊焊接应力进行控制的多种方法中,随焊挤压旋转控制法,即WTRE的应用,能够有效改善铝合金框架车身结构中焊接接头位置的性能和组织结构,细化焊缝结晶的晶粒大小,使晶粒具有杂乱的生长方向,进而提高铝合金焊缝位置的力学性能。

实践显示,在采用了随焊挤压旋转控制法之后,铝合金材料焊接接头能够增强40MPa左右的抗拉强度。

除此之外,对于热裂纹,随焊挤压旋转控制法也能发挥良好的控制作用。

而且,随焊挤压旋转控制法的操作方法和设施都比较简便,能够优化操作人员的工作强度和环境,在自动化操作方面也具有显著的优势。

随焊旋转挤压控制法是在铝合金焊缝冷却凝固的时候,对其使用圆柱挤压头进行挤压旋转,焊缝金属因此会出现拉伸应变,同附近位置的残余拉应力互相抵消,最终实现降低铝合金框架车身由于失稳而产生应力变形的可能。

随焊挤压旋转控制法应用过程中的挤压旋转装置的主要构成部件包括挤压头、焊枪、焊接夹具以及填丝机构。

其中,挤压头需要对铝合金框架车身的焊缝位置同时施加垂直压力和旋转力,机械装置和挤压头本身的重力是垂直压力的主要来源,电动机则为挤压头提供旋转动力。

焊接残余应力产生原因分析及消除方法

焊接残余应力产生原因分析及消除方法

(2)运用三维模型装配仿真对打磨掉干涉区域后的前承力机匣和IGB机匣进行模拟装配,结果显示可实现装配;(3)实物装配IGB机匣与打磨后的前承力机匣,可顺利完成装配;(4)装配后的发动机在完成其原定试验计划后,未出现任何潜在问题。

通过三维装配仿真可有效地为设计及排故等提供有力的技术支持,节省由于设计等不合理带来的返工、时间以及其他成本的浪费。

5结语目前发动机装配分析主要是对比典型民用航空发动机装配顺序和装配路径,定性地判断整机装配性,无法准确判断实际装配情况。

通过三维仿真装配技术,在方案设计阶段,建立发动机装配仿真模型,进行三维静态、动态干涉检查,规划整机装配路径,可最大程度地暴露并提前解决装配过程存在的干涉问题,保证实际装配可行性,提高装配效率,节约成本。

[参考文献][1]雷相波.虚拟装配的3D空间动作路径方法研究[J].电脑编程技巧与维护,2019(12):79-80.[2]田富君,田锡天,耿俊浩,等.基于视点跟随的装配路径规划与干涉检查研究[J].中国机械工程,2011,22(15):1810-1814.[3]邵毅,余剑峰,李原,等.基于VMap的装配路径规划研究与实现[J].西北工业大学学报,2001,19(1):118-121.[4]SUN J K,YANG C Y,QIU H H.Assembly Process PlanningBased on Tri-dimensional Visual Platform[J].Applied Mechanics and Meterials,2014,644/645/646/647/648/649/ 650:4805-4808.[5]徐丽英.基于CATIA V5平台模型装配过程中的干涉分析[C]//大型飞机关键技术高层论坛暨中国航空学会2007年年会论文集,2007:161-169.[6]杨家军,苏昭群,张明丽,等.基于虚拟现实技术的机构干涉分析[J].湖北工业大学学报,2010,25(4):1-3.[7]穆塔里夫·阿赫迈德,张年松,郑力.加工中心虚拟装配建模及装配干涉研究[J].现代制造工程,2002(9):14-16.[8]郑轶,宁汝新,刘检华,等.交互式虚拟装配路径规划及优选方法研究[J].中国机械工程,2006,17(11):1153-1156. [9]刘检华,宁汝新,万毕乐,等.面向虚拟装配的复杂产品装配路径规划技术研究[J].系统仿真学报,2007,19(9):2003-2007.[10]刘检华,宁汝新,姚珺,等.面向虚拟装配的零部件精确定位技术研究[J].计算机集成制造系统,2005,11(4):498-502.收稿日期:2018-05-17作者简介:王秋阳(1985—),女,湖北襄阳人,硕士,工程师,主管设计师,研究方向:发动机总体结构设计。

焊接应力产生的原因及处理方法

焊接应力产生的原因及处理方法
采用大型燃油退火炉,进行焊后退火处理。采用多点加热、多点温度控制方式,温控采用热电偶自动控制仪表控制加热,使炉内各部温度均匀的控制在退火温度,保证工件的退火,同时能去除焊接过程中渗入焊缝中的H原子,消除了焊接件的氢脆。
在冷热加工过程中,产生残余应力,高者在屈服极限附近。构件中的残余应力大多数表现出很大的有害作用;如降低构件的实际强度,降低疲劳极限,造成应力腐蚀和脆性断裂。并且由于残余应力的松弛,使零件产生翘曲,大大的影响了构件的尺寸精度。因此降低构件的残余应力,是十分必要的。
焊后消除应力处理:
1、整体热处理:消除应力的程度主要决定于材质的成分、组织、加热温度和保温时间。低碳钢及部分低合金钢焊接构件在650度,保温20~40h,可基本消除全部残余应力。
另外还有爆炸消除应力。
2、局部热处理:大型焊接结构,受加热炉的限制或要求不高时采用这种方法。可采用火焰、红外、电阻、感应等加热方式,应保持均匀加热并具有一定的加热宽度。低合金高强钢,一般在焊缝两侧各100~200mm。
(2)对结构刚度的影响:焊接残余应力降低结构的刚度。
(3)对受压构件承载力的影响:焊接残余应力降低受压构件的承载力。
(4)对低温冷脆的影响:增加钢材在低温下的脆断倾向。
(5)对疲劳强度的影响:焊接残余应力对结构的疲劳强度有明显不利影响。
焊接变形的基本形式有收缩变形、角变形、弯曲变形、波浪变形和扭曲变形等。
热时效(TSR)是将构件由室温(或不高于150℃)缓慢、均匀加热至550℃左右,保温4~8小时,再严格控制降温速度至150℃以下出炉,达到消除残余应力的目的,可以保证加工精度和防止裂纹产生。
振动时效(VSR)又称振动消除应力法,是将工件(包括铸件、锻件、焊接构件等)在其固有频率下进行数分钟至数十分钟的振动处理,以振动的形式给工件施加附加应力,当附加应力与残余应力叠加后,达到或超过材料的屈服极限时,工件发生微观或宏观塑性变形,从而降低和均化工件内的残余应力,使尺寸精度获得稳定的一种方法。这种工艺具有耗能少、时间短、效果显著等特点。近年来在国内外都得到迅速发展和广泛应用。

焊接应力与变形

焊接应力与变形

喷水冷却;紫铜散热板
如图示
返回本章首页
圆筒体对接焊缝焊接顺序 返 回
散热法示意图 返 回
不对称焊缝的焊接 先焊
后焊 返 回
长焊缝(1m以上)焊接 总体的焊接方向

分段退焊示意图

返 回
反变形法
焊接之前
焊接后 返 回
将焊件固定在刚性平台上。 薄板拼接时的刚性固定
将焊件组合成刚性更大或对称的结构 T形梁的刚性固定和反变形
工字梁的扭曲变形
返回本章首页
焊接残余应力基本知识
一、焊接残余应力的分类
1. 按产生应力的原因分 (1)热应力 (2)组织应力(相变应力) (3)凝缩应力应力 (4)拘束应力 (5)氢致应力
2. 按应力存在的时间分 (1)焊接瞬时应力 (2)焊接残余应力
二、焊接残余应力的分布
1. 纵向残余应力 x的分布
利用焊接夹具增加结构的刚性和拘束。 对接拼板时的刚性固定
利用临时支撑增加结构的拘束。
防护罩焊接时的临时支撑


控制残余应力的措施
1. 设计措施 1)尽量减少结构上焊缝的数量和焊缝尺寸。 2)避免焊缝过分集中,焊缝间应保持足够 的 距离。
3)采用刚性较小的接头形式。 减小接头的刚性措施
2.工艺措施
交叉焊缝的焊接 返 回
受力最大的焊缝应先焊 返 回
加热“减应区”法
黄色的区域代表焊缝

红色的区域代表加热区域

焊接残余变形的矫正
1)机械矫正法:平板机、千斤顶(5-300吨手动液压千 斤顶顶起的最大高度是160-180mm)
卷板机(最多可4辊)
如图示
2)火焰矫正法:将伸长的部分加热 500℃-800℃(褐 红色)然后自然或强冷

影响焊接应力和焊接变形的因素及控制措施

影响焊接应力和焊接变形的因素及控制措施

影响焊接应力和焊接变形的因素及控制措施摘要:本文主要探讨了电站管道焊接过程中常见的焊接变形和焊接应力产生的主要因素,以及焊接变形和焊接应力的控制措施,希望对以后的焊接工作有一些帮助。

关键词:焊接变形,焊接应力,热循环,焊接工艺,控制目前火力发电朝着大容量机组发展,来满足日益增长的用电需求和达到节能减排的重要目标。

而在火电建设事业中,焊接技术成了一个关键的课题。

在施工过程中,由于焊接产生的焊接变形和残余应力,严重影响着工程的质量、安装进度和使用性能。

增大了电厂运行的安全隐患。

因而,急需分析其产生的原因,并积极采用合理的方法予以控制。

焊接过程实际上是在焊件局部区域加热后又冷却凝固的热循环过程,由于不均匀的温度场,导致焊件不均匀的膨胀和收缩,从而使焊件内部产生焊接应力并引起焊接变形。

焊接应力与变形对接头的性能有着较大影响,使得焊件强度、韧性下降。

因此将对焊接变形产生原因及其影响因素进行分析,针对不同的焊接施工过程特点,采取不同的措施进行处理,以达到降低或消除焊接变形的目的。

1、影响焊接变形的因素及控制措施1.1焊缝截面积的影响焊缝截面积越大,冷却时收缩引起的塑性变形量越大,焊缝面积对纵向,横向的影响趋势是一致的,而且是主要的影响。

因此,在壁厚相同时,坡口尺寸越大,收缩变形越大。

1.2焊接热输入的影响一般情况下,热输入大时,加热的高温区范围大,冷却速度慢,使接头塑性变形区增大。

1.3焊接方法和焊接工艺参数的影响不同焊接方法引起的收缩量也不同。

当焊件的厚度相同时,单层焊的纵向收缩比多层焊收缩大,这是因为多层焊时,先焊焊道冷却后阻止了后焊焊道的收缩。

焊接工艺参数的影响主要为线能量。

一般规律是,随着线能量的增加,压缩塑性变形区扩大,因而收缩量增大。

1.4接头形式的影响在焊接热输入、焊缝截面积、焊接方法等因素条件相同时,不同的接头形式对纵向、横向变形量有不同的影响。

在电站管道焊接中,接头形式一般是对接接头并且是单面焊双面成型。

焊接应力产生的原因及处理方法

焊接应力产生的原因及处理方法

焊接应力产生的原因及处理方法焊接是一种常见的金属连接方法,常用于制造业和修复工程中。

然而,焊接过程中产生的焊接应力却是一个常见的问题,可能导致焊接结构的变形、开裂甚至破坏。

了解和处理焊接应力是非常重要的。

一、焊接应力的原因1. 温度梯度引起的收缩应力:焊接过程中,焊接区域会受到短时间内的高温冲击,而周围区域的金属温度则较低。

这样的温度梯度将导致焊接区域产生热收缩,而周围区域则保持相对稳定,从而引起焊接应力。

2. 相变引起的体积变化:在焊接过程中,金属的结构可能发生相变,如固态相变或晶体结构重排。

这些相变往往伴随着体积的变化,从而引起焊接区域的应力。

3. 材料匹配问题:如果焊接材料与基材存在差异,如化学成分、热膨胀系数等方面的不匹配,焊接过程中可能会引起应力。

4. 焊接变形的限制:焊接过程中,由于局部加热和相变的影响,金属可能发生形状变化。

而焊接变形的限制,如约束或夹具,会阻碍焊接结构的自由变形,从而产生应力。

5. 焊接过程参数的选择:焊接过程中的工艺参数选择不当,例如焊接速度、电弧电流或电压等方面的选择错误,可能导致焊接区域过热或冷却不充分,进而产生焊接应力。

二、焊接应力的处理方法1. 预热和后热处理:预热焊接材料可以减少焊接区域的温度梯度,从而降低焊接应力的产生。

后热处理可以通过对焊接结构进行加热和冷却的控制,缓解或消除焊接应力。

2. 选择合适的焊接材料:选择合适的焊接材料,包括焊丝、焊条和填充材料,可以减少焊接区域与基材之间的差异,从而降低焊接应力。

3. 使用轻量化结构设计:在焊接结构的设计过程中,考虑减少焊接材料的使用量,避免产生不必要的焊接应力。

4. 控制焊接过程参数:通过合理选择焊接速度、电流、电压等参数,控制焊接过程的热输入和冷却速度,从而降低焊接应力的产生。

5. 合理约束和夹具设计:在焊接过程中,合理约束和夹具的设计可以防止过大的焊接变形,减少焊接应力的产生。

三、对焊接应力的个人观点和理解焊接应力是焊接过程中的一个常见问题,对于确保焊接结构的长期稳定和性能的发挥至关重要。

焊接应力产生原因及去应力方法

焊接应力产生原因及去应力方法

焊接应力产生原因及去应力方法摘要:焊接从本质上来说是一种融化和再凝固的工艺过程,因凝固时间不同,导致先后凝固部分相互作用而产生了内应力。

这种内应力再焊接制造过程中往往带来的都是不好的质量结果,所以我们需要分析其产生原因,针对性采取措施减少焊接应力以及消除焊接应力。

关键词:焊接应力;去应力引言焊接应力即是在焊接结构时由于焊接而产生的内应力,它可以依据产生作用的时间被分为焊接瞬时应力和焊接残余应力。

所谓焊接瞬时应力是指在焊接的过程中某一个焊接瞬时产生的焊接应力,它是会跟着时间的变化而发生变化的,而在焊接之后,某一个受到焊接的焊件内还残留的焊接应力被称为焊接残余应力。

1 产生焊接残余应力的原因之所以会产生焊接残余应力,主要是由于焊件在焊接的过程中所受到的加热是不均匀的。

按照焊接残余应力的发生来源,可将焊接残余应力分为直接应力、间接应力和组织应力三种。

直接的焊接应力是焊接残余应力所产生的最主要的原因,它是受到不均匀的加热和冷却之后所产生的,根据加热和冷却时的温度梯度而发生变化。

间接的焊接应力则是焊件由于焊前的加工状况造成的应力。

焊件在受到轧制和拉拔时会产生一定的残余应力。

间接的残余应力如果在某一种场合下叠加到焊接的残余应力上去,焊件受到焊接发生变形,也会将其影响附加到焊接残余应力上去。

而且,焊件一旦受到外来的某一种约束,产生相应的附加应力,也属于间接应力的范畴。

组织应力也就是由相变造成的比容变化而产生的应力,它的产生是由于焊件的组织发生了变化。

虽说组织应力会由于含碳量和材料其他成分的不同而产生差异,但我们一般都会将其所产生的影响进行分析研究。

2 减少焊接应力的措施焊接是产生焊接残余应力的根本原因,减少焊缝数量和尺寸能有效减少焊接量,通过控制焊接量可有效减少应力。

在同等焊接强度下,焊缝尺寸较小的,其焊接残余应力较小。

应尽量避免多条焊缝在同一部位集中,焊缝距离过近时,焊缝间会产生耦合,形成复杂残余应力场,焊缝间距离一般应大于3倍板厚且不小于100mm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.焊接应力的分类
焊接过程是一个先局部加热,然后再冷却的过程。

焊件在焊接时产生的变形称为热变形,焊件冷却后产生的变形称为焊接残余变形,
这时焊件中的应力称为焊接残余应力。

焊接应力包括沿焊缝长度方向的纵向焊接应力,垂直于焊缝长度方向的横向焊接应力和沿厚度方向的焊接应力。

2.焊接残余应力对结构性能的影响
(1)对结构静力强度的影响:焊接应力不影响结构的静力强度。

(2)对结构刚度的影响:焊接残余应力降低结构的刚度。

(3)对受压构件承载力的影响:焊接残余应力降低受压构件的承
载力。

(4)对低温冷脆的影响:增加钢材在低温下的脆断倾向。

(5)对疲劳强度的影响:焊接残余应力对结构的疲劳强度有明显
不利影响。

焊接变形的基本形式有收缩变形、角变形、弯曲变形、波浪变形和扭
曲变形等。

焊接过程中,对焊件进行不均匀加热和冷却,是产生焊接应力和
变形的根本原因。

减少焊接应力与变形的工艺措施主要有:
一、预留收缩变形量。

根据理论计算和实践经验,在焊件备料及加
工时预先考虑收缩余量,以便焊后工件达到所要求的形状、尺寸。

二、反变形法。

根据理论计算和实践经验,预先估计结构焊接变形的
方向和大小,然后在焊接装配时给予一个方向相反、大小相等的预置变形,以抵消焊后产生的变形。

三、刚性固定法。

焊接时将焊件加以刚性固定,焊后待焊件冷却到
室温后再去掉刚性固定,可有效防止角变形和波浪变形。

此方法会增大焊接应力,只适用于塑性较好的低碳钢结构。

四、选择合理的焊接顺序。

尽量使焊缝自由收缩。

焊接焊缝较多的
结构件时,应先焊错开的短焊缝,再焊直通长焊缝,以防在焊缝交接
处产生裂纹。

如果焊缝较长,可采用逐步退焊法和跳焊法,使温度分
布较均匀,从而减少了焊接应力和变形。

五、锤击焊缝法。

在焊缝的冷却过程中,用圆头小锤均匀迅速地锤
击焊缝,使金属产生塑性延伸变形,抵消一部分焊接收缩变形,从而
减小焊接应力和变形。

六、加热“减应区”法。

焊接前,在焊接部位附近区域(称为减应区)进行加热使之伸长,焊后冷却时,加热区与焊缝一起收缩,可有效减
小焊接应力和变形。

七、焊前预热和焊后缓冷。

预热的目的是减少焊缝区与焊件其他部
分的温差,降低焊缝区的冷却速度,使焊件能较均匀地冷却下来,从
而减少焊接应力与变形。

焊后消除应力处理:
1、整体热处理:消除应力的程度主要决定于材质的成分、组织、加
热温度和保温时间。

低碳钢及部分低合金钢焊接构件在650度,保温20~40h,可基本消除全部残余应力。

另外还有爆炸消除应力。

2、局部热处理:大型焊接结构,受加热炉的限制或要求不高时采用
这种方法。

可采用火焰、红外、电阻、感应等加热方式,应保持均匀
加热并具有一定的加热宽度。

低合金高强钢,一般在焊缝两侧各
100~200mm。

3、机械拉伸、水压试验、温差拉伸、振动法等这几种方法只能消除
20~50%的残余应力,前两种方法在生产上广泛应用。

焊接后进行去应力处理,有自然时效处理(时间长,去应力不彻底,)、震动时效(效率高,费用低,只能去除焊接应力的70%左右)人工加热时效(时间短费用较高,能100%去除焊接应力,同时能进行去氢处理)。

采用大型燃油退火炉,进行焊后退火处理。

采用多点加热、多
点温度控制方式,温控采用热电偶自动控制仪表控制加热,使炉内
各部温度均匀的控制在退火温度,保证工件的退火,同时能去除焊接过程中渗入焊缝中的H原子,消除了焊接件的氢脆。

在冷热加工过程中,产生残余应力,高者在屈服极限附近。

构件
中的残余应力大多数表现出很大的有害作用;如降低构件的实际强
度,降低疲劳极限,造成应力腐蚀和脆性断裂。

并且由于残余应力的
松弛,使零件产生翘曲,大大的影响了构件的尺寸精度。

因此降低构
件的残余应力,是十分必要的。

传统的时效方法有:热时效、振动时效、自然时效、静态过载时效、热冲击时效等。

后两种方法应用较少,这里不作介绍
自然时效(NSR)是将工件长时间露天放置(一般长达六个月至一
年左右),利用环境温度的季节性变化和时间效应使残余应力释放,
在温度应力形成的过载下,促使残余应力发生松弛而使尺寸精度获得稳定。

由于周期太长和占地面积大,仅适应长期单一品种的批量生产和效果不理想,目前应用的较少。

热时效(TSR)是将构件由室温(或不高于150℃)缓慢、均匀加热至550℃左右,保温4~8小时,再严格控制降温速度至150℃以下出炉,达到消除残余应力的目的,可以保证加工精度和防止裂纹产生。

振动时效(VSR)又称振动消除应力法,是将工件(包括铸件、
锻件、焊接构件等)在其固有频率下进行数分钟至数十分钟的振动处理,以振动的形式给工件施加附加应力,当附加应力与残余应力叠加后,达到或超过材料的屈服极限时,工件发生微观或宏观塑性变形,
从而降低和均化工件内的残余应力,使尺寸精度获得稳定的一种方
法。

这种工艺具有耗能少、时间短、效果显著等特点。

近年来在国内
外都得到迅速发展和广泛应用。

振动时效艺具有耗能少、时间短、效果显著等特点。

与热时效相比,它无需宠大的时效炉,可节省占地面积与昂贵的设备投资。

因此,目前对长达几米至几十米和桥梁、船舶、化工器械的大型焊接件和重达几吨至几十吨的超重型铸件或加工精度要求较高的工件,较多地采用了振动时效。

生产周期短。

自然时效需经几个月的长期放置,热
时效亦需经数十小时的周期方能完成,而振动时效一般只需振动数十分钟即可完成。

使用方便。

振动设备体积小、重量轻、便于携带。

由于振动处理不受场地限制,振动装置又可携带至现场,所以这种工艺与热时效相比,使用简便,适应性较强。

节约能源,降低成本。

在工件共振频率下进行时效处理,耗能极少,能源消耗仅为热时效的3~5%,成本仅为热时效的8~10%。

其他。

振动时效操作简便,易于机械化自动化。

可避免金属零件在热时效过程中产生的翘曲变形、氧化、脱碳及硬度降低等缺陷。

是目前唯一能进行二次时效的方法,但
消除应力率只能达到80%。

相关文档
最新文档