正弦曲线测试试题含详细讲解
正弦函数、余弦函数的图像(附答案)

正弦函数、余弦函数的图象[学习目标]1•了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系. -=知识梳理自主学习知识点一正弦曲线正弦函数y = sin x(x€ R)的图象叫正弦曲线.利用几何法作正弦函数y= sin x, x€ [0,2 n]图象的过程如下:①作直角坐标系,并在直角坐标系y轴的左侧画单位圆,如图所示.②把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x轴的垂线,可以得到对应于0, £ n,扌,…,2n等角的正弦线.6 3 2③找横坐标:把x轴上从0到2 n (2 6.28一段分成12等份.④平移:把角x的正弦线向右平移,使它的起点与x轴上的点x重合.⑤连线:用光滑的曲线将这些正弦线的终点依次从左到右连接起来,即得y= sin x, x€ [0,2 n]的图象.在精度要求不太高时,y= sin x, x € [0,2 诃以通过找出(0,0),(寸,1), ( n 0) , (# —1),(2 n 0)五个关键点,再用光滑曲线将它们连接起来,就可得正弦函数的简图.思考在所给的坐标系中如何画出y= sin x, x€ [0,2 7的图象?如何得到y= sin x, x€ R的图象?只要将函数y= sin x, x€ [0,2 n的图象向左、向右平行移动(每次2n个单位长度),就可以得到正弦函数y= sin x, x€ R的图象.知识点二余弦曲线余弦函数y= cos x(x€ R)的图象叫余弦曲线.n n 根据诱导公式sin x+ 2 = cos x, x€ R.只需把正弦函数y= sin x, x€ R的图象向左平移-个单位长度即可得到余弦函数图象(如图).n 3要画出y = cos x, x€ [0,2従的图象,可以通过描出(0,1),勺,0,(n - 1), 0 , (2 n 1)五个关键点,再用光滑曲线将它们连接起来,就可以得到余弦函数y= cos x, x€ [0,2的图象.思考在下面所给的坐标系中如何画出y= cos x, x€ [0,2品的图象?答案题型探究重点突破题型一五点法”作图的应用例1利用五点法”作出函数y= 1-sin x(0 * 2曲)简图. 解(1)取值列表:⑵描点连线,如图所示:跟踪训练1作函数y = sin x , x € [0,2 n 与函数y =— 1 + sin x , x € [0,2冗的简图,并研究它 们之间的关系. 解按五个关键点列表:x 0 n2 n3 n ~22 n sin x1 0—1 0—1 + sin x—1 0—1 —2—1利用正弦函数的性质描点作图:x € [0,2 的图象.题型二利用正弦、余弦函数图象求定义域 例2 求函数f(x)= lg sin x +寸16 — x 2的定义域. sin x>0,解由题意得,x 满足不等式组216 — x 2 >0,—4 w x W 4,即作出y = sin x 的图象,如图所示.sin x>0,y =— 1 + sin x , 由图象可以发现,把结合图象可得定义域:x€ [ —4,—nU (0, n)跟踪训练2 求函数f(x)= lg cos x+ 25-x2的定义域.cos x>0解由题意得,x满足不等式组25—"0,cos x>0即—5W迄5,作出y= C0S x的图象,如图所示.结合图象可得定义域:x € —5,—3 nU题型三利用正弦、余弦函数图象判断零点个数例3在同一坐标系中,作函数y= sin x和y= lg x的图象,根据图象判断出方程sin x = lg x 的解的个数.解建立坐标系xOy,先用五点法画出函数y= sin x, x€ [0,2冗的图象,再依次向左、右连续平移2 n个单位,得到y= sin x的图象.描出点(1,0), (10,1)并用光滑曲线连接得到y= lg x的图象,如图所示.由图象可知方程sin x= lg x的解有3个.跟踪训练3方程x2—cos x = 0的实数解的个数是___________答案2解析作函数y= cos x与y= x2的图象,如图所示,由图象,可知原方程有两个实数解.思韻方法数形结合思想在三角函数中的应用例4函数f(x) = sin x+ 2|sin x|, x€ [0,2冗的图象与直线y= k有且仅有两个不同的交点,求k 的取值范围.3sin x, x € [0 , n,解f(x)= sin x+ 2|sin x|=—sin x, x€ n 2 n ].图象如图,F当堂检测自查自纠1.函数y= sin x (x€ R)图象的一条对称轴是()A. x轴B. y轴C.直线y= x D .直线x = 22.用五点法画y= sin x, x€ [0,2的图象时,下列哪个点不是关键点()1 A.(6,2)% 八B.(2, 1)C. ( , 0)D. (2 , 0)3.函数y= sin x, x€ [0,21 亠的图象与直线y= —2的交点为A(X1, y1), B(x2, y2),贝U X1 + x24. 利用五点法”画出函数y= 2-sin x, x€ [0,2的简图.5. 已知O w x< 2 n^试探索sin x与cos x的大小关系.若使f(x)的图象与直线y=k有且仅有两个不同的交点,根据图可得k的取值范围是(1,3).A'课时精练、选择题n 3 n1函数y= —sin x, x€ —2, y 的简图是()2. 在同一平面直角坐标系内,函数y= sin x, x€ [0,2 与y= sin x, x€ [2 n 4 n的图象()A .重合B .形状相同,位置不同C.关于y轴对称sin x= 10的根的个数是3.方程4.D .形状不同,位置不同B. 8C. 9D. 10函数A'3 n n5.如图所示,函数y= cos x阳n x|(0且x③的图象是()D6. 若函数y= 2cos x(0< x< 2 n的图象和直线y= 2围成一个封闭的平面图形,则这个封闭图形的面积是()A . 4B . 8C . 2 nD . 4 n二、填空题7. __________________________________________________ 函数y= ” . log^sin x的定义域是_________________________________________________________ .&函数y= _ 2cos x+ 1的定义域是 ___________ .___ 19. 函数f(x) = >,'sin 或为 ---------------- .10. _______________________________________________________________ 设0<x< 2 n,且|cos x—sin x|= sin x—cos x,贝U x 的取值范围为 ______________________ .三、解答题111. 用“五点法”画出函数y = 2 + sin x, x€ [0,2 n的简图.12. 根据y= cos x的图象解不等式:-于三cos x< 2, x€ [0,2 n]13. 分别作出下列函数的图象.(1) y= |sin x|, x€ R;(2) y= sin|x|, x€ R.当堂检测答案1答案 D 2. 答案 A 3. 答案 3n 解析如图所示, _ 3 nx i + X 2= 2 = 3 n. 4.解(1)取值列表如下:x 0 n2 n3n~22 n sin x 0 1 0 —i 0 y = 2— sin x21232⑵描点连线,图象如图所示:由图象可知 ①当x =m 或x = 5n时,sin x = cos x ;44③当 O W x <n或5n<x< 2 n时,sin x <cos x. 课时精炼答案一、选择题 1•答案 D 2.答案 B5 •解用“五点法”作出sin x>cos x ;解析根据正弦曲线的作法可知函数y= sin x, x€ [0,2 n与y= sin x, x€ [2 n 4n的图象只是位置不同,形状相同.3. 答案Ax解析在同一坐标系内画出y= 10和y= sin x的图象如图所示:¥=血JT根据图象可知方程有7个根.4. 答案D解析由题意得n 32cos x, 0或2 n 炸2,c 冗30, 2<x<2 n.显然只有D合适.5. 答案C解析当冗当2<x< n时,y= cos x • |tan| =—sin x;当n<<3n寸,y= cos x |tax|= sin x,故其图象为C.6. 答案D解析作出函数y = 2cos x, x€ [0,2 n]图象,函数y = 2cos x,x€ [0,2 n的图象与直线y = 2围成的平面图形为如图所示的阴影部分. 利用图象的对称性可知该阴影部分的面积等于矩形OABC的面积,又••• OA= 2, OC= 2n,S阴影部分=S矩形OABC = 2 X 2 n= 4 n.、填空题7. 答案{x|2k n<<2k n+ n k€ Z}1解析由log2sin x> 0知0<sin x< 1,由正弦函数图象知2kn«2k n+n k€乙… 2 2& 答案2k n—3冗,2k n+ k€ Z1 2 2解析2cos x+ 1> 0 , cos x>—2,结合图象知x€ 2k n— " n, 2k n+" n , k€ Z.9.答案(一4,— nU [0 , n]sin x > 0, 2kx < 2k n+ n,解析2?16— x 2>0 — 4<x<4? — 4<x W — n 或 0 < x W n. 解析 由题意知sin x — cos x >0, 即卩cos x W sin x ,在同一坐标系画出 y = sin x , x € [0,2 n 与三、解答题11•解(1)取值列表如下:x 0 n2 n3 2n 2 n sin x 0 1 0 —1 0 1 ,. 1 3 1 1 1 -+ sin x222222⑵描点、连线,如图所示.12.解 函数y = cos x , x € [0,2 n 的图象如图所示: 根据图象可得不等式的解集为n, ,5 n 7 n, , 5 n{x|—W x < 或一W x < }3 6 63,.10.答案n 5 n 4,~4y = cos x , x € [0,2n 观察图象知x € 4, 5 n~4 .n 的图象,sin x 2k x< 2k n+n, 13.解(1)y= |sin x|=—sin x 2k n+n<W 2k n+ 2 n(k€ Z).其图象如图所示,sin x x>0 ,(2)y= sin |x| =—sin x x<0 .其图象如图所示,。
高考数学正弦余弦真题及答案一

B.直角三角形C.等腰直角三角形D .等腰三角形或直角三角形(2020•江苏)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c.已知a=3,c=2,B=45°.(1)求sinC 的值;(2)在边BC 上取一点D ,使得cos ∠ADC=-45,求tan ∠DAC的值.√【题型】整体思想;综合法;解三角形;数学运算.【答案】见试题解答内容【分析】(1)由题意及余弦定理求出b 边,再由正弦定理求出sinC 的值;(2)三角形的内角和为180°,cos ∠ADC=-45,可得∠ADC 为钝角,可得∠DAC 与∠ADC+∠C 互为补角,所以sin ∠DAC=sin (∠ADC+∠C )展开可得sin ∠DAC 及cos ∠DAC ,进而求出tan ∠DAC的值.【解答】解:(1)因为a=3,c=2,B=45°.,由余弦定理可得:b=a 2+c 2−2accosB =9+2−2×3×2×22=5,由正弦定理可得c sinC =b sinB ,所以sinC=c b •sin45°=25•22=55,所以sinC=55;(2)因为cos ∠ADC=-45,所以sin ∠ADC=1−cos 2∠ADC =35,在三角形ADC 中,易知C 为锐角,由(1)可得cosC=1−sin2C=255,所以在三角形ADC 中,sin ∠DAC=sin (∠ADC+∠C )=sin ∠ADCcos ∠C+cos ∠ADCsin ∠C=2525,因为∠DAC ∈(0,π2),所以cos ∠DAC=1−sin2∠DAC=11525,所以tan ∠DAC=sin ∠DAC cos ∠DAC =211.√√√√√√√√√√√√√√√√√【点评】本题考查三角形的正弦定理及余弦定理的应用,及两角和的正弦公式的应用,属于中档题.(2022秋•鄠邑区期末)在△ABC 中,内角A ,B ,C 的对边分别为a,b,c,且满足c=2acosB ,则△ABC 的形状是( )A.6B.12D.无解B.7C.19D.19【题型】解三角形.【答案】A【分析】利用余弦定理代入,可得a=b,从而可得结论.【解答】解:∵c=2acosB,∴c=2a•a2+c2−b22ac,∴a2=b2,∴a=b,∴△ABC的形状是等腰三角形.故选:A.【点评】本题考查余弦定理的运用,考查学生的计算能力,属于基础题.(2023春•雁塔区校级期中)在△ABC中,已知b=63,c=6,C=30°,则a=( )√【题型】计算题;转化思想;综合法;解三角形;数学运算.【答案】C【分析】由已知利用余弦定理可得a2-18a+72=0,解方程即可求解a的值.【解答】解:∵b=63,c=6,C=30°,∴由余弦定理c2=a2+b2-2abcosC,可得36=a2+108-2×a×63×32,整理可得:a2-18a+72=0,∴解得a=12,或6.故选:C.√√√【点评】本题主要考查了余弦定理在解三角形中的应用,考查了方程思想,属于基础题.(2023春•房山区期末)在△ABC中,已知a=2,b=3,C=60°,则c等于( )√【题型】解三角形.【答案】A【分析】利用余弦定理列出关系式,将a,b及cosC的值代入即可求出c的值.【解答】解:∵在△ABC中,a=2,b=3,C=60°,∴由余弦定理得:c2=a2+b2-2abcosC=4+9-6=7,A.2B.2C.3A.23C.45D.38则c=7.故选:A.√【点评】此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.(2023春•青铜峡市校级期末)△ABC的内角A,B,C的对边分别为a,b,c,若cosA=63,b=22,c=3,则a=( )√√√√【题型】整体思想;综合法;解三角形;数学运算.【答案】D【分析】根据余弦定理求解即可.【解答】解:由余弦定理得a2=b2+c2-2bccosA=3,得a=3.故选:D.√【点评】本题主要考查了余弦定理在求解三角形中的应用,属于基础题.(2023春•香洲区校级期末)已知△ABC的三边长分别为a,a+3,a+6,且最大内角是最小内角的2倍,则最小内角的余弦值为( )【题型】整体思想;综合法;解三角形;数学运算.【答案】B【分析】设角A,B,C所对的边分别为a,a+3,a+6,则C=2A,由正弦定理可得asinA=a+6sinC,化简得cosA=a+62a,再利用余弦定理可求出a的值,进而求出cosA即可.【解答】解:设角A,B,C所对的边分别为a,a+3,a+6,则A为最小角,C为最大角,∴C=2A,由正弦定理可得,asinA=a+6sinC=a+6sin2A,∴asin2A=(a+6)sinA,即2asinAcosA=(a+6)sinA,又∵A∈(0,π),∴sinA≠0,A.6-2B.4-23D.4+23B.60°C.135°D.150°∴cosA=a+62a=(a+3)2+(a+6)2−a22(a+3)(a+6),解得a=12,∴cosA=a+62a=1824=34,即最小内角的余弦值为34.故选:B.【点评】本题主要考查了正弦定理和余弦定理的应用,属于基础题.(2023春•密山市校级期中)已知△ABC中,角A,B,C的对边分别为a,b.c.若a=c=6+2,且A=75°,则边b=( )√√√√√√【题型】解三角形;逻辑推理.【答案】C【分析】根据两角和公式可得sinA,三角形内角和为180°,可得B,根据正弦定理,列出等式,直接求出b.【解答】解:根据两角和公式可得sinA=sin(30°+45°)=2+64,根据题意可知a=c,C=75°,三角形内角和为180°,可得B=30°,sinB=12,根据正弦定理bsinB=asinA,b12=2+62+64=4,所以b=2.故选:C.√√√√√√【点评】本题考查解三角形问题,正弦定理的应用,属基础题.(2023•雁塔区校级模拟)在△ABC中,若a2+c2-b2=-ac,则角B=( )【题型】解三角形.【答案】A【分析】由条件利用余弦定理求得cosB=-12,从而求得B的值.A.135°C.60°D.90°B.(1,3)C.(0,1)D.(3,+∞)【解答】解:△ABC中,∵a2+c2-b2=-ac,由余弦定理可得 cosB=a2+c2−b22ac=−ac2ac=-12,∴B=120°,故选:A.【点评】本题主要考查余弦定理的应用,根据三角函数的值求角,属于基础题.(2023•新干县校级一模)已知三角形的三边长分别为a、b、a2+ab+b2,则三角形的最大内角是( )√【题型】解三角形.【答案】B【分析】利用三角形中大边对大角可得,三角形的最大内角是a2+ab+b2所对的角,设为θ,由余弦定理求得cosθ 的值,可得θ的值.√【解答】解:∵三角形的三边长分别为a、b、a2+ab+b2中,a2+ab+b2为最大边,则三角形的最大内角是a2+ab+b2所对的角,设为θ.由余弦定理可得 cosθ=a2+b2−(a2+ab+b2)2ab=-12,∴θ=120°,故选:B.√√√【点评】本题主要考查余弦定理的应用,以及大边对大角,根据三角函数的值求角,属于中档题.(2023春•鼓楼区校级期中)已知锐角△ABC中,角A,B,C的对边分别为a,b,c,a2=b2+bc,则tanAtanB的取值范围为( )√√【题型】计算题;对应思想;综合法;解三角形;数学运算.【答案】A【分析】由余弦定理,三角函数恒等变换的应用化简已知等式可得tanA=tan2B=2tanB1−tan2B,进而得到tanAtanB=-2+21−tan2B,再求出B的范围,求解即可.【解答】解:∵a2=b2+bc,a2=c2+b2-2bccosA,∴c-2bcosA=b,∴sinC-2sinBcosA=sinB ,∴sin (A+B )-2sinBcosA=sinB ,∴sinAcosB-sinBcosA=sinB ,∴sin (A-B )=sinB ,∵A ,B ∈(0,π),∴A-B=B ,∴A=2B ,∴tanA=tan2B=2tanB1−tan 2B,即tanAtanB=2tan 2B1−tan 2B=-2+21−tan 2B,∵锐角△ABC ,∴V Y Y Y Y Y Y Y Y W Y Y Y Y Y Y Y Y X 0<2B <π20<B <π20<π−3B <π2,∴π6<B <π4,∴13<tan 2B <1,∴tanAtanB=-2+21−tan 2B>1,∴tanAtanB 的取值范围为(1,+∞).故选:A .【点评】本题主要考查了余弦定理,三角函数恒等变换的应用,属于中档题.(2023•黄埔区校级模拟)在△ABC 中,a,b,c 分别为角A ,B ,C ,向量m =(2sinB ,2-cos2B ),n =(2sin 2(B 2+π4),-1)且m ⊥n (1)求角B 的大小;(2)若a=3,b=1,求c 的值.→→→→√【题型】计算题;解三角形;平面向量及应用.【答案】见试题解答内容【分析】(1)根据m ⊥n 即m •n =0得关于角B 的三角函数的方程,运用二倍角公式和诱导公式化简,即可求出角B ;(2)由a >b,得到A >B ,即B=π6,根据余弦定理可得一个关于c 的一元二次方程,解这个方程求解c值.→→→→【解答】解:(1)由于m ⊥n ,则m •n =0,即有2sinB•2sin 2(B 2+π4)-(2-cos2B )=0,即2sinB•[1-cos2(B 2+π4)]-2+cos2B=0,即2sinB+2sin 2B-2+1-2sin 2B=0,→→→→解得sinB=12,由于0<B <π,则B=π6或5π6;(2)由a >b,得到A >B ,即B=π6,由余弦定理得:b 2=a 2+c 2-2accosB ,代入得:1=3+c 2-23c •32,即c 2-3c+2=0,解得c=1或c=2.√√【点评】本题考查三角形中三角恒等变换、解三角形.方程思想在三角形问题中的应用极为广泛,根据已知条件可得方程、根据正弦定理、余弦定理、三角形面积公式等都可以得到方程,解三角形问题的实质就是根据有关定理列方程求解未知元素.(2023春•雨山区校级期中)在△ABC 中,A =π3,b =2,再从条件①、条件②这两个条件中选择一个作为已知,求(Ⅰ)B 的大小;(Ⅱ)△ABC 的面积.条件①:b 2+2ac =a 2+c 2;条件②:acosB=bsinA .√√【题型】转化思想;综合法;解三角形;数学运算.【答案】(Ⅰ)B=π4;(Ⅱ)S △ABC =3+34.√【分析】选择条件①时:(Ⅰ)利用余弦定理求出cosB 和B 的值;(Ⅱ)由正弦定理求出a 的值,再利用三角形内角和定理求出sinC ,计算△ABC 的面积.选择条件②时:(Ⅰ)由正弦定理求出tanB 和B 的值;(Ⅱ)由正弦定理求出a 的值,再利用三角形内角和定理求出sinC ,计算△ABC 的面积.【解答】解:选择条件①:b 2+2ac=a 2+c 2,(Ⅰ)由b 2+2ac=a 2+c 2,得a 2+c 2-b 2=2ac,所以cosB=a 2+c 2−b 22ac=2ac 2ac =22;又B ∈(0,π),所以B=π4;(Ⅱ)由正弦定理知a sinA =bsinB,所以a=bsinAsinB =3;所以sinC=sin (A+B )=sinAcosB+cosAsinB=32×22+12×22=6+24,√√√√√√√√√√√所以△ABC的面积为S△ABC=12absinC=12×3×2×6+24=3+34.选择条件②:acosB=bsinA.(Ⅰ)由正弦定理得asinA =b sinB,所以asinB=bsinA;又acosB=bsinA,所以sinB=cosB,所以tanB=1;又B∈(0,π),所以B=π4;(Ⅱ)由正弦定理知asinA =b sinB,所以a=bsinAsinB=3;所以sinC=sin(A+B)=sinAcosB+cosAsinB=32×22+12×22=6+24,所以△ABC的面积为S△ABC=12absinC=12×3×2×6+24=3+34.√√√√√√√√√√√√√√√√【点评】本题考查了解三角形的应用问题,也考查了运算求解能力,是基础题.(2022秋•南通期中)在△ABC中,三边长是公差为2的等差数列,若△ABC是钝角三角形,则其最短边长可以为4(区间(2,6)之间的实数都可以).(写出一个满足条件的值即可)【题型】计算题;转化思想;分析法;解三角形;逻辑推理.【答案】4(区间(2,6)之间的实数都可以).【分析】设三边分别为x-2,x,x+2,求出最大边对角的余弦值,令其小于零,结合构成三角形的三边满足的条件,列出关于x的不等式组解出x的范围.【解答】解:由已知令△ABC的三边为:x-2,x,x+2,则应满足x>2,且x-2+x>x+2,解得x>4①,因为△ABC是钝角三角形,故边长解得为x+2的边对角θ满足:cosθ=x 2+(x−2)2−(x+2)22x•(x−2)<0,结合①式解得4<x<8,故最短边2<x-2<6,故可取x=6,则最短边长为4.故答案为:4(区间(2,6)之间的实数都可以).【点评】本题考查三角形的性质、余弦定理的应用,属于中档题.(2023•玉林三模)在△ABC中,内角A、B、C的对边分别为a、b、c,且acosB+bsinA=c.(1)求角A的大小;(2)若a=2,△ABC的面积为2−12,求b+c的值.√√【题型】对应思想;综合法;解三角形.【答案】见试题解答内容【分析】(1)利用正弦定理和三角形内角和定理与三角恒等变换求得A 的值;(2)由三角形面积公式和余弦定理,即可求得b+c 的值.【解答】解:(1)△ABC 中,acosB+bsinA=c,由正弦定理得:sinAcosB+sinBsinA=sinC ,又sinC=sin (A+B )=sinAcosB+cosAsinB ,∴sinBsinA=cosAsinB ,又sinB≠0,∴sinA=cosA ,又A ∈(0,π),∴tanA=1,A=π4;(2)由S △ABC =12bcsinA=24bc=2−12,解得bc=2-2;又a 2=b 2+c 2-2bccosA ,∴2=b 2+c 2-2bc=(b+c )2-(2+2)bc,∴(b+c )2=2+(2+2)bc=2+(2+2)(2-2)=4,∴b+c=2.√√√√√√√√【点评】本题考查了三角恒等变换与解三角形的应用问题,是基础题.(2023春•杨浦区校级期末)在△ABC 中,角A ,B ,C 所对的边为a,b,c,若a=4,b=6,c=9,则角C=π-arccos2948.【题型】对应思想;定义法;解三角形;数学运算.【答案】见试题解答内容【分析】利用余弦定理求出cosC ,再根据反余弦函数求出C 的值.【解答】解:△ABC 中,a=4,b=6,c=9,由余弦定理得cosC=42+62−922×4×6=-2948,有C ∈(0,π),所以C=π-arccos 2948.故答案为:π-arccos 2948.【点评】本题考查了余弦定理和反余弦函数的应用问题,是基础题.B.2π3C.π6D.5π6B.63C.22D.12(2023•青海模拟)在△ABC中,内角A,B,C所对应的边分别是a,b,c,若△ABC的面积是3(b2+c2−a2)4,则A=( )√【题型】计算题;转化思想;综合法;三角函数的求值;解三角形;逻辑推理;数学运算.【答案】A【分析】直接利用三角形的面积公式和余弦定理建立方程,再利用三角函数的值求出A的值.【解答】解:已知△ABC的面积是3(b2+c2−a2)4,利用余弦定理b2+c2-a2=2bccosA,整理得:12bcsinA=3(b2+c2−a2)4=32bccosA,所以tanA=3,由于A∈(0,π).则A=π3.故选:A.√√√√【点评】本题考查的知识要点:三角形的面积公式,余弦定理,三角函数的值,主要考查学生的理解能力和计算能力,属于中档题和易错题.(2023春•鼓楼区校级期末)△ABC的面积为S,角A,B,C的对边分别是a,b,c,已知43S=(a+b)2−c2,则sinC的值是( )√√√【题型】整体思想;综合法;解三角形;数学运算.【答案】A【分析】根据三角形的面积公式结合余弦定理化简求出C,即可得解.【解答】解:因为43S=(a+b)2−c2,又S=12absinC,所以23absinC−2ab=a2+b2−c2,所以3sinC−1=a2+b2−c22ab,又cosC=a2+b2−c22ab,所以3sinC−cosC=1,所以sin(C−π6)=12,√√√√A.3B.2D.3或7又C∈(0,π),则C−π6∈(−π6,5π6),所以c−π6=π6,所以C=π3,则sinC=32.故选:A.√【点评】本题主要考查了余弦定理的应用,考查了三角形的面积公式,属于基础题.(2023春•永昌县校级月考)在钝角△ABC中,角A,B,C的对边分别为a,b,c,且AB=2,sinB=32,且S△ABC= 32,则AC=( )√√√√√【题型】计算题;转化思想;综合法;解三角形;数学运算.【答案】C【分析】由题意利用三角形的面积公式可求BC=1,分类讨论,利用余弦定理即可求解AC的值.【解答】解:因为AB=2,sinB=32,且S△ABC=32=12AB•BC•sinB=12×2×BC×32,所以BC=1,因为BC<AB,所以A为锐角,当C为钝角时,可得cosB=1−sin2B=12,所以由余弦定理AC2=AB2+BC2-2AB•BC•cosB=22+12-2×2×1×12=3,可得AC=3,此时cosC=a2+b2−c22ab=1+3−42×1×3=0,又C∈(0,π),可得C=π2,不符合题意,故舍去,当B为钝角时,可得cosB=-1−sin2B=-12,所以由余弦定理AC2=AB2+BC2-2AB•BC•cosB=22+12-2×2×1×(-12)=7,可得AC=7.故选:C.√√√√√√√√【点评】本题考查了三角形的面积公式以及余弦定理在解三角形中的应用,属于基础题.(2023春•江油市校级期中)在△ABC中,角A、B、C对的边分别为a、b、c.若a=1,b=3,c=13,则角C等于( )√A.90°C.60°D.45°A.5π6C.π3D.π6【题型】转化思想;转化法;解三角形;数学运算.【答案】B【分析】利用余弦定理求解即可.【解答】解:a=1,b=3,c=13,则cosC=a2+b2−c22ab=12+32−(13)22×1×3=−12,因为0°<C<180°,故C=120°.故选:B.√√【点评】本题主要考查余弦定理的应用,属于基础题.(2023春•尖山区校级月考)在△ABC中,内角A,B,C所对的边分别为a,b,c,若(a+b+c)(c+b-a)=bc,则A=( )【题型】计算题;转化思想;综合法;解三角形;数学运算.【答案】B【分析】由已知利用平方差公式整理可得b2+c2-a2=-bc,由余弦定理得cosA=-12,结合A∈(0,π),即可求解A的值.【解答】解:∵△ABC中,(a+b+c)(c+b-a)=bc,∴(b+c)2-a2=bc,整理得:b2+c2-a2=-bc,∴由余弦定理得:cosA=b2+c2−a22bc=−bc2bc=-12,又A∈(0,π),∴A=2π3.故选:B.【点评】本题考查余弦定理在解三角形中的应用,求得b2+c2-a2=-bc是关键,属于基础题.(2023春•安化县期末)在△ABC中,角A,B,C所对的边分别为a,b,c,若ac=8,a+c=7,B=π3,则b=( )A.25C.4 $D.5 A.−22B.22D.1010√【题型】计算题;方程思想;综合法;解三角形;数学运算.【答案】B【分析】结合余弦定理与完全平方和公式,进行运算,得解.【解答】解:因为ac=8,a+c=7,B=π3,所以由余弦定理知,b2=a2+c2-2accosB=(a+c)2-2ac-2accosB=49-2×8-2×8×12=25,所以b=5.故选:B.【点评】本题考查解三角形,熟练掌握余弦定理是解题的关键,考查运算求解能力,属于基础题.(2023春•房山区期末)已知平面直角坐标系中的3点A(2,2),B(6,0),C(0,0),则△ABC中最大角的余弦值等于( )√√√【题型】转化思想;转化法;解三角形;数学运算.【答案】C【分析】根据夹角公式算出△ABC每个内角的余弦值,然后分析可得结果.【解答】解:A(2,2),B(6,0),C(0,0),AB=(4,−2),AC=(−2,−2),cosA=cos〈AB,AC〉=AB⋅AC|AB||AC|=−4410=−1010;CB=(6,0),CA=(2,2),cosC=cos〈CB,CA〉=CB⋅CA|CB||CA|=126×22=22,BA=(−4,2),BC=(−6,0),cosB=cos〈BA,BC〉=BA⋅BC|BA||BC|=246×25=255;由A,B,C为三角形ABC的内角,则cosA<0,cosB>0,cosC>0,于是A是钝角,B,C是锐角,最大角是A,余弦值为−1010.故选:C.→→→→→→→→√√→→→→→→→→√√→→→→→→→→√√√【点评】本题主要考查余弦定理的应用,属于基础题.A.3B.4D.6 A.-1C.1D.6(2023•郑州模拟)在△ABC中,满足9sin2A+6cosA=10,且AB=3,BC=26,则AC=( )√【题型】整体思想;综合法;解三角形;数学运算.【答案】C【分析】由同角三角函数的平方关系化简9sin2A+6cosA=10求出cosA,再利用余弦定理即可求解AC.【解答】解:9sin2A+6cosA=9(1-cos2A)+6cosA=9-9cos2A+6cosA=10,即9cos2A-6cosA+1=(3cosA-1)2=0,解得cosA=13,由余弦定理可知cosA=AB2+AC2−BC22AB⋅AC=9+AC2−246AC=AC2−156AC,则AC2−156AC=13,整理得3AC2-6AC-45=(3AC-15)(AC+3)=0,解得AC=5或AC=-3(舍).故选:C.【点评】本题主要考查了余弦定理的应用,属于基础题.(2015•重庆)在等差数列{a n}中,若a2=4,a4=2,则a6=( )【题型】等差数列与等比数列.【答案】B【分析】直接利用等差中项求解即可.【解答】解:在等差数列{a n}中,若a2=4,a4=2,则a4=12(a2+a6)=12(4+a6)=2,解得a6=0.故选:B.【点评】本题考查等差数列的性质,等差中项个数的应用,考查计算能力.B.b≤0C.c=0D.a-2b+c=0(2017•上海)已知a、b、c为实常数,数列{x n}的通项x n=an2+bn+c,n∈N*,则“存在k∈N*,使得x100+k、x200+k、x300+k成等差数列”的一个必要条件是( )【题型】方程思想;等差数列与等比数列;简易逻辑.【答案】A【分析】由x100+k,x200+k,x300+k成等差数列,可得:2x200+k=x100+k+x300+k,代入化简即可得出.【解答】解:存在k∈N*,使得x100+k、x200+k、x300+k成等差数列,可得:2[a(200+k)2+b(200+k)+c]=a(100+k)2+b(100+k)+c+a(300+k)2+b(300+k)+c,化为:a=0.∴使得x100+k,x200+k,x300+k成等差数列的必要条件是a≥0.故选:A.【点评】本题考查了等差数列的通项公式、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.(2021•乙卷)记S n为数列{a n}的前n项和,b n为数列{S n}的前n项积,已知2S n+1b n=2.(1)证明:数列{b n}是等差数列;(2)求{a n}的通项公式.【题型】计算题;方程思想;综合法;定义法;等差数列与等比数列;逻辑推理;数学运算.【答案】(1)证明过程见解答;(2)a n=V Y Y YW YY Y X32,n=1−1n(n+1),n≥2.【分析】(1)由题意当n=1时,b1=S1,代入已知等式可得b1的值,当n≥2时,将b nb n−1=S n,代入2S n +1b n=2,可得b n-b n-1=12,进一步得到数列{b n}是等差数列;(2)由a1=S1=b1=32,可得b n=n+22,代入已知等式可得S n=n+2n+1,当n≥2时,a n=S n-S n-1=-1n(n+1),进一步得到数列{a n}的通项公式.【解答】解:(1)证明:当n=1时,b1=S1,由2b1+1b1=2,解得b1=32,B.a n=3n-10C.Sn=2n2-8n D.S n=12n2-2n 当n≥2时,b nb n−1=S n,代入2S n+1b n=2,消去S n,可得2 b n−1b n+1b n=2,所以b n-b n-1=12,所以{b n}是以32为首项,12为公差的等差数列.(2)由题意,得a1=S1=b1=32,由(1),可得b n=32+(n-1)×12=n+22,由2S n+1b n=2,可得S n=n+2n+1,当n≥2时,a n=S n-S n-1= n+2n+1-n+1n=-1n(n+1),显然a1不满足该式,所以a n=V Y Y YW YY Y X32,n=1−1n(n+1),n≥2.【点评】本题考查了等差数列的概念,性质和通项公式,考查了方程思想,是基础题.(2019•新课标Ⅰ)记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则( )【题型】计算题;方程思想;等差数列与等比数列.【答案】A【分析】根据题意,设等差数列{a n}的公差为d,则有V WX4a1+6d=0a1+4d=5,求出首项和公差,然后求出通项公式和前n项和即可.【解答】解:设等差数列{a n}的公差为d,由S4=0,a5=5,得V WX4a1+6d=0a1+4d=5,∴V WX a1=−3d=2,∴a n=2n-5,S n=n2−4n,故选:A.【点评】本题考查等差数列的通项公式以及前n项和公式,关键是求出等差数列的公差以及首项,属于基础题.(2016•新课标Ⅰ)已知等差数列{a n}前9项的和为27,a10=8,则a100=( )A.100B.99D.97 A.既不充分也不必要条件C.必要不充分条件D.充要条件【题型】计算题;定义法;等差数列与等比数列.【答案】C【分析】根据已知可得a5=3,进而求出公差,可得答案.【解答】解:∵等差数列{a n}前9项的和为27,S9=9(a1+a9)2=9×2a52=9a5.∴9a5=27,a5=3,又∵a10=8,∴d=1,∴a100=a5+95d=98,故选:C.【点评】本题考查的知识点是数列的性质,熟练掌握等差数列的性质,是解答的关键.(2023•阿拉善盟一模)已知{a n}是等差数列,S n是{a n}的前n项和,则“对任意的n∈N*且n≠3,S n>S3”是“a4>a3”的( )【题型】转化思想;综合法;等差数列与等比数列;简易逻辑;逻辑推理.【答案】B【分析】根据等差数列的性质,充分与必要条件的概念即可求解.【解答】解:由对任意的n∈N*且n≠3,S n>S3,可得等差数列{a n}的前n项和的最小值为S3,∴等差数列{a n}仅有前三项为负项,且公差d>0,∴可得a4>a3,反过来,由a4>a3,可得d>0,但不能得到等差数列{a n}仅有前三项为负项,即不能得到等差数列{a n}的前n项和的最小值为S3,∴“对任意的n∈N*且n≠3,S n>S3”是“a4>a3”的充分不必要条件,故选:B.【点评】本题考查等差数列项的性质,充分与必要条件的概念,属基础题.A.若①有实根,②有实根,则③有实根C.若①无实根,②有实根,则③无实根D .若①无实根,②无实根,则③无实根(2023•长宁区二模)设各项均为实数的等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,对于方程①2023x 2-S 2023x+T 2023=0,②x 2-a 1x+b 1=0,③x 2+a 2023x+b 2023=0.下列判断正确的是( )【题型】计算题;转化思想;综合法;等差数列与等比数列;数学运算.【答案】B【分析】若①有实根,得到a21012−4b 1012≥0,设方程x 2-a 1x+b 1=0与方程x 2+a 2023x+b 2023=0的判别式分别为Δ1和Δ2023,得到Δ1+Δ2023≥0,结合举反例可以判断选项AB ;通过举反例可以判断选项CD .【解答】解:若①有实根,由题意得:S22023−4×2023T 2023≥0,其中S 2023=2023(a 1+a 2023)2=2023a 1012,T 2023=2023(b 1+b 2023)2=2023b 1012,代入上式得a21012−4b 1012≥0,设方程x 2-a 1x+b 1=0与方程x 2+a 2023x+b 2023=0的判别式分别为Δ1和Δ2023,则Δ1+Δ2023=(a 21−4b 1)+(a 22023−4b 2023)=a 21+a 22023−4(b 1+b 2023)≥(a 1+a 2023)22−4(b 1+b 2023)等号成立的条件是a 1=a 2023.又Δ1+Δ2023≥(a 1+a 2023)22−4(b 1+b 2023)=(2a 1012)22−8b 1012=2(a21012−4b 1012)≥0,如果②有实根,则Δ1≥0,则Δ2023≥0或者Δ2023<0,所以③有实根或者没有实根,如a 1=6,b 1=2,a 2023=4,b 2023=6,满足a 21012−4b 1012=52−4×4>0,Δ1=36-8>0,但是Δ2023=16-24<0,所以③没有实根,所以A 错误;如果②没实根,则Δ1<0,则Δ2023≥0,所以③有实根,所以B 正确;若①无实根,则a21012−4b 1012<0,②有实根,则Δ1≥0,设a 1=3,b 1=2,a 2023=-3,b 2023=2,所以a 21012−4b 1012=(0)2−4×2<0,Δ1>0,此时Δ2023=1>0,则③有实根,所以C 错误;若①无实根,则a21012−4b 1012<0,②无实根,则Δ1<0,设a 1=3,b 1=3,a 2023=-3,b 2023=2,所以a 21012−4b 1012=(0)2−4×52<0,Δ1<0,此时Δ2023=1>0,则③有实根,所以D错误.故选:B.【点评】本题主要考查等差数列的性质,等差数列的前n项和,解答本题的关键是排除法的灵活运用,要证明一个命题是假命题,证明比较困难,只需举一个反例即可.。
高考数学《正弦定理、余弦定理及解三角形》真题练习含答案

高考数学《正弦定理、余弦定理及解三角形》真题练习含答案一、选择题1.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,若a =2 ,b =3 ,B =π3,则A =( )A .π6B .56 πC .π4D .π4 或34 π答案:C解析:由正弦定理得a sin A =b sin B ,∴sin A =a sin B b =2×323=22 ,又a <b ,∴A为锐角,∴A =π4.2.在△ABC 中,b =40,c =20,C =60°,则此三角形解的情况是( ) A .有一解 B .有两解C .无解D .有解但解的个数不确定 答案:C解析:由正弦定理b sin B =c sin C ,∴sin B =b sin Cc =40×3220 =3 >1,∴角B 不存在,即满足条件的三角形不存在.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =3,c =7 ,则角C =( )A .π6B .π4C .π3D .π2答案:C解析:由余弦定理得c 2=a 2+b 2-2ab cos C ,得cos C =a 2+b 2-c 22ab =4+9-72×2×3 =12,又C 为△ABC 内角,∴C =π3 .4.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( )A .12 B .1 C .3 D .2答案:C解析:由余弦定理得a 2=b 2+c 2-2bc cos A ,又a 2=b 2+c 2-bc ,∴2cos A =1,cos A =12 ,∴sin A =1-cos 2A =32 ,∴S △ABC =12 bc sin A =12 ×4×32=3 . 5.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3,cos B =23,则b =( )A.14 B .6 C .14 D .6 答案:D解析:∵b sin A =3c sin B ,由正弦定理得ab =3bc ,∴a =3c ,又a =3,∴c =1,由余弦定理得b 2=a 2+c 2-2ac ·cos B =9+1-2×3×23=6,∴b =6 .6.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定 答案:B解析:∵b cos C +c cos B =a sin A ,∴sin B cos C +sin C cos B =sin 2A ,∴sin A =1,又A 为△ABC 的内角,∴A =90°,∴△ABC 为直角三角形.7.钝角三角形ABC 的面积是12,AB =1,BC =2 ,则AC =( )A .5B .5C .2D .1 答案:B解析:∵S △ABC =12 AB ×BC ×sin B =22 sin B =12 ,∴sin B =22,若B =45°,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos 45°=1+2-2×2 ×22 =1,则AC =1,则AB 2+AC 2=BC 2,△ABC 为直角三角形,不合题意;当B =135°时,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos 135°=1+2+2×2 ×22=5,∴AC =5 .8.如图,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( )A .502 mB .503 mC .252 mD .2522m答案:A解析:由正弦定理得AC sin B =ABsin C,∴AB =AC ·sin Csin B =50×22sin (180°-45°-105°) =502 .9.[2024·全国甲卷(理)]记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知B =60°,b 2=94ac ,则sin A +sin C =( )A .32 B .2C .72D .32答案:C解析:∵b 2=94 ac ,∴由正弦定理可得sin 2B =94sin A sin C .∵B =60°,∴sin B =32 ,∴34 =94 sin A sin C ,∴sin A sin C =13.由余弦定理可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac ,将b 2=94 ac 代入整理得,a 2+c 2=134ac ,∴由正弦定理得sin 2A +sin 2C =134 sin A sin C ,则(sin A +sin C )2=sin 2A +sin 2C +2sin A sin C =134 sin A sin C+2sin A sin C =214 sin A sin C =214 ×13 =74 ,∴sin A +sin C =72 或-72(舍).故选C.二、填空题10.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若(a +b +c )(a -b +c )=ac ,则B =________.答案:23π解析:由(a +b +c )(a -b +c )=ac 得a 2+c 2-b 2+ac =0.由余弦定理得cos B =a 2+c 2-b 22ac =-12 ,又B 为△ABC 的内角,∴B =23π.11.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =a cos B ,①则A =________;②若sin C =13,则cos (π+B )=________.答案:①90° ②-13解析:①∵c =a ·cos B ,∴c =a ·a 2+c 2-b 22ac,得a 2=b 2+c 2,∴∠A =90°;②∵cos B =cos (π-A -C )=sin C =13 .∴cos (π+B )=-cos B =-sin C =-13 .12.[2023·全国甲卷(理)]在△ABC 中,∠BAC =60°,AB =2,BC =6 ,∠BAC 的角平分线交BC 于D ,则AD =________.答案:2 解析:方法一 由余弦定理得cos 60°=AC 2+4-62×2AC ,整理得AC 2-2AC -2=0,得AC=1+3 .又S △ABC =S △ABD +S △ACD ,所以12 ×2AC sin 60°=12 ×2AD sin 30°+12 AC ×AD sin30°,所以AD =23AC AC +2 =23×(1+3)3+3=2.方法二 由角平分线定理得BD AB =CD AC ,又BD +CD =6 ,所以BD =26AC +2,CD =6AC AC +2 .由角平分线长公式得AD 2=AB ×AC -BD ×CD =2AC -12AC(AC +2)2 ,又由方法一知AC =1+3 ,所以AD 2=2+23 -12×(1+3)(3+3)2=2+23 -(23 -2)=4,所以AD =2.[能力提升]13.(多选)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a =8,b <4,c =7,且满足(2a -b )cos C =c ·cos B ,则下列结论正确的是( )A .C =60°B .△ABC 的面积为63 C .b =2D .△ABC 为锐角三角形 答案:AB解析:∵(2a -b )cos C =c cos B ,∴(2sin A -sin B )cos C =sin C cos B ,∴2sin A cos C =sin B cos C +cos B sin C ,即2sin A cos C =sin (B +C ),∴2sin A cos C =sin A .∵在△ABC 中,sin A ≠0,∴cos C =12 ,∴C =60°,A 正确.由余弦定理,得c 2=a 2+b 2-2ab cos C ,得49=64+b 2-2×8b cos 60°,即b 2-8b +15=0,解得b =3或b =5,又b <4,∴b =3,C 错误.∴△ABC 的面积S =12 ab sin C =12 ×8×3×32 =63 ,B 正确.又cos A =b 2+c 2-a 22bc=9+49-642×3×7<0,∴A 为钝角,△ABC 为钝角三角形,D 错误. 14.[2023·全国甲卷(理)]已知四棱锥P ABCD 的底面是边长为4的正方形,PC =PD =3,∠PCA =45°,则△PBC 面积为( )A .22B .32C .42D .62 答案:C解析:如图,过点P 作PO ⊥平面ABCD ,垂足为O ,取DC 的中点M ,AB 的中点N ,连接PM ,MN ,AO ,BO .由PC =PD ,得PM ⊥DC ,又PO ⊥DC ,PO ∩PM =P ,所以DC ⊥平面POM ,又OM ⊂平面POM ,所以DC ⊥OM .在正方形ABCD 中,DC ⊥NM ,所以M ,N ,O 三点共线,所以OA =OB ,所以Rt △P AO ≌Rt △PBO ,所以PB =P A .在△P AC 中,由余弦定理,得P A =PC 2+AC 2-2PC ·AC cos 45° =17 ,所以PB =17 .在△PBC 中,由余弦定理,得cos ∠PCB =PC 2+BC 2-BP 22PC ·BC =13 ,所以sin ∠PCB =223 ,所以S △PBC =12 PC ·BCsin ∠PCB =42 ,故选C.15.[2022·全国甲卷(理),16]已知△ABC 中,点D 在边BC 上,∠ADB =120°,AD =2,CD =2BD .当ACAB取得最小值时,BD =________.答案:3 -1解析:以D 为坐标原点,DC 所在的直线为x 轴,DC →的方向为x 轴的正方向,过点D 且垂直于DC 的直线为y 轴,建立平面直角坐标系(图略),易知点A 位于第一象限.由AD =2,∠ADB =120°,得A (1,3 ).因为CD =2BD ,所以设B (-x ,0),x >0,则C (2x ,0).所以AC=(2x -1)2+(0-3)2=4x 2-4x +4,AB =(-x -1)2+(0-3)2=x 2+2x +4 ,所以⎝⎛⎭⎫AC AB 2=4x 2-4x +4x 2+2x +4.令f (x )=4x 2-4x +4x 2+2x +4,x >0,则f ′(x )=(4x 2-4x +4)′(x 2+2x +4)-(4x 2-4x +4)(x 2+2x +4)′(x 2+2x +4)2=(8x -4)(x 2+2x +4)-(4x 2-4x +4)(2x +2)(x 2+2x +4)2=12(x 2+2x -2)(x 2+2x +4)2 .令x 2+2x -2=0,解得x =-1-3 (舍去)或x =3 -1.当0<x <3 -1时,f ′(x )<0,所以f (x )在(0,3 -1)上单调递减;当x >3 -1时,f ′(x )>0,所以f (x )在(3 -1,+∞)上单调递增.所以当x =3 -1时,f (x )取得最小值,即ACAB 取得最小值,此时BD =3 -1.16.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且6S =(a +b )2-c 2,则tan C =________.答案:125解析:由余弦定理得2ab cos C =a 2+b 2-c 2,又6S =(a +b )2-c 2,所以6×12 ab sin C =(a +b )2-c 2=a 2+b 2-c 2+2ab =2ab cos C +2ab ,化简得3sin C =2cos C +2,结合sin 2C +cos 2C =1,解得sin C =1213 ,cos C =513 ,所以tan C =125.。
数学必修5解三角形-正弦-余弦知识点和练习题(含答案)

数学必修5解三角形-正弦-余弦知识点和练习题(含答案)解三角形1.正弦定理:2sin sin sin a b cR A B C===或变形:::sin :sin :sin a b c A B C=.2.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩或222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩.3.(1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角.2、已知两角和其中一边的对角,求其他边角.(2)两类余弦定理解三角形的问题:1、已知三边求三角.2、已知两边和他们的夹角,求第三边和其他两角.4.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.5.解题中利用ABC ∆中A B C π++=,以及由此推得的一些基本关系式进行三角变换的运算,如:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-sin cos ,cos sin ,tan cot 222222A B C A B C A B C +++===.、已知条件定理应用一般解法一边和两角(如a、B、C)正弦定理由A+B+C=180˙,求角A,由正弦定理求出b与c,在有解时有一解。
两边和夹角(如a、b、c)余弦定理由余弦定理求第三边c,由正弦定理求出小边所对的角,再由A+B+C=180˙求出另一角,在有解时有一解。
三边(如a、b、c)余弦定理由余弦定理求出角A、B,再利用A+B+C=180˙,求出角C在有解时只有一解。
1、ΔABC中,a=1,b=3, ∠A=30°,则∠B等于()A.60°B.60°或120°C.30°或150°D.120°2、符合下列条件的三角形有且只有一个的是()A.a=1,b=2 ,c=3 B.a=1,b=2,∠A=30°8、A 为ΔABC 的一个内角,且sinA+cosA=127, 则ΔABC 是______三角形.9、在ΔABC 中,若S ΔABC =41 (a 2+b 2-c 2),那么角∠C=______.10、在ΔABC 中,a =5,b = 4,cos(A -B)=3231,则cosC=_______.11、在ΔABC 中,求分别满足下列条件的三角形形状: ①B=60°,b 2=ac ; ②b 2tanA=a 2tanB ;③sinC=BA B A cos cos sin sin ++④ (a 2-b 2)sin(A+B)=(a 2+b 2)sin(A -B).12. 在ABC △中,已知内角A π=3,边3BC =B x =,周长为y .(1)求函数()y f x =的解析式和定义域;(2)求y 的最大值. 13. 在ABC中,角,,A B C 对应的边分别是,,a b c ,若1sin ,2A =3sin 2B =,求::a b c14. 在ABC中,,a b c分别为,,A B C∠∠∠的对边,若2sin (cos cos )3(sin sin )A B C B C +=+,(1)求A 的大小;(2)若61,9a b c =+=,求b 和c 的值。
正弦函数测试题及答案高中

正弦函数测试题及答案高中1. 正弦函数的定义是什么?2. 正弦函数的周期是多少?3. 正弦函数的图像有什么特点?4. 正弦函数的奇偶性如何?5. 正弦函数的值域是什么?6. 写出正弦函数的基本公式。
7. 解释正弦函数在三角恒等式中的作用。
8. 给定一个角度,如何计算其正弦值?9. 解释正弦函数在实际问题中的应用。
10. 给出一个正弦函数的图像,判断其振幅、周期和相位。
答案1. 正弦函数的定义是:对于任意角度 \( \theta \),正弦函数 \( y = \sin(\theta) \) 表示在直角三角形中,对应角度 \( \theta \)的对边与斜边的比值。
2. 正弦函数的周期是 \( 2\pi \) 弧度,或者 \( 360^\circ \)。
3. 正弦函数的图像是一个周期性的波动曲线,它在 \( -1 \) 和\( 1 \) 之间波动,并且关于原点对称。
4. 正弦函数是奇函数,即 \( \sin(-\theta) = -\sin(\theta) \)。
5. 正弦函数的值域是 \( [-1, 1] \)。
6. 正弦函数的基本公式包括:\( \sin(\theta) =\cos(\frac{\pi}{2} - \theta) \) 和 \( \sin(2\theta) =2\sin(\theta)\cos(\theta) \)。
7. 在三角恒等式中,正弦函数用于表达角度之间的关系,如和角公式、差角公式等。
8. 给定角度的正弦值可以通过查找三角函数表、使用计算器或利用单位圆来计算。
9. 正弦函数在实际问题中应用广泛,如物理学中的振动问题、电子学中的交流电问题等。
10. 正弦函数的图像可以通过振幅 \( A \),周期 \( T \) 和相位\( \phi \) 来描述,公式为 \( y = A\sin(\omega x + \phi) \),其中 \( A \) 是振幅,\( T = \frac{2\pi}{\omega} \) 是周期,\( \omega \) 是角频率,\( \phi \) 是相位。
正弦函数、余弦函数的图象和性质及答案

正弦函数、余弦函数的图象和性质一、选择题(本大题共5小题,每小题3分,共15分)1.设M 和m 分别表示函数y=31cosx -1的最大值和最小值,则M+m 等于( )A .32 B. ﹣32 C. ﹣34D. ﹣2 2.函数f (x )=sin x -|sin x |的值域为 ---------------------------------------------- ( ) (A) {0}(B) [-1,1](C) [0,1](D) [-2,0]3.函数sin(2)3y x π=+图像的对称轴方程可能是( )A .6x π=-B .12x π=-C .6x π=D .12x π=4.函数cos y x =的一个单调增区间是----------------------------------- ( )A .,44ππ⎡⎤-⎢⎥⎣⎦B .3,44ππ⎡⎤⎢⎥⎣⎦C .3,2ππ⎡⎤⎢⎥⎣⎦D .3,22ππ⎡⎤⎢⎥⎣⎦5.对于函数y =sin(132π-x ),下面说法中正确的是------------------------ ( ) (A) 函数是周期为π的奇函数 (B) 函数是周期为π的偶函数 (C) 函数是周期为2π的奇函数 (D) 函数是周期为2π的偶函数6.若函数()()sin 0f x x ωω=>在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω=( )A .23B .32C .2D .3二、填空题(本大题共5小题,每小题3分,共15分)7.函数值sin1,sin2,sin3,sin4的大小顺序是 . 8.函数y =1sin 2-x 的定义域是 . 9.函数y =sin(π4-2x)的单调递增区间是 .10.已知奇函数y =f (x )对一切x ∈R 满足f (x +1)=f (x -1),当x [1-∈,]0时,f (x )=943+x ,则f (5log 31)=________.三、解答题(本大题共5小题,每小题6分,共30分)11.求函数f (x )=2sin (x+3π)的值域,⎥⎦⎤⎢⎣⎡-∈2,2ππx 。
三角函数测试题及答案

三角函数测试题及答案本文将为您提供一系列的三角函数测试题及其详细答案解析。
在完成测试题之前,请确保您对基本的三角函数概念以及三角函数的性质和应用有一定的了解。
请按照每道题目的要求进行思考和解答,并参考我们提供的答案解析进行对比和巩固。
题目一:已知一个角的正弦值为0.6,求该角的余弦值。
答案解析:由于正弦值为0.6,我们可以根据三角函数的定义得到:sinθ = 0.6。
根据三角函数的性质,我们知道正弦函数和余弦函数是相关的,即sinθ = cos(π/2 - θ)。
因此,我们可以得到cos(π/2 - θ) = 0.6。
进一步求解可得:cos(π/2 - θ) = cosarcsin(0.6) ≈ 0.8。
所以该角的余弦值约为0.8。
题目二:已知一个角的余弦值为0.4,求该角的正切值。
答案解析:由于余弦值为0.4,我们可以根据三角函数的定义得到:cosθ = 0.4。
然后我们可以利用三角函数的性质,即tanθ = sinθ / cosθ,求解正切值。
将已知的cosθ代入公式可得:tanθ = sinθ / 0.4。
由已知的cosθ = 0.4,我们可以利用三角函数的定义得到:sinθ = √(1 - cos²θ) =√(1 - 0.4²) ≈ √(1 - 0.16) ≈ √0.84 ≈ 0.917。
将sinθ = 0.917代入公式可得:tanθ = 0.917 / 0.4 ≈ 2.292。
所以该角的正切值约为2.292。
题目三:已知一条直角边的长度为5,另一条直角边的长度为12,求该直角三角形的正弦值、余弦值、正切值。
答案解析:已知一条直角边的长度为5,另一条直角边的长度为12。
我们可以利用直角三角形中的三角函数定义和性质来求解。
根据已知条件,我们可以得到斜边的长度:√(5² + 12²) ≈ √(25 + 144) ≈ √169 = 13。
然后,我们可以利用定义求解三角函数的值:sinθ = 对边/斜边= 5/13 ≈ 0.385,cosθ = 临边/斜边= 12/13 ≈ 0.923,tanθ = 对边/临边= 5/12 ≈0.417。
正弦函数测试试题(含答案)

正弦函数测试试题(含答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(正弦函数测试试题(含答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为正弦函数测试试题(含答案)的全部内容。
一、选择题:1.函数y=sin (2x+错误!)的图象可看成是把函数y=sin2x 的图象做以下平移得到( )A.向右平移错误! B 。
向左平移 错误! C. 向右平移 错误! D 。
向左平移错误!2.函数y=sin(π4—2x )的单调增区间是( )A 。
[kπ-错误!, kπ+错误!] (k∈Z) B. [kπ+错误!, kπ+错误!](k∈Z )C 。
[kπ-错误!, kπ+错误!] (k∈Z ) D. [kπ+错误!, kπ+错误!] (k∈Z )3.函数y=sin (x+错误!)的图象是( )A. 关于x 轴对称B. 关于y 轴对称C. 关于原点对称 D 。
关于x=—错误!π对称4.函数f (x )=cos (3x+φ)的图像关于原点中心对称的充要条件是( )A 。
φ=错误! B. φ= kπ(k∈Z ) C. φ= kπ+错误! (k∈Z ) D. φ= 2kπ-错误! (k∈Z) 5.函数 y=错误!sin2x 图象的一条对称轴是( )A 。
x= — 错误!B 。
x= — 错误! C. x = 错误! D 。
x= —错误!二、填空题:6.函数 y=错误!sin(3x —错误!) 的定义域是__________,值域是________,周期是________,振幅是________,频率是________,初相是_________.7.如果函数 y=sin2x+acos2x 的图象关于直线x=—错误!对称,那么a=_________.8.函数y=sin2x 的图象向左平移 错误!,所得的曲线对应的函数解析式是__________.9.要得到 y=sin2x —cos2x 的图象,只需将函数 y=sin2x+cos2x 的图象沿x 轴向____移___________个单位.10.关于函数f (x)=4sin(2x+错误!) (x∈R ),有下列命题: (1)y=f(x )的表达式可改写为y=4cos (2x —π6 );(2)y=f(x )是以2π为最小正周期的周期函数; (3)y=f (x ) 的图象关于点(-错误!,0)对称; (4)y=f(x ) 的图象关于直线x=-错误!对称; 其中正确的命题序号是___________. 三、解答题:11.函数 y=sin (2x+错误!) 的图象,可由函数 y=sinx 的图象怎样变换得到? 12.已知函数f (x )=log a cos(2x-错误!)(其中a 〉0,且a≠1). (1)求它的定义域;(2)求它的单调区间;(3)判断它的奇偶性; (4)判断它的周期性,如果是周期函数,求它的最小正周期.13.已知正弦波图形如下:此图可以视为函数y =A sin (ωx +)(A >0,ω>0,||<)图象的一部分,试求出其解析式.14. 已知函数y =3sin (x -)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,由此值域为
:含绝对值的表达式理解为分段函数,转化为分段函数的最值问题。
5.B
【解析】
【分析】
本题可根据三角函数的周期性质以及最大值还有的取值围来解得答案。
【详解】
由题意知,所以.又当时,有,
所以,而,所以.
【点睛】
熟知三角函数公式的每一个字母所指代的含义以及相关性质,是解决这类题目的关键。
6.C
【解析】
【详解】
由题意,函数,则
,
所以函数为奇函数, 且最小正周期,故选 B. 【点睛】 本题主要考查了三角函数的图象与性质,其中熟记三角三角函数的图象与性质,准确求解与 计算是解答的关键,着重考查了推理与运算能力,属于基础题. 3.C 【解析】 【分析】 由函数,根据解析式有意义得到,再根据三角函数的图象与性质,即可求解. 【详解】 由函数,则满足,
14.函数 y sin2 x sinx 1 的值域为________.
二、解答题 17.已知=. (1)求函数的对称轴和对称中心; (2)求函数的最大值,并写出取最大值时自变量的集合;
15.已知函数. (1)求函数的最小正周期; (2)当时,求的最值,并指明相应的值; (3)用五点法在给出的直角坐标系中,画出函数在区间上的图象.
18.已知函数 f(x)= (1)求函数 f(x)的最小正周期和单调递减区间; (2)用五点法在所给坐标系中画出函数 f(x)在 区间上的图象.
1.B
参考答案
【解析】
函数 y=2sin(3x+),x∈R 的最小正周期是.选 B.
2.B
【解析】
【分析】
根据正弦函数的性质,可得函数为奇函数,再根据周期的计算公式,即可判定,得到答案.
函数图像
【详解】
A. 的图象关于直线对称 B. 的图象关于点对称
C. 的最小正周期为 D. 在上为增函数
11.已知函数的定义域为,值域为,则的最大值和最小值之差等于
A. B. C. D.
第 II 卷(非选择题)
三、填空题 12.已知 x 满足-≤sinx≤,则角 x 的取值围为________. 13.函数的定义域为_______,值域为_______.
,不
是对称轴,故 B 不正确;函数的零点为
,当 k=1 时,得
到一个零点为;函数的单调递减区间为:
,解得 x 的围为
,区间是其中的一个子区间,故 D 正确. 故答案为:B. 【点睛】 函数(A>0,ω>0)的性质:(1)奇偶性: 时,函数为奇函数; 时,函数为偶函数;(2) 周期性:存在周期性,其最小正周期为 T=;(3)单调性:根据 y=sint 和 t=的单调性来研
A. 0 B. C.大值,那么
A. B. C. D. 6.函数的单调增区间为( ) A. B. C. D. 7.设函数,x∈R,则 f(x)是( ) A. 最小正周期为 π 的偶函数 B. 最小正周期为 π 的奇函数 C. 最小正周期为的偶函数 D. 最小正周期为的奇函数
究,由
得单调增区间;由
得单
调减区间;(4)对称性:利用 y=sin x 的对称中心为求解,令,求得 x;利用 y=sin x 的对称
轴为求解,令,得其对称轴.
10.D
【解析】 因为函数=的最小正周期为,所以排除 C;函数的对称轴为,解得,所以直线不是函数的对 称轴,所以排除 A;函数的对称中心的横坐标为,解得,对比选项可知点不是对称中心,故 排除 B;因为,解得,所以可知函数在上单调递增,所以选项 D 正确,故选 D. 11.B 【解析】 【分析】 由函数的值域为以及三角函数的图像性质可知,定义域一定在一个周期,再由函数图像可以 得出定义域的差值。 【详解】 如图,当时,值域为且最大;当时,值域,
8.下列函数中,周期为
,且在
4
,
2
上单调递增的奇函数是(
)
A.
y
sin
2x
3 2
B.
y
cos
2x
2
C.
y
cos
2x
2
D.
y
sin
2
x
9.已知函数,则下列结论错误的是
A. 的最小正周期为
B. 的图象关于直线对称
C. 的一个零点为
D. 在区间上单调递减
10.设函数=,则下列结论正确的是
,解得,,故选 C.
7.B 【解析】 【分析】 利用诱导公式化简函数的解析式,再利用正弦函数的周期性和奇偶性,得出结论. 【详解】 ∵函数=sin2x,x∈R,则 f(x)是周期为=π 的奇函数, 故选:B. 【点睛】 本题主要考查诱导公式的应用,正弦函数的周期性和奇偶性,属于基础题. 8.C
【解析】对于 A ,由于 y cos2x ,故为偶函数.对于 B ,由于 y sin2x ,故函数在区间
正弦函数图像及其性质
一、单选题 1.函数 y=2sin(3x+),x∈R 的最小正周期是( )
A. B. C. D. π
2.函数是( )
A. 最小正周期为的奇函数 B. 最小正周期为的奇函数
C. 最小正周期为的偶函数 D. 最小正周期为的偶函数
3.函数的定义域为( )
A. B.
C. D.
4.函数的值域是 ( )
令,解得 即函数的定义域为,故选 C. 【点睛】 本题主要考查了函数的定义域的求解,其中解答中根据函数的解析式有意义,列出不等式, 再根据三角函数的图象与性质求解是解答的关键,着重考查了推理与运算能力,属于基础题. 4.D 【解析】
【分析】 :去掉绝对值符号,转化为求分段函数的最值。 【详解】
: 【点睛】
且最小,∴最大值与最小值之和为
.
【点睛】
本题在解题的时候,需要注意的是,值域的最大值不为 1,那么定义域必然会在一个周期,
只需要在三角函数的某个周期找对应的定义域就可以了。
12.(1);(2)当时,最小值,当时,最大值;(3)图象见解析.
【解析】
【分析】
根据周期公式得出结果
时,,即可求出的最值
在所给的区间找出函数值域的几个特殊点,最大值和最小值点,列出表格,在坐标系中描出
上为减函数.对于 C ,由于 y sin2x ,在区间上递增,符合题意.对于 D , y cosx 为偶
函数. 9.B 【解析】 【分析】
根据周期的公式得到故 A 正确;函数图像的对称轴为
可判断 B 错误;零点为
,可判断 C 正确;单调减区间为
【详解】
可得到 D 正确.
函数,周期为:故 A 正确;函数图像的对称轴为