二元一次方程组应用题经典题及答案(1)

合集下载

人教版七年级数学下册期考经典题型汇总:列二元一次方程组解应用题(附答案与全解全析)

人教版七年级数学下册期考经典题型汇总:列二元一次方程组解应用题(附答案与全解全析)

人教版七年级数学下册期考经典题型汇总:列二元一次方程组解应用题知识网络重难突破知识点一列二元一次方程组解应用题列二元一次方程组解应用题的一般步骤:1.审:审题,明确各数量之间的关系。

2.设:设未知数3.找:找题中的等量关系4.列:根据等量关系列出两个方程,组成方程组5.解:解方程组,求出未知数的值6.答:检验方程组的解是否符合题意,写出答案。

题型一二元一次方程组的应用- 方案问题典例1 (2020·监利县期中)1400元奖金要分给22名获奖员工,其中一等奖每人200元,二等奖每人50元。

试问经理,该怎样分发这1400元奖金?变式1-1(2018·大石桥市期末)已知用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b 辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:①1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?②请你帮该物流公司设计租车方案.变式1-2(2019·贵港市期末)某中学组织学生春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满,已知45座客车每日每辆租金为220元,60座客车每日每辆租金为300元.试问:(1)春游学生共多少人,原计划租45座客车多少辆?(2)若租用同一种车,要使每位同学都有座位,怎样租车更合算.题型二二元一次方程组的应用–行程问题典例2(2018·广州市期末)从甲地到乙地的路有一段上坡与一段平路,如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地用54分钟,从乙地到甲地用42分钟,甲地到乙地的全程是多少.变式2-1(2020·辉县市期中)一列快车长230米,一列慢车长220米,若两车同向而行,快车从追上慢车时开始到离开慢车,需90秒钟;若两车相向而行,快车从与慢车相遇时到离开慢车,只需18秒钟,问快车和慢车的速度各是多少?变式2-2(2019·许昌市期末)为提高学生综合素质,亲近自然,励志青春,某学校组织学生举行“远足研学”活动,先以每小时6千米的速度走平路,后又以每小时3千米的速度上坡,共用了3小时;原路返回时,以每小时5千米的速度下坡,又以每小时4千米的速度走平路,共用了4小时,问平路和坡路各有多远.题型三二元一次方程组的应用–工程问题典例3(2020·甘南县期中)一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲,乙两组工作一天,商店各应付多少钱?(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?(3)若装修完后,商店每天可贏利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)变式3-1(2020·成都市期末)某汽车制造厂生产一款电动汽车,计划一个月生产200辆.由于抽调不出足够的熟练工来完成电动汽车的安装,工厂决定招聘一些新工人,他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)若工厂现在有熟练工人30人,求还需要招聘多少新工人才能完成一个月的生产计划?变式3-2(2019·成都市期末)某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进0.2米,乙组平均每天能比原来多掘进0.3米.按此旄工进度,能够比原来少用多少天完成任务?题型四二元一次方程组的应用–数字问题典例4(2019·靖远县期末)一个两位数,个位数字与十位数字的和为8,个位数字与十位数字互换位置后,所得的两位数比原两位数小18,则原两位数是多少?变式4-1(2020·海淀区期末)小明和小亮做加减法游戏,小明在一个加数后面多写了一个0,得到的和为242,而小亮在另一个加数后面多写了一个0,得到的和为341。

二元一次方程组经典练习题+答案解析100道

二元一次方程组经典练习题+答案解析100道

二元一次方程组经典练习题+答案解析100道-CAL-FENGHAI.-(YICAI)-Company One12二元一次方程组练习题100道(卷一)(范围:代数: 二元一次方程组)一、判断1、⎪⎩⎪⎨⎧-==312y x 是方程组⎪⎪⎩⎪⎪⎨⎧=-=-910326523y x y x 的解 …………( ) 2、方程组⎩⎨⎧=+-=5231y x xy 的解是方程3x -2y =13的一个解( )3、由两个二元一次方程组成方程组一定是二元一次方程组( )4、方程组⎪⎪⎩⎪⎪⎨⎧=-++=+++25323473523y x y x ,可以转化为⎩⎨⎧-=--=+27651223y x y x ( )5、若(a 2-1)x 2+(a -1)x +(2a -3)y =0是二元一次方程,则a 的值为±1( )6、若x +y =0,且|x |=2,则y 的值为2 …………( )7、方程组⎩⎨⎧=+-=+81043y x xm my mx 有唯一的解,那么m 的值为m ≠-5 …………( )8、方程组⎪⎩⎪⎨⎧=+=+623131y x y x 有无数多个解 …………( )9、x +y =5且x ,y 的绝对值都小于5的整数解共有5组 …………( ) 10、方程组⎩⎨⎧=+=-3513y x y x 的解是方程x +5y =3的解,反过来方程x +5y =3的解也是方程组⎩⎨⎧=+=-3513y x y x 的解 ………( ) 11、若|a +5|=5,a +b =1则32-的值为b a………() 12、在方程4x -3y =7里,如果用x 的代数式表示y ,则437y x +=( )二、选择:13、任何一个二元一次方程都有( ) (A )一个解; (B )两个解; (C )三个解; (D )无数多个解;14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( )(A )5个 (B )6个 (C )7个 (D )8个315、如果⎩⎨⎧=+=-423y x ay x 的解都是正数,那么a 的取值范围是( )(A )a <2; (B )34->a ;(C )342<<-a ; (D )34-<a ;16、关于x 、y 的方程组⎩⎨⎧=-=+m y x my x 932的解是方程3x +2y =34的一组解,那么m 的值是( )(A )2; (B )-1; (C )1;(D )-2;17、在下列方程中,只有一个解的是( ) (A )⎩⎨⎧=+=+0331y x y x(B )⎩⎨⎧-=+=+2330y x y x(C )⎩⎨⎧=-=+4331y x y x(D )⎩⎨⎧=+=+3331y x y x18、与已知二元一次方程5x -y =2组成的方程组有无数多个解的方程是( )(A )15x -3y =6 (B )4x -y =7 (C )10x +2y =4 (D )20x -4y =3 19、下列方程组中,是二元一次方程组的是( )(A )⎪⎩⎪⎨⎧=+=+9114y x y x (B )⎩⎨⎧=+=+75z y y x(C )⎩⎨⎧=-=6231y x x(D )⎩⎨⎧=-=-1y x xyy x20、已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值等于( ) (A )a =-3,b =-14(B )a =3,b =-7(C )a =-1,b =9(D )a =-3,b =1421、若5x -6y =0,且xy ≠0,则yx yx 3545--的值等于( ) (A )32(B )23 (C )1(D )-122、若x 、y 均为非负数,则方程6x =-7y 的解的情况是( ) (A )无解 (B )有唯一一个解 (C )有无数多个解 (D )不能确定 23、 (A )14 (B )-4 (C )-12 (D )12 24、已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y =kx +b 的解,则k 与b 的值为( ) (A )21=k ,b =-4(B )21-=k ,b =44(C )21=k ,b =4 (D )21-=k ,b =-4三、填空:25、在方程3x +4y =16中,当x =3时,y =________,当y =-2时,x =_______ 若x 、y 都是正整数,那么这个方程的解为___________;26、27、如果,那么用含有y 的代数式表示的代数式是_____________; 28、29、方程|a |+|b |=2的自然数解是_____________; 30、如果x =1,y =2满足方程141=+y ax ,那么a =____________; 31、已知方程组⎩⎨⎧-=+=+m y x ay x 26432有无数多解,则a =______,m =______;32、若方程x -2y +3z =0,且当x =1时,y =2,则z =______; 33、34、若x +y =a ,x -y =1同时成立,且x 、y 都是正整数,则a 的值为________; 35、从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x :z =_______;y :z =________;36、四、解方程组五、解答题:47、甲、乙两人在解方程组 时,甲看错了①式中的x的系数,解得⎪⎪⎩⎪⎪⎨⎧==475847107y x ;乙看错了方程②中的y的系数,解得⎪⎪⎩⎪⎪⎨⎧==19177681y x ,若两人的计算都准确无误,请写出这个方程组,并求出此方程组的解;48、使x +4y =|a |成立的x 、y 的值,满足(2x +y -1)2+|3y -x |=0,又|a |+a =0,求a 的值; 49、代数式ax 2+bx +c 中,当x =1时的值是0,在x =2时的值是3,在x =3时的值是28,试求出这个代数式;50、要使下列三个方程组成的方程组有解,求常数a 的值。

二元一次方程组应用题经典题及答案

二元一次方程组应用题经典题及答案

二元一次方程组应用题经典题及答案一、商品销售问题例 1:某商店购进一批衬衫,成本价每件 40 元,按每件 50 元出售,一个月内可售出 500 件。

已知这种衬衫每件涨价 1 元,其销售量就减少 10 件。

为了在一个月内赚取 8000 元的利润,售价应定为每件多少元?解:设售价应定为每件 x 元,每件的利润为(x 40)元。

因为每件涨价 1 元,销售量就减少 10 件,所以销售量为500 10(x 50)件。

根据总利润=每件利润×销售量,可列方程:(x 40)500 10(x 50) = 8000(x 40)(500 10x + 500) = 8000(x 40)(1000 10x) = 80001000x 10x² 40000 + 400x = 8000-10x²+ 1400x 48000 = 0x² 140x + 4800 = 0(x 60)(x 80) = 0解得 x₁= 60,x₂= 80答:售价应定为每件 60 元或 80 元。

二、行程问题例 2:A、B 两地相距 18 千米,甲、乙两人分别从 A、B 两地同时相向而行,2 小时后在途中相遇;相遇后甲返回 A 地,乙继续向 A 地前进,甲回到 A 地时,乙离 A 地还有 2 千米。

求甲、乙两人的速度。

解:设甲的速度为 x 千米/小时,乙的速度为 y 千米/小时。

根据相遇问题的公式:路程=速度和×时间,可列方程:2(x + y) = 18甲返回 A 地所用的时间也为 2 小时,这 2 小时乙走的路程为 2y 千米。

因为甲回到 A 地时,乙离 A 地还有 2 千米,所以可列方程:18 2y = 2x将第一个方程变形为 x + y = 9,即 x = 9 y,代入第二个方程得:18 2y = 2(9 y)18 2y = 18 2y方程恒成立。

将 x = 9 y 代入第一个方程得:2(9 y + y) = 1818 = 18所以原方程组有无数组解。

二元一次方程组应用题经典题及答案

二元一次方程组应用题经典题及答案

之阳早格格创做本量问题与二元一次圆程组题型归纳(训练题问案)典型一:列二元一次圆程组办理——路程问题【变式1】甲、乙二人相距36千米,相背而止,如果甲比乙先走2小时,那么他们正在乙出收2.5小时后相逢;如果乙比甲先走2小时,那么他们正在甲出收3小时后相逢,甲、乙二人每小时各走几千米?解:设甲,乙速度分别为x,y千米/时,依题意得:(2.5+2)x+2.5y=363x+(3+2)y=36解得: x=6,y=3.6问:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时.【变式2】二天相距280千米,一艘船正在其间航止,顺流用14小时,顺流用20小时,供船正在静火中的速度战火流速度.解:设那艘轮船正在静火中的速度x千米/小时,则火流速度y千米/小时,有:20(x-y)=28014(x+y)=280 解得:x=17,y=3问:那艘轮船正在静火中的速度17千米/小时、火流速度3千米/小时,典型二:列二元一次圆程组办理——工程问题【变式】小明家准备拆建一套新住宅,若甲、乙二个化妆公司合做6周完毕需人为5.2万元;若甲公司单独搞4周后,剩下的由乙公司去搞,还需9周完毕,需人为4.8万元.若只选一个公司单独完毕,从俭朴启收的角度思量,小明家应选甲公司仍旧乙公司?请您证明缘由.解:典型三:列二元一次圆程组办理——商品出卖成本问题【变式1】(2011湖北衡阳)李大叔去年启包了10亩天培植甲、乙二种蔬菜,共赢利18000元,其中甲种蔬菜每亩赢利2000元,乙种蔬菜每亩赢利1500元,李大叔去年甲、乙二种蔬菜百般植了几亩?解:设甲、乙二种蔬菜百般植了x、y亩,依题意得:①x+y=10②2000x+1500y=18000解得:x=6,y=4问:李大叔去年甲、乙二种蔬菜百般植了6亩、4亩【变式2】某阛阓用36万元买进A、B二种商品,出卖完后共赢利6万元,其进价战卖价如下表:(注:赢利 = 卖价—进价)供该阛阓买进A、B二种商品各几件;解:设买进A的数量为x件、买进B的数量为y件,依据题意列圆程组1200x+1000y=360000(1380-1200)x+(1200-1000)y=60000解得x=200,y=120问:略典型四:列二元一次圆程组办理——银止储备问题【变式2】小敏的爸爸为了给她筹办上下中的费用,正在银止共时用二种办法共存了4000元钱.第一种,一年期整存整与,共反复存了3次,屡屡进款数皆相共,那种进款银止利率为年息2.25%;第二种,三年期整存整与,那种进款银止年利率为2.70%.三年后共时与出共得本钱303.75元(没有计本钱税),问小敏的爸爸二种进款各存进了几元?解:设x为第一种进款的办法,Y第二种办法进款,则 X + Y = 4000 X * 2.25%* 3 + Y * 2.7%* 3 = 303.75 解得:X = 1500,Y = 2500.问:略.典型五:列二元一次圆程组办理——死产中的配套问题【变式1】现有190弛铁皮搞盒子,每弛铁皮搞8个盒身或者22个盒底,一个盒身与二个盒底配成一个完备盒子,问用几弛铁皮造盒身,几弛铁皮造盒底,不妨正佳造成一批完备的盒子?解:设x弛搞盒身,y弛搞盒底,则有盒身8x个,盒底22y个x+y=1908x=22y/2解得x=110,y=80即110弛搞盒身,80弛搞盒底【变式2】某工厂有工人60人,死产某种由一个螺栓套二个螺母的配套产品,每人每天死产螺栓14个或者螺母20个,应调配几人死产螺栓,几人死产螺母,才搞使死产出的螺栓战螺母刚刚佳配套.解:设死产螺栓的工人为x人,死产螺母的工人为y人x+y=6028x=20y解得 x=25,y=35问:略【变式3】一弛圆桌由1个桌里、4条桌腿组成,如果1坐圆米木料不妨搞桌里50个,或者搞桌腿300条.现有5坐圆米的木料,那么用几坐圆米木料搞桌里,用几坐圆米木料搞桌腿,搞出的桌里战桌腿,恰佳配成圆桌?能配几弛圆桌?解:设用X坐圆米搞桌里,用Y坐圆米搞桌腿X+Y=5.........................(1)50X:300Y=1:4......................(2)解得:Y=2,X=5-2=3问:用3坐圆米搞桌里,2坐圆米的木料搞桌腿.典型六:列二元一次圆程组办理——删少率问题【变式2】某皆会现有人心42万,预计一年后乡镇人心减少0.8%,农村人心减少1.1%,那样齐市人心减少1%,供那个皆会的乡镇人心与农村人心.解:设该皆会当前的乡镇人心有x万人,农村人心有y万人. x+y=420.8%×X+1.1%×Y= 42×1%解那个圆程组,得:x=14, y=28问:该市当前的乡镇人心有14万人,农村人心有28万人.典型七:列二元一次圆程组办理——战好倍分问题【变式1】略【变式2】游泳池中有一群小伙伴,男孩戴蓝色游泳帽,女孩戴白色游泳帽.如果每位男孩瞅到蓝色与白色的游泳帽一般多,而每位女孩瞅到蓝色的游泳帽比白色的多1倍,您知讲男孩与女孩各有几人吗?解:设:男有X人,女有Y人,则 X-1=Y 2(Y-1)=X解得:x=4,y=3问:略典型八:列二元一次圆程组办理——数字问题【变式1】一个二位数,减去它的诸位数字之战的3倍,截止是23;那个二位数除以它的诸位数字之战,商是5,余数是1,那个二位数是几?解:设那个二位数十位数是x,个位数是y,则那个数是(10x+y) 10x+y-3(x+y)=23 (1) 10x+y=5(x+y)+1 (2) 由(1),(2)得7x-2y=23 5x-4y=1 解得:x=5 y=6问:那个二位数是56【变式2】一个二位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字接换位子,那么得到的新二位数比本去的二位数的一半还少9,供那个二位数?解:设个位X,十位Y,有X - Y = 5(10X + Y) + (10 + X) = 143即X - Y = 5X + Y = 13解得:X = 9,Y = 4那个数便是49【变式3】某三位数,中间数字为0,其余二个数位上数字之战是9,如果百位数字减1,个位数字加1,则所得新三位数正佳是本三位数诸位数字的倒序排列,供本三位数.解:设本数百位是x,个位是y那么x+y=9x-y=1二式相加得到2x=10 => x=5 => y=5-1=4所以本数是504典型九:列二元一次圆程组办理——浓度问题【变式1】要配浓度是45%的盐火12千克,现有10%的盐火与85%的盐火,那二种盐火各需几?解:设10%的X克,85%的Y克X+Y=12X*10%+Y*85%=12*45%即:X+Y=12X+8.5Y=54解得:问:略【变式2】一种35%的新农药,如密释到1.75%时,治虫最灵验.用几千克浓度为35%的农药加火几千克,才搞配成1.75%的农药800千克?解:800千克1.75%的农药中含杂农药的品量为800×1.75%=14千克含14千克杂农药的35%的农药品量为14÷35%=40千克由40千克农药密释为800千克农药应加火的品量为800-40=760千克问:用40千克浓度为35%的农药增加760千克的火,才搞配成浓度为1.75%的农药800千克.典型十:列二元一次圆程组办理——几许问题【变式1】用少48厘米的铁丝直成一个矩形,若将此矩形的少边剪掉3厘米,补到较短边上去,则得到一个正圆形,供正圆形的里积比矩形里积大几?解:设少圆形的少宽分别为x战y 厘米,则2(x+y) = 48x-3=y+3 解得:x=15 , y=9正圆形的里积比矩形里积大(x-3)(y+3)- x y= (15-3)(9+3)- 15 * 9= 144 - 135= 9( cm²)问:略【变式2】一齐矩形草坪的少比宽的2倍多10m,它的周少是132m,则少战宽分别为几?典型十一:列二元一次圆程组办理——年龄问题【变式1】今年,小李的年龄是他爷爷的五分之一.小李创造,12年之后,他的年龄形成爷爷的三分之一.试供出今年小李的年龄.解:设小李X岁,爷爷Y 岁,则5X=Y3(X+12)=Y+12二式联坐解得:X=12 Y=60所以小李今年12岁,爷爷今年60岁.典型十二:列二元一次圆程组办理——劣化规划问题:【变式】某阛阓计划拨款9万元从厂家买进50台电视机,已知厂家死产三种分歧型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若阛阓共时买进其中二种分歧型号的电视机50台,用去9万元,请您钻研一下阛阓的进货规划;(2)若阛阓出卖一台甲、乙、丙电视机分别可赢利150元、200元、250元,正在以上的规划中,为使赢利最多,您采用哪种进货规划?解:(1)分情况预计:设买进甲种电视机x台,乙种电视机y台,丙种电视机z台.(Ⅰ)买进甲、乙二种电视机解得(Ⅱ)买进甲、丙二种电视机解得(Ⅲ)买进乙、丙二种电视机解得(分歧本量,舍去)故阛阓进货规划为买进甲种25 台战乙种25 台;或者买进甲种35 台战丙种15 台.(2) 按规划( Ⅰ) ,赢利150 ×25 +200 ×25 =8750( 元) ;按规划( Ⅱ) ,赢利150 ×35 +250 ×15 =9000( 元) .∴采用买进甲种35 台战丙种15 台.。

初中数学二元一次方程组经典练习题(含答案)

初中数学二元一次方程组经典练习题(含答案)

初中数学二元一次方程组经典练习题(含答案)解下列二元一次方程组:1. {x +y = 2 3x +7y =10;2.{x +3y = 810x −y =18;3.{3x +2y =1364x −3y =1;4.{ x+52+y−43=2x+20.3−y+70.4= −10 ;5.{ 4x −3y =−1 x 5=y 7 ;6. {3(x +2)=2(y +3)4(x −2)=3(y −3);7.{ x 5+y 7=10 x 3−y 4=3;8.{x 2+y 3=42x +7y =50 ;9.{12(x +3)+13(y −4)=52(x −3)+5(y +4)=70 ;10.{0.2x +0.5y =9x+22+y+105=15 ;11.{4(x −1) +3(y +1) =320%(x +1)+80%(y −1)=−3;12.{x+2y 2 +x−2y 3 = 113(x +2y )−4(x −2y )=30 ;参考答案1. {x +y = 23x +7y =10 ;解: {x +y = 2−−−−−−①3x +7y =10−−−−②①×3,得3x+3y=6-------③②-③,得4y=4,即y=1将y=1代入①,解得x=1故原方程组的解是: {x =1y =12.{x +3y = 810x −y =18; 解:{x +3y = 8−−−−−−−①10x −y =18−−−−−−②②×3,得 30x-3y=54----③①+③,得31x=62,即x=2将x=2代入①,得2+3y=8,y=2故原方程组的解是: {x =2y =23.{3x +2y =1364x −3y =1; 解:{3x +2y =136−−−−−−①4x −3y =1−−−−−−② ①×3,得9x+6y= 132------③ ②×2,得8x-6y=2-----④③+④,得17x= 172 ,x= 12 将x= 12代入②,2-3y=1,y= 13 故原方程组的解是: {x = 12y = 134.{ x+52+y−43=2 x+20.3−y+70.4= −10; 解:{ x+52+y−43=2 −−−−−−−① x+20.3−y+70.4= −10−−−−−−②①等号两边同时乘以6,得3(x+5)+2(y-4)=123x+15+2y-8=12整理,得3x+2y=5----------③②等号两边同时乘以0.3×0.4,得0.4(x+2)-0.3(y+7)=-1.2两边同时乘以10,得4(x+2)-3(y+7)=-124x+8-3y-21=-12整理,得4x-3y=1--------④③×3,得9x+6y=15------⑤④×2,得8x-6y=2-------⑥⑤+⑥,得17x=17,即x=1将x=1代入③,得3+2y=5,y=1故原方程组的解是: {x =1y =15.{ 4x −3y =−1 x 5=y 7 ; 解:{ 4x −3y =−1 −−−−−−−−−−−① x 5=y 7−−−−−−−−−−−−−−−② ②变化为x= 57 y--------------③ 将③代入①,得4×57y -3y=-1 20−217 y =-1,整理得y=7将y=7代入③,得x= 57 ×7,x=5 故原方程组的解是: {x =5y =76. {3(x +2)=2(y +3)4(x −2)=3(y −3); 解:{3(x +2)=2(y +3)4(x −2)=3(y −3)方程组去括号,得{3x +6=2y +64x −8=3y −9整理得{3x −2y =0−−−−①4x −3y +1=0−−②①×3,得9x-6y=0--------③②×2, 得8x-6y+2=0------④③-④,得x-2=0,即x=2将x=2代入①,得6-2y=0,y=3故原方程组的解是: {x =2y =37.{ x 5+y 7=10 x 3−y 4=3; 解:{ x 5+y 7=10 x 3−y 4=3 方程组去分母,得{ 7x +5y =350−−−−−−①4x −3y =36−−−−−−−②①×3,得21x+15y=1050---③②×5,得20x-15y=180----④③+④,得41x=1230,即x=30将x=30代入①,得210+5y=350,y=28故原方程组的解是: {x =30y =288.{x 2+y 3=4 2x +7y =50; 解:{x 2+y 3=4 2x +7y =50方程组去分母,得{3x +2y =24−−−−−−−① 2x +7y =50−−−−−−−②①×2,得6x+4y=48-----③②×3,得6x+21y=150---④④-③,得17y=102,即y=6将y=6代入① ,得3x+12=24,x=4故原方程组的解是: {x =4y =69.{12(x +3)+13(y −4)=52(x −3)+5(y +4)=70 ; 解:{12(x +3)+13(y −4)=5−−−−① 2(x −3)+5(y +4)=70−−−②①去分母,得3(x+3)+2(y-4)=30去括号,得3x+9+2y-8=30整理,得3x+2y-29=0-----------③②去括号,得2x-6+5y+20=70整理,得2x+5y-56=0-----------④③×2,得6x+4y-58=0------------⑤④×3,得6x+15y-168=0----------⑥⑥-⑤,得11y-110=0,即y=10将y=10代入③,得3x+20-29=0,x=3故原方程组的解是:{x=3 y=1010.{0.2x+0.5y=9x+2 2+y+105=15 ;解:{0.2x+0.5y=9−−−−−①x+22+y+105=15−−−−−−②①等号两边同时乘以10,得2x+5y=90------------------③②去分母,得5(x+2)+2(y+10)=150去括号,整理得5x+2y=120---④③×5,得10x+25y=450------⑤④×2,得10x+4y=240-------⑥⑤-⑥,得21y=210,即y=10将y=10代入③,得2x+50=90,x=20故原方程组的解是:{x=20 y=1011.{4(x −1) +3(y +1) =320%(x +1)+80%(y −1)=−3; 解:{4(x −1) +3(y +1) =3−−−−−−−−−①20%(x +1)+80%(y −1)=−3−−−−−−② ①去括号,得4x-4+3y+3=3,整理得4x+3y=4-----③ ②去百分号,得0.2(x+1)+0.8(y-1)=-3等号两边同时乘以10,得2(x+1)+8(y-1)=-30 去括号,得2x+2+8y-8=-30,整理得x+4y=-12----④ ④×4,得4x+16y=-48------------------------⑤ ⑤-③,得13y=-52,即y=-4将y=-4代入④,得x-16=-12,x=4故原方程组的解是: {x =4y =−412.{x+2y 2 +x−2y 3 = 11 3(x +2y )−4(x −2y )=30; 解:{x+2y 2 +x−2y 3 = 11 −−−−−−−−−−−−−−① 3(x +2y )−4(x −2y )=30−−−−−−② ①×6,得3(x+2y )+2(x-2y )=66----------------③③-②,得6(x-2y )=36,即x-2y= 6 -------④①×12,得6(x+2y )+4(x-2y )=132---------------⑤⑤+②,得9(x+2y)=162,即x+2y=18---⑥④+⑥,得2x=24,即x=12④-⑥,得-4y=-12,即y=3故原方程组的解是:{x=12 y=3。

二元一次方程组经典题目

二元一次方程组经典题目

二元一次方程组经典题目一、某商店买进甲、乙两种商品,已知甲种商品每件单价15元,乙种商品每件单价10元,且购买甲种商品比乙种商品多20件,共用去350元,则购买甲、乙两种商品各多少件?设购买甲商品x件,乙商品y件,则方程组正确的是( )A. {x = y + 20, 15x + 10y = 350}B. {x = y - 20, 15x + 10y = 350}C. {x = y + 20, 10x + 15y = 350}D. {x = y - 20, 10x + 15y = 350} (答案:A)二、甲、乙两人在环形跑道上以各自的不变速度跑步,如果两人同时从同地相背而跑,乙跑4分钟后两人第一次相遇,已知甲跑一周需6分钟,那么乙跑一周需多少分钟?设甲的速度为a,乙的速度为b,环形跑道一圈的长度为s,则下列方程组正确的是( )A. {4a + 4b = s, 6a = s}B. {4a - 4b = s, 6a = s}C. {4a + 4b = s, 6b = s}D. {4a - 4b = s, 6b = s} (答案:A)三、某班学生去划船,大船每条可坐8人,小船每条可坐4人,经计算,乘坐8条大船比乘坐6条小船可多坐10人,则这个班共有多少学生?设这个班共有x个学生,大船每条租金为y元,则下列方程组正确的是( )A. {8y - 6 × 4 = 10, x = 8y}B. {8 × 8 - 6 × 4 = 10, x = 8y}C. {8 × 8 - 6 × 4 = 10, x = 8 × 8 + 10}D. {8 × 8 - 4 × 6 = x - 10, x = 8y}(答案:C)四、某车间共有90名工人,每名工人平均每天可加工甲种部件15个或乙种部件8个,应安排加工甲、乙两种部件各多少人,才能使每天加工后每3个甲种部件与2个乙种部件恰好配套?设安排加工甲种部件x人,乙种部件y人,则下列方程组正确的是( )A.{x + y = 90, 15x = 8y × 2 / 3}B.{x + y = 90, 15x × 2 = 8y × 3}C.{x + y = 90, 15x × 3 = 8y × 2}D.{x = 90 - y, 15x = 8y × 3 / 2}(答案:C)五、某市为治理污水,需要铺设一段全长为3000米的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加25%,结果提前20天完成这一任务,原计划每天铺设管道多少米?设原计划每天铺设x米,则根据题意列方程正确的是( )A. 3000 / (1 + 25%)x - 3000 / x = 20B. 3000 / x - 3000 / (1 + 25%)x = 20C. 3000 / (1 - 25%)x - 3000 / x = 20D. 3000 / x - 3000 / (1 - 25%)x = 20(答案:B)。

完整版)二元一次方程组应用题经典题及答案

完整版)二元一次方程组应用题经典题及答案

完整版)二元一次方程组应用题经典题及答案实际问题与二元一次方程组题型归纳(练题答案)类型一:列二元一次方程组解决——行程问题变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲、乙速度分别为x、y千米/时,依题意得:2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。

变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时。

类型二:列二元一次方程组解决——工程问题变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元。

若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由。

解:设甲、乙公司每周的工钱分别为x、y万元,依题意得:6(x+y)=5.24x+9y=4.8解得:x=0.8,y=0.4若只选一个公司单独完成,小明家应选择乙公司,因为乙公司每周工钱更少,从节约开支的角度考虑更优。

类型三:列二元一次方程组解决——商品销售利润问题变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩。

二元一次方程组应用题经典题及答案

二元一次方程组应用题经典题及答案

实际问题与二元一次方程组题型归纳(练习题答案)类型一:列二元一次方程组解决——行程问题【变式1】甲、乙两人相距36 千米,相向而行,如果甲比乙先走 2 小时,那么他们在乙出发 2.5 小时后相遇;如果乙比甲先走 2 小时,那么他们在甲出发 3 小时后相遇,甲、乙两人每小时各走多少千米?解:设甲,乙速度分别为x,y 千米/时,依题意得:(2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6 ,y=3.6 答:甲的速度是 6 千米/每小时,乙的速度是 3.6 千米/每小时。

【变式2】两地相距280千米,一艘船在其间航行,顺流用14 小时,逆流用20 小时,求船在静水中的速度和水流速度。

解:设这艘轮船在静水中的速度x 千米/小时,则水流速度y 千米/小时,有:20(x-y)=28014 (x+y )=280 解得:x=17 ,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度 3 千米/小时,类型二:列二元一次方程组解决——工程问题【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作 6 周完成需工钱 5.2 万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱 4.8 万元. 若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.解:类型三:列二元一次方程组解决商品销售利润问题【变式1】(2011湖南衡阳)李大叔去年承包了10 亩地种植甲、乙两种蔬菜,共获利18000 元,其中甲种蔬菜每亩获利2000 元,乙种蔬菜每亩获利1500 元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y 亩,依题意得:① x+y=10②2000x+1500y=18000解得:x=6 ,y=4 答:李大叔去年甲、乙两种蔬菜各种植了6亩、4 亩变式2】某商场用36 万元购进A、B两种商品,销售完后共获利 6 万元,其进价和售价如下表:(注:获利= 售价—进价)求该商场购进A、 B 两种商品各多少件;解:设购进 A 的数量为x 件、购进 B 的数量为y 件,依据题意列方程组1200x+1000y=360000(1380-1200)x+(1200-1000)y=60000解得x=200 ,y=120 答:略类型四:列二元一次方程组解决银行储蓄问题【变式2】小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000 元钱. 第一种,一年期整存整取,共反复存了 3 次,每次存款数都相同,这种存款银行利率为年息 2.25%;第二种,三年期整存整取,这种存款银行年利率为2.70%. 三年后同时取出共得利息303.75 元(不计利息税),问小敏的爸爸两种存款各存入了多少元?解:设x 为第一种存款的方式,Y第二种方式存款,则X + Y = 4000X * 2.25 %* 3 + Y * 2.7 %* 3 = 303.75解得:X = 1500 ,Y = 2500 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实际问题与二元一次方程组题型归纳(A)
类型一:列二元一次方程组解决——行程问题
【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?
【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

类型二:列二元一次方程组解决——工程问题
【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由. 类型三:列二元一次方程组解决——商品销售利润问题
【变式1】李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?
类型四:列二元一次方程组解决——银行储蓄问题
【变式2】小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期整存整取,这种存款银行年利率为2.70%.三年后同时取出共得利息303.75元(不计利息税),问小敏的爸爸两种存款各存入了多少元?
实际问题与二元一次方程组题型归纳(B)
类型五:列二元一次方程组解决——生产中的配套问题
【变式1】现有190张铁皮做盒子,每张铁皮做8个盒身或22个盒底,一个盒身与两个盒底配成一个完整盒子,问用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子?
【变式2】某工厂有工人60人,生产某种由一个螺栓套两个螺母的配套产品,每人每天生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套。

【变式3】一张方桌由1个桌面、4条桌腿组成,如果1立方米木料可以做桌面50个,或做桌腿300条。

现有5立方米的木料,那么用多少立方米木料做桌面,用多少立方米木料做桌腿,做出的桌面和桌腿,恰好配成方桌?能配多少张方桌?类型六:列二元一次方程组解决——增长率问题
【变式2】某城市现有人口42万,估计一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口增加1%,求这个城市的城镇人口与农村人口。

类型七:列二元一次方程组解决——和差倍分问题
【变式1】游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽。

如果每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽比红色的多1倍,你知道男孩与女孩各有多少人吗?
实际问题与二元一次方程组题型归纳(C)
类型八:列二元一次方程组解决——数字问题
【变式1】一个两位数,减去它的各位数字之和的3倍,结果是23;这个两位数除以它的各位数字之和,商是5,余数是1,这个两位数是多少?
【变式2】一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,求这个两位数?
【变式3】某三位数,中间数字为0,其余两个数位上数字之和是9,如果百位数字减1,个位数字加1,则所得新三位数正好是原三位数各位数字的倒序排列,求原三位数。

类型九:列二元一次方程组解决——浓度问题
【变式1】要配浓度是45%的盐水12千克,现有10%的盐水与85%的盐水,这两种盐水各需多少?
【变式2】一种35%的新农药,如稀释到1.75%时,治虫最有效。

用多少千克浓度为35%的农药加水多少千克,才能配成1.75%的农药800千克?
类型十:列二元一次方程组解决——几何问题
【变式1】用长48厘米的铁丝弯成一个矩形,若将此矩形的长边剪掉3厘米,补到较
短边上去,则得到一个正方形,求正方形的面积比矩形面积大多少?
实际问题与二元一次方程组题型归纳(C)
【变式2】一块矩形草坪的长比宽的2倍多10m,它的周长是132m,则长和宽分别为多少?
类型十一:列二元一次方程组解决——年龄问题
【变式1】今年,小李的年龄是他爷爷的五分之一.小李发现,12年之后,他的年龄变成爷爷的三分之一.试求出今年小李的年龄. 类型十二:列二元一次方程组解决——优化方案问题:
【变式】某商场计划拨款9万元从厂家购进50台电视机,已知厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元。

(1)若商场同时购进其中两种不同型号的电视机50台,用去9万元,请你研究一下商场的进货方案;
(2)若商场销售一台甲、乙、丙电视机分别可获利150元、200元、250元,在以上的方案中,为使获利最多,你选择哪种进货方案?。

相关文档
最新文档