新人教版七上整式的加减:第4课时:整式的加减(1)
人教版(2024新版)七年级数学上册第四章课件:第四章 整式的加减 小结与复习

32t3是单项式,系数为32,次数为3;
2x-y是多项式,有2x,-y两项,次数为1.
随堂练习
4. 先化简,再求值.
5x2+4-3x2-5x-2x2-5+6x,其中x =-3.
解:5x2+4-3x2-5x-2x2-5+6x
= (5-3-2)x2+(-5+6)x-1
= x-1.
当x = -3时,原式 =-3-1 =-4.
当n=5时,S=12;当n=7时,S=18;当n=11时,S=30.
|b-a|+|a+b|-|c|-|b-c|+|a+c|.
解:由题意,得b<c<0<a,且|c|<|a|<|b|,
所以b-a<0,a+b<0,b-c<0,a+c>0,
所以|b-a|+|a+b|-|c|-|b-c|+|a+c|
=-(b-a)-(a+b)+c+(b-c)+(a+c)
=-b+a-a-b+c+b-c+a+c
x是单项式,系数为1,次数为1;
随堂练习
3.下列整式中哪些是单项式?哪些是多项式?是单项式的指出系数
和次数,是多项式的指出项和次数:
−
a2b,
,x2+y2-1,
x ,3x2-y+3xy3+x4-1,32t3,2x-y.
解:3x2-y+3xy3 +x4-1是多项式,有3x2,-y,3xy3,x4,-1五项,次
第四章 整式的加减 数学活动课件(共19张PPT) 2024-2025学年人教版数学七年级上册

互动新授
探究活动2 “+”形和“H”形
ɑ-7
ɑ-1
ɑ
ɑ+1
ɑ+7
ɑ-8
ɑ-6
ɑ-1
ɑ
ɑ+1
ɑ+6
ɑ+8
ɑ-7+ɑ-1+ɑ+ɑ+1+ɑ+7=5ɑ
ɑ-8+ɑ-6+ɑ-1+ɑ+ɑ+1+ɑ+6+ɑ+8=7a.
规律:(1)“+”形中五数之和=中间数的5 倍 (2)“H"形中七数之和=中间数的7倍
(1)若一个三位数的百位、十位、个位上的数字分别为α,b,c,则通常记
这个三位数为
,于是, =100ɑ+10b+c=99a+9b+(ɑ+b+c).显然99ɑ和9b都能
被3整除,因此,如果a+b+c能被3整除,那么99ɑ+9b+(ɑ+b+c)就能被3整除,即
能被3整除。
(2)若一个四位数的千位、百位、十位、个位上的数字分别为ɑ,b,c,d,则通常记这
个四位数为
,于是 =1000ɑ+100b+10c+d=999ɑ+99b+9c+(a+b+c+d).显然
999ɑ,99b和9c 都能被 3 整除,因此,如果ɑ+b+c+d能被3 整除,那么
999ɑ+99b+9c+(ɑ+b+c+d)就能被3整除,即 能被3整除.
4.2 整式的加减第1课时 合并同类项 课件(共37张PPT)

-
1 3
+
1 3
c2
abc.
当a
-
1 6
,b
2,c
-3
时,原式
-
1 6
2
-3
=1.
3 合并同类项的应用
例5 一天,王村的小明奶奶提着一篮子土豆去换苹果,双方 商定的结果是:1千克土豆换0.5千克苹果.当称完带篮子的土 豆重量后,摊主对小明奶奶说:“别称篮子的重量了,称苹 果时也带篮子称,这样既省事又互不吃亏.”你认为摊主的话 有道理吗?请你用所学的有关数学知识加以判定.
周长为30x .当时 x 2cm ,周长为 60 cm.
5.合并同类项: (1)-a-a-2a=__-_4_a____; (2)-xy-5xy+6yx=__0____; (3)0.8ab2-a2b+0.2ab2=_a_b_2_-_a_2b_; (4)3a2b-4ab2-4+5a2b+2ab2+7=_8_a_2b_-_2_a_b_2_+_3_.
=- x2y+xy2
练一练
合并同类项: (1)6x+2x2-3x+x2+1; (2)-3ab+7-2a2-9ab-3.
先分组, 再合并
解:(1)原式=(6x-3x)+(2x2+x2)+1 =3x+3x2+1
(2)原式=(-3ab-9ab)-2a2+(7-3) =-12ab-2a2+4
归纳总结
“合并同类项”的方法: 一找,找出多项式中的同类项,不同类的同类项用不同 的标记标出; 二移,利用加法的交换律,将不同类的同类项集中到不 同的括号内; 三并,将同一括号内的同类项相加即可.
答案:下降1.5a
当堂练习
✓ 当堂反馈 ✓ 即学即用
新人教版七年级数学上册《整式的加减》优秀教案

新人教版七年级数学上册《整式的加减》优秀教案2.1 整式(第1课时)教学目标:1.理解字母表示数的意义,能够用含有字母的式子表示实际问题中的数量关系。
2.通过具体问题的抽象过程,发展符号意识。
教学重点:1.理解字母表示数的意义,正确分析实际问题中的数量关系并用含有字母的式子表示数量关系。
2.感受其中“抽象”的数学思想。
教学难点:将实际问题中与数量有关的语句,用含有数、字母和运算符号的式子表示出来。
教法与学法:教法:互动探究法。
学法:小组研讨法。
教学过程:一、情境引入问题1:在青藏铁路线上,有一段很长的冻土地段,列车在冻土地段的行驶速度是100km/h。
列车在冻土地段行驶时,根据已知数据求出列车行驶的路程。
1.2 h行驶多少千米?3 h呢?8 h呢?th呢?2.字母t表示时间有什么意义?3.如果用v表示速度,列车行驶的路程是多少?4.回顾以前所学的知识,你还能举出用字母表示数或数量关系的例子吗?学生合作探究:找出题目中的已知量和未知量,并分析两者之间的关系。
学生:2 h行驶200 km,3h行驶300 km,8h行驶800 km,th行驶100tkm。
教师:上面这种用含有字母的式子来表示数量,就是我们今天要研究的新知识——用字母表示数。
二、范例研究例11.XXX原价是每千克p元,按8折优惠出售,用式子表示现价。
2.某产品前年的产量是n件,去年的产量是前年产量的m 倍,用式子表示去年的产量。
3.一个长方体包装盒的长和宽都是acm,高是hcm,用式子表示它的体积。
4.用式子表示数n的相反数。
学生活动:小组合作探究,得出答案。
师生合作探究:我们可以将题目中的字母看成数字,然后分析问题中的数量关系,列出含有字母的式子表示这些数量关系。
教师总结:1.上面各个问题的结果分别是:0.8p,mn,a²h,-n。
2.数与字母、字母与字母相乘省略乘号;数与字母相乘时数字在前;带分数与字母相乘时,把带分数化成假分数。
数学人教版(2024)七年级上册 第四章 整式的加减 习题课件 4.2 整式的加法与减法(1)

分层检测
A基础
7. 下列各组式子为同类项的是( D
)
A. abc 与 ab
B. 3 x 与3 x2
C. 3 xy2与4 x2 y
D. x2 y 与- yx2
8. 下面各组式子中,不是同类项的是( B )
A. -2与12
B. 2 m 与2 n
C. - a2 b 与 a2 b
D. - x2 y2与5 x2 y2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
4.2
整式的加法与减法(1)
分层检测
9. 若- x3 ym 与3 xny 是同类项,则 m + n 的值为( D
A. 1
B. 2
C. 3
)
D. 4
10. 下列计算正确的是( C )
A. 8 x +4=12 x
B. 4 y -4= y
C. 4 y -3 y = y
A. a2 b 与 ab2
B. 3 xy2与-5 y2 x
C. - a2与3 a
D. 0.5 a 与0.5 b
2. 下列各组式子中,不是同类项的是( B )
A. 3 x2 y 与-2 yx2
B. 2 ab2与- ba2
C. 与5 xy
3
D. 100与-20
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
6. 合并同类项:
(1) a2-2 a +4 a2-7 a ;
5 a2-9 a
(2)4 ab -3 ab2+5+8 ab2-7-4 ab ;
2024年秋季学期新人教版7年级上册数学课件 4.2 整式的加法与减法课时1

例4 (2)某商店原有 5 袋大米,每袋大米为x kg. 上午售出3袋,下午又购进同样包装的大米 4 袋. 进货后这个商店有大米多少千克?
解:(2)把进货的数量记为正,售出的数量记为负,则上午大米质量的变化量是-3x kg,下午大米质量的变化量是4x kg.由 5x-3x+4x=(5-3+4)x=6x可知,进货后这个商店有大米6x kg.
知识点2 合并同类项
例4 (1)水库水位第一天连续下降了a h,平均每小时下降2 cm;第二天连续上升了a h,平均每小时上升0.5 cm.这两天水位总的变化情况如何?
解:(1)把下降的水位变化量记为负,上升的水位变化量记为正,则第一天水位的变化量是-2a cm,第二天水位的变化量是0.5a cm.由 -2a+0.5a=(-2+0.5)a=-1.5a可知,这两天水位总的变化情况为下降了1.5a cm.
第四章 整式的加减
七上数学 RJ
课时1
4.2 整式的加法与减法
1.知道什么是同类项,会判断同类项.2.掌握合并同类项的方法,能准确合并同类项.3.通过类比数的运算探究、合并同类项的方法,从中体会“数式通性”和类比思想.
学习目标
三
四
3
C
B
问题 港珠澳大桥是集主桥、海底隧道和人工岛于一体的世界上最长的跨海大桥.一辆汽车从香港口岸行驶到东人工岛的平均速度为96 km/h,在海底隧道和主桥上行驶的平均速度分别为72 km/h和92 km/h.请根据这些数据回答下列问题:汽车从香港口岸到西人工岛包含两段路程,一段为香港口岸到东人工岛,另一段为海底隧道. 如果汽车通过海底隧道需要a h,那么从香港口岸到东人工岛所需时间是1.25a h,香港口岸到西人工岛的全长(单位:km)怎么表示?
4.2整式的加法与减法 (课件)人教版(2024)数学七年级上册

的指数不变.
2. 合并同类项的过程是分配律的逆用.
3.升(降)幂排列看的是某一个字母指数的大小,而不是项的次数.
4. 合并同类项的结果一般需要按照某一字母进行升(降)幂排列.
感悟新知
知2-练
例 3 [母题 教材P96例1 ]合并下列各式的同类项: 解题秘方:合并同类项:将同类项的系数相加,字 母和字母的指数不变.
感悟新知
知3-练
(2)甲种读本比乙种读本多花多少钱? 解 : 由 10m - 8(100 - m)=10m - 800 + 8m=18m - 800 , 可知甲种读本比乙种读本多花的费用为(18m-800)元.
感悟新知
知3-练
8-1.[期中·鄂州梁子湖区] 某商店有一种商品,每件成本 为a 元,原先按成本增加b 元定价出售,售出30 件 后,由于库存积压减价,按售价的90% 出售,又 销售70 件.
(2)某人购置了一套一室一厅的住宅,其中卧室是长为x m,
宽为y m的长方形,客厅的面积为卧室的74,厨房的面积
是卧室的12,还有一卫生间,其面积为卧室的34,他的住 宅总面积为_4_x_y_m__2.
感悟新知
知识点 3 去括号
知3-讲
1. 去括号就是用括号外的数乘括号内的每一项,再把所得 的积相加. 特别地,当括号前没有数字时,看作是“1” 或“-1”与括号相乘.
第四章 整式的加减
4.2 整式的加法与减法
感悟新知
知识点 1 同类项
知1-讲
1. 定义:所含字母相同,并且相同字母的指数也相同的项
••••
••••••••••
叫作同• 类• 项• ,所有的常数项都是同类项.
感悟新知
知1-讲
2. 判断同类项的方法
新人教版(2024版)版)初中数学七年级上册 第四章整式的加减 4.1.1单项式 教学设计

课堂教学设计
、章节、港珠澳大桥
港珠澳大桥是集主桥、海底隧道和人工岛于一体的世界上最长的
跨海大桥.一辆汽车从香港口岸行驶到东人工岛的平均速度为96
km/h,在海底隧道和主桥上行驶的平均速度分别为72 km/h和92
km/h.请根据这些数据回答下列问题:
(1)汽车在主桥上行驶t h的路程是多少千米?如果汽车通过海底隧
道需要a h,从香港口岸行驶到东人工岛的时间
(2)是通过海底隧道时间的1.25倍,你能用含a的代数式表示香港
口岸到西人工岛的全长吗?
(3)如果汽车通过主桥需要b h,通过海底隧道所需时间比通过主
桥的时间少0.15h,你能用含b的代数式表示主桥与海底隧道长
度的和吗?主桥与海底隧道的长度相差多少千米?
要解决上面的问题,需要进一步学习代数式.在本章中,我们
将学习一类基本的代数式--整式,以及整式的加减运算.你将进一
步学习列代数式表示数量和数量关系,体会数与整式在加减运算
中的一致性,为后续学习方程、不等式、函数等内容打下基础
引起学生的学习兴趣,激
发学生学习数学的热情
例1.用单项式填空,并指出它们的系数和次数.
(1)每包书有12册,n包书有_______册.
(2)底边长为a,高为h的三角形的面积是______.
(3)一个长方体的长和宽都是a,高是h,它的体积是____
(4)一台电视机原价a元,现按原价的9折出售,这台电视机现在售价为_____元.
(5)一个长方形的长为0.9,宽是a,这个长方形的面积是_________.
例2、填空
例3、用字母表示数后,同一个式子可以表示不同的含义.你能赋予0.9a一个含义吗?项式的概念
学抽象能力核心素养。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4课时:整式的加减(1)
教学内容:
教科书第63—64页,2.2整式的加减:1.同类项。
教学目标和要求:
1.理解同类项的概念,在具体情景中,认识同类项。
2.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流的能力。
3.初步体会数学与人类生活的密切联系。
教学重点和难点:
重点:理解同类项的概念。
难点:根据同类项的概念在多项式中找同类项。
教学方法:
分层次教学,讲授、练习相结合。
教学过程:
一、复习引入:
1、创设问题情境
⑴、5个人+8个人=
⑵、5只羊+8只羊=
⑶、5个人+8只羊=
(数学教学要紧密联系学生的生活实际、学习实际,这是新课程标准所赋予的任务。
学生尝试按种类、颜色等多种方法进行分类,一方面可提供学生主动参与的机会,把学生的注意力和思维活动调节到积极状态;另一方面可培养学生思维的灵活性,同时体现分类的思想方法。
)
2、观察下列各单项式,把你认为相同类型的式子归为一类。
8x 2y , -mn 2, 5a , -x 2y , 7mn 2, 83
, 9a , -32
xy , 0, 0.4mn 2, 95
,
2xy 2。
由学生小组讨论后,按不同标准进行多种分类,教师巡视后把不同的分类方法投影显示。
要求学生观察归为一类的式子,思考它们有什么共同的特征?
请学生说出各自的分类标准,并且肯定每一位学生按不同标准进行的分类。
(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。
)
二、讲授新课:
1.同类项的定义:
我们常常把具有相同特征的事物归为一类。
8x 2y 与-x 2y 可以归为一类,2xy 2与-
3
2
xy 可以归为一类,-mn 2、7mn 2与0.4mn 2可以归为一类,5a 与9a 可以归为一类,还有83
、0与95也可以归为一类。
8x 2y 与-x 2y 只有系数不同,各自所含的字母都是x 、y ,并且x 的指数都是2,y 的指数都是1;同样地,2xy 2与-32
xy 也只有系数不同,各自
所含的字母都是x 、y ,并且x 的指数都是1,y 的指数都是2。
像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做同类项(simil a r terms)。
另外,所有的常数项都是同类项。
比如,前面提到的83、0与95也是同类项。
通过特征的讲述,选择所含字母相同,并且相同字母的指数也分别相等的项作为研究对象,并称它们为同类项。
(板书课题:同类项。
)
(教师为了让学生理解同类项概念,可设问同类项必须满足什么条件,让学生归纳总结。
)
板书由学生归纳总结得出的同类项概念以及所有的常数项都是同类项。
2.例题:
例1:判断下列说法是否正确,正确地在括号内打“√”,错误的打“×”。
(1)3x 与3mx 是同类项。
( ) (2)2a b 与-5a b 是同类项。
( )
(3)3x 2y 与-3
1yx 2是同类项。
( ) (4)5a b 2与-2a b 2c 是同类项。
( )
(5)23与32是同类项。
( )
(这组判断题能使学生清楚地理解同类项的概念,其中第(3)题满足同类项的条件,只要运用乘法交换律即可;第(5)题两个都是常数项属于同类项。
一部分学生可能会单看指数不同,误认为不是同类项。
)
例2:游戏:
规则:一学生说出一个单项式后,指定一位同学回答它的两个同类项。
要求出题同学尽可能使自己的题目与众不同。
可请回答正确的同学向大家介绍写一个单项式同类项的经验,从而揭示同类项的本质特征,透彻理解同类项的概念。
(学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的程式化做法,并由编题学生指定某位同学回答,可使课堂气氛活跃,学生透彻理解知识,这种形式适合初中生的年龄特征。
学生通过一定的尝试后,能得出只要改变单项式的系数,即可得到其同类项,实际是抓住了同类项概念中的两个“相同”,从而深刻揭示了概念的内涵。
)
例3:指出下列多项式中的同类项:
(1)3x -2y +1+3y -2x -5; (2)3x 2y -2xy 2+31xy 2-23yx 2。
解:(1)3x 与-2x 是同类项,-2y 与3y 是同类项,1与-5是同类项。
(2)3x 2y 与-23yx 2是同类项,-2xy 2与31xy 2是同类项。
例4:k 取何值时,3x k y 与-x 2y 是同类项?
解:要使3x k y 与-x 2y 是同类项,这两项中x 的次数必须相等,即 k =2。
所以当k =2时,3x k y 与-x 2y 是同类项。
例5:若把(s +t)、(s -t)分别看作一个整体,指出下面式子中的同类项。
(1)31(s +t)-51(s -t)-43(s +t)+6
1(s -t); (2)2(s -t)+3(s -t)2-5(s -t)-8(s -t)2+s -t 。
解:略。
(组织学生口头回答上面三个例题,例3多项式中的同类项可由教师标出不同的下划线,并运用投影仪打出书面解答,为合并同类项作准备。
例4让学生明确同类项中相同字母的指数也相同。
例5必须把(s -t)、(s +t)分别看作一个整体。
)
(通过变式训练,可进一步明晰“同类项”的意义,在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、提高识别能力。
)
6.课堂练习:请写出2ab 2c 3的一个同类项.你能写出多少个?它本身是自己的同类项吗?
(学生先在课本上解答,再回答,若有错误请其他同学及时纠正。
)
三、课堂小结:
①理解同类项的概念,会在多项式中找出同类项,会写出一个单项式的同类项,会判断同类项。
②这堂课运用到分类思想和整体思想等数学思想方法。
③学习同类项的用途是为了简化多项式,为下一课的合并同类项打下基础。
(课堂小结不仅仅是知识点的罗列,应使知识条理化、系统化,应上升到数学思想方法的总结与运用.采用学生相互补充完善,教师适时点拨的课堂小结方式,可训练学生的归纳能力和表达能力,提高学生学习的积极性和主动性。
)
四、课堂作业:若2a m b 2m+3n 与a 2n -3b 8的和仍是一个单项式,则m 与 n 的值分别是______ 板书设计:
教学后记:
建立在学生的认知发展水平上,从学生已有的生活经验出发,通过小组讨论,把一些实物进行分类,从而引出同类项这个概念,并通过练习、游戏、合作交流等学习活动让学生更清楚地认识同类项。
在整堂课的教学活动中充分体现学生的主体性,向学生提供充分参与数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能,培养学生动手、动口、动脑的能力和学生的合作交流能力。