最新第11章练习题+答案
人教版八年级上册《数学》第11章三角形的边练习题(含答案)

三角形的边练习题一、能力提升1.如图,在图形中,三角形有()A.4个B.5个C.6个D.7个2.已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为()A.2B.3C.5D.133.若一个三角形的两条边长分别为3和8,而第三条边长为奇数,则第三条边长为()A.5或7B.7C.9D.7或94.在△ABC中,若三条边长均为整数,周长为11,且有一条边长为4,则这个三角形最长边可能取值的最大值是()A.7B.6C.5D.45.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有对。
6.若等腰三角形的腰长为6,则它的底边长a的取值范围是。
7.用7根相同的火柴棒首尾顺次连接摆成一个三角形,能摆成的不同的三角形的个数为。
8.已知等腰三角形的两边长分别为3cm和7cm,求这个三角形的周长。
9.已知等腰三角形的周长是16cm。
(1)若其中一边的长为4cm,求另外两边的长。
(2)若其中一边的长为6cm,求另外两边的长。
10.若a,b,c是△ABC的三边长,请化简|a-b-c|+|b-c-a|+|c-a-b|。
11.已知等腰三角形的周长为20cm,设腰长为xcm。
(1)用含x的式子表示底边长。
(2)腰长x能否为5cm,为什么?(3)求x的取值范围。
二、创新应用12.在平面内,分别用3根、5根、6根、…小棒首尾依次相接,能搭成什么形状的三角形?通过尝试,形状如表所示。
……等边三角形等腰三角形等边三角形……(1)4根小棒能搭成三角形吗?(2)8根、12根小棒能搭成几种不同形状的三角形?并画出它们的示意图。
答案:一、能力提升1.B2.B由题意知2+x>13,且x<13+2,解得11<x<15,因为x为正整数,所以x可以是12、13、14.故选B。
3.D由题意知第三条边长大于5小于11.因为第三条边长为奇数,所以它的大小为7或9。
4.C由题意知三角形的三条边长分别为2、4、5或3、4、4,所以最长边可能取值的最大值为5。
最新人教版物理八年级下册第十一章功和机械能练习(含答案)

第十一章功和机械能练习一、选择题1.下列四种情景中,人对物体做功的是()A. 把箱子搬起来B. 司机推车未动C. 背着书包在水平路面匀速行走D. 足球离开脚,在草地上滚动的过程中2.对物体做功的理解,下列说法正确的是()A. 作用在物体上的力越大,力对物体所做的功越多B. 物体通过的路程越长,作用在物体上的力对物体所做的功越多C. 有力作用在物体上,这个力就一定对物体做功D. 有力作用在物体上,物体在这个力的方向上通过了一段距离,这个力对物体做了功3.在马拉松比赛中,当运动员加速冲刺时,运动员的()A. 动能增大B. 惯性增大C. 所受重力增大D. 运动状态不变4.在相同的水平地面上,用水平力F匀速推动重为G的箱子,移动距离s。
下列说法正确的是()A. 箱子受到的推力和摩擦力是一对相互作用力B. 在此过程中重力做功为GsC. 若撤去推力,箱子仍向前滑行,则滑行过程中摩擦力小于FD. 若水平推力改为2F,仍使箱子移动距离s,则推力做功为2Fs5. 小刚同学学习了机械能知识后,收集了一些资料,下列情景中机械能增大的是()A. 汽车水平匀速行驶B. 小孩滑滑梯C. 火箭加速升空D. 滚摆向上摆动6.一颗质量为20 g的子弹从枪膛中水平射出。
若子弹在枪膛内受火药爆炸后产生的气体向前的平均推力是500 N,枪膛长20 cm,射出枪膛后子弹在空中飞行了100 m,则在整个过程中气体对子弹做的功是()A.0.04 J B.5×104 JC.100 JD.0 J7.如图所示,单摆中的小球在ABC间不停地往复运动,如果不考虑阻力的影响,以下说法错误的是()A. 小球在A,C处的势能最大B. 小球在B处只受重力作用C. 小球由A到B过程中,重力势能转化为动能D. 小球运动到C处时,如果受到的外力全部消失,将保持静止8.将一支内有弹簧的圆珠笔向下按压(如图),放手后笔会向上弹起一定高度.下列关于该过程中能量变化的叙述,其中正确的是()A. 向下按笔的过程中,弹簧的弹性势能减小B. 向下按笔的过程中,笔的重力势能增大C. 笔向上弹起的过程中,笔的重力势能增大D. 笔向上弹起的过程中,弹簧的弹性势能增大9.在一次体育课上,甲、乙两同学进行爬竿比赛。
工程力学第十一章习题解答

工程力学第十一章习题解答题目:一物体质量为10kg,在水平地面上以10m/s的初速度开始运动,若物体受到一个恒力F=20N的作用,且与运动方向相反,求物体在力作用下停止前所经过的距离。
解答过程:一、问题分析根据牛顿第二定律,力等于质量乘以加速度,即F=ma。
本题中,物体受到一个恒力F=20N的作用,且与运动方向相反,因此加速度a为负值。
我们需要求解物体在力作用下停止前所经过的距离。
二、解题步骤1. 求加速度a根据牛顿第二定律,F=ma,代入已知数据,得到加速度a:a = F/m = -20N / 10kg = -2m/s²2. 求物体停止前所经过的时间t由于物体初速度v0=10m/s,加速度a=-2m/s²,根据速度-时间关系式v=v0+at,我们可以求解物体停止前的时间t:0 = 10m/s - 2m/s² tt = 10m/s / 2m/s² = 5s3. 求物体在力作用下停止前所经过的距离s根据位移-时间关系式s=v0t + 1/2at²,代入已知数据,求解物体在力作用下停止前所经过的距离s:s = 10m/s 5s + 1/2 (-2m/s²) (5s)²s = 50m - 25ms = 25m三、答案验证根据动能定理,物体在运动过程中,动能的变化等于外力做的功。
物体从初始速度10m/s减速到0,动能变化为:ΔK = 1/2 m (v² - v0²) = 1/2 10kg (0 - 100m²/s²) = -500J外力做的功为:W = F s = 20N 25m = 500J由于动能变化等于外力做的功,所以我们的答案是正确的。
四、总结本题主要考查了牛顿第二定律、速度-时间关系式、位移-时间关系式和动能定理的应用。
通过求解加速度、时间和距离,我们得到了物体在力作用下停止前所经过的距离为25m。
八年级数学上册第11章数的开方练习题新版华东师大版(含答案)

八年级数学上册:第11章 数的开方类型之一 平方根、立方根的概念和性质 1.[2020·桂林] 若√x -1=0,则x 的值是( ) A .-1B .0C .1D .22.[2019·通辽] √16的平方根是( ) A .±4B .4C .±2D .23.[2019·济宁] 下列计算正确的是( ) A .√(-3)2=-3 B .√-53=√53C .√36=±6D .-√0.36=-0.64.已知2a 的平方根是±2,3是3a+b 的立方根,求a-2b 的值. 类型之二 算术平方根的性质与应用5.a 2的算术平方根一定是( ) A .aB .|a|C .√aD .-a6.下列计算正确的是( ) A .√22=2 B .√22=±2 C .√42=2D .√42=±27.[2019·杭州西湖区月考] 若实数x 满足√x -2·|x+1|≤0,则x 的值为( ) A .2或-1 B .2≥x ≥-1 C .2D .-18.[2019·资中月考] 若(2x+8)2与√y -2的值互为相反数,则√x y = . 类型之三 实数的分类、大小比较及运算 9.[2019·日照] 在实数√83,π3,√12,43中,有理数有( ) A .1个B .2个C .3个D .4个10.下面四个选项中,结果比-5小的是( ) A .-8的绝对值 B .√2的相反数 C .-5的倒数D .-4与-3的和11.[2019·绵阳] 已知x 是整数,当|x-√30|取最小值时,x 的值是( )A.5B.6C.7D.83-√(-2)2+|1-√3|.12.计算:√9+√813.(1)计算:①2的平方根;②-27的立方根;③√16的算术平方根.(2)将(1)中求出的各个数表示在图1中的数轴上;(3)将(1)中求出的各个数按从小到大的顺序排列,并用“<”号连接.图114.已知√8+1在两个连续的自然数a和a+1之间,1是b的一个平方根.(1)求a,b的值;(2)比较a+b的算术平方根与√5的大小.类型之四数轴上的点与实数的一一对应关系15.[2020·福建]如图2,数轴上两点M,N所对应的实数分别为m,n,则m-n的结果可能是()A.-1B.1C.2D.3图2 图316.[2019·济南]实数a,b在数轴上的对应点的位置如图3所示,下列关系式不成立的是()A.a-5>b-5B.6a>6bC.-a>-bD.a-b>017.[2019·南京]实数a,b,c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是()图418.如图5,在一条不完整的数轴上,从左向右有两个点A,B,其中点A表示的数为m,点B表示的数为4,C也为数轴上一点,且AB=2AC.(1)若m为整数,求m的最大值;(2)若点C表示的数为-2,求m的值.图5类型之五 数学活动19.据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚非常迅速地报出答案,邻座的乘客十分惊奇,忙问计算的奥秘.华罗庚有条理地讲述了计算过程:①因为103=1000,1003=1000000,1000<59319<1000000,所以10<√593193<100,所以√593193是两位数;②因为59319的个位上的数字是9,只有个位上的数字是9的数的立方的个位上的数字依然是9,所以√593193的个位上的数字是9;③如果划去59319后三位只剩下59,因为33=27,43=64,而27<59<64,所以30<√593193<40,所以√593193的十位上的数字是3,所以59319的立方根是39. 根据上面的材料,请你解答问题: 求50653的立方根.20.对非负实数x 四舍五入到个位的值记为[x ],即当n 为非负整数时,若n-12≤x<n+12,则[x ]=n.如:[2.9]=3;[2.4]=2;…. 根据以上材料,解决下列问题:(1)填空:[1.8]= ,[√5]= ; (2)若[2x+1]=4,则x 的取值范围是 ; (3)求满足[x ]=32x-1的所有非负实数x 的值.答案1.C [解析] 因为√x -1=0, 所以x-1=0, 解得x=1, 则x 的值是1. 故选C .2.C [解析] 因为√16=4,±√4=±2,所以√16的平方根是±2,故选C .3.D [解析] A .√(-3)2=√9=3,故A 项错误;B .√-53=-√53,故B 项错误; C .√36=6,故C 项错误; D .-√0.36=-0.6,故D 项正确. 故选D .4.解:根据题意,得2a=4,3a+b=27, 解得a=2,b=21, 则a-2b=2-42=-40.5.B6.A [解析] √22=2,故A 项正确,B 项错误; √42=4,故C 项,D 项均错误. 故选A .7.C [解析] 根据算术平方根的性质,得√x -2≥0,x-2≥0,所以x ≥2,所以|x+1|>0.又因为√x -2·|x+1|≤0,所以√x -2=0,所以x=2.故选C . 8.4 [解析] 由题意,得(2x+8)2+√y -2=0,则2x+8=0,y-2=0,解得x=-4,y=2,则√x y =√(-4)2=4. 故答案为4.9.B [解析] 在实数√83,π3,√12,43中,√83=2,有理数有√83,43,共2个.故选B . 10.D [解析] -8的绝对值是8,8>-5,故A 选项不符合题意; √2的相反数是-√2,-√2>-5,故B 选项不符合题意; -5的倒数是-15=-0.2,-0.2>-5,故C 选项不符合题意; -4+(-3)=-7,-7<-5,故D 选项符合题意.故选D .11.A [解析] 因为√25<√30<√36,所以5<√30<6,且与√30最接近的整数是5,所以当|x-√30|取最小值时,整数x 的值是5.故选A . 12.解:原式=3+2-2+√3-1=2+√3. 13.解:(1)①2的平方根是±√2;②-27的立方根是-3;③√16=4,4的算术平方根是2.(2)如图所示:(3)-3<-√2<√2<2.14.解:(1)因为4<8<9,所以2<√8<3.又因为√8+1在两个连续的自然数a 和a+1之间,所以a=3. 因为1是b 的一个平方根,所以b=1. (2)由(1)知,a=3,b=1,所以a+b=3+1=4, 所以a+b 的算术平方根是2. 因为4<5,所以2<√5.15.C [解析] 因为M ,N 所对应的实数分别为m ,n ,所以-2<n<-1<0<m<1, 所以m-n 的结果可能是2.故选C .16.C [解析] 由图可知,b<0<a ,且|b|<|a|,所以a-5>b-5,6a>6b ,-a<-b ,a-b>0,所以关系式不成立的是选项C .故选C .17.A [解析] 因为a>b 且ac<bc ,所以c<0.选项A 符合a>b ,c<0的条件,故满足条件的对应点位置可以是A .选项B,C 不满足a>b ,选项C,D 不满足c<0,故满足条件的对应点位置不可以是B,C,D .故选A .18.解:(1)由题意可得m<4.因为m 为整数,所以m 的最大值为3. (2)因为点C 表示的数为-2,点B 表示的数为4, 所以点C 在点B 的左侧.①当点C 在线段AB 上时,因为AB=2AC ,所以4-m=2(-2-m ),解得m=-8.②当点C 在线段BA 的延长线上时,因为AB=2AC ,所以4-m=2(m+2),解得m=0. 综上所述,m 的值是-8或0.19.解:因为103=1000,1003=1000000,1000<50653<1000000, 所以10<√506533<100,所以√506533是两位数.因为50653的个位上的数字是3,只有个位上的数字是7的数的立方的个位上的数字是3, 所以√506533的个位上的数字是7. 如果划去50653后三位只剩下50,因为33=27,43=64,而27<50<64, 所以30<√506533<40,所以√506533的十位上的数字是3, 所以50653的立方根是37. 20.解:(1)2 2(2)因为[2x+1]=4,所以72≤2x+1<92,所以54≤x<74.故答案为54≤x<74. (3)设32x-1=m ,则x=2m+23,所以2m+23=m ,所以m-12≤2m+23<m+12,解得12<m ≤72.因为m 为整数,所以m=1或m=2或m=3, 所以x=43或x=2或x=83.。
七年级下册数学书第十一章习题参考答案

七年级下册数学书第十一章习题参考答案七年级下册数学书第十一章习题参考答案习题11.1第1题答案12345>>习题11.1第2题答案(1)x≤14(2)t≥30(3)t>8(4)h>1.75(5)t2(2)2x+50(4)1/3y+4≥0习题11.2第1题答案如下图所示:习题11.2第2题答案(1)x1/4(3)x≥-2(4)x≤1/3习题11.2第3题答案x=2,3,4,5,6是不等式2x+1>3的5个解方程2x+1=3的解是x=1不等式的解大于方程的解习题11.3第1题答案(1)x>2(2)x14(6)b≥-11/3习题11.4第2题答案(1)3y-6+1-11/4所以当x>-11/4时,代数式(x-4)/3的值比(2x+1)/2的值小习题11.5第1题答案由题意,得(n-2)×180°-360°≥120°解得n≥42/3所以n的最小值是5习题11.5第2题答案解:设这批茶叶有x袋,根据题意得:50×80+40(x-80)≤8000解这个不等式得x≤180答:这批茶叶最多有180袋习题11.5第3题答案解:设40座的客车需租用工辆,由题意得:44×2+40x≥406解得x≥719/20答:40座的客车至少需租用8辆习题11.5第4题答案解:设混合的糖果中甲种糖果有x千克,根据题意得:10x+14(20-x)≤240解这个不等式得x≥10答:混合的糖果中甲种糖果最少10千克习题11.6第1题答案①-5≤x1由数轴图所示:得x-1/2 .解②,得x-1所以由上数轴图可得不等式组的解集为-1-1.解②,得x>2 所以由上数轴图可得不等式组的解集为x>2解①,得x3所以不等式组的解集为313.解②,得x>-11所以不等式组的解集为x>13习题11.6第5题答案解:设ab的长为xcm,根据题意得:解得12<x<17习题11.6第6题答案解得:25。
新人教八年级上册第十一章《第11章三角形》单元测试含答案解析

新人教八年级上册第十一章《第11章三角形》一、填空题1.如果三角形的一个角等于其它两个角的差,则这个三角形是三角形.2.已知△ABC中,AD⊥BC于D,AE为∠A的平分线,且∠B=35°,∠C=65°,则∠DAE的度数为.3.△ABC中,如果∠A=∠B=3∠C,则∠A= .4.已知,如图,∠ACD=130°,∠A=∠B,那么∠A的度数是°.5.如图所示,图中有个三角形,个直角三角形.6.四边形ABCD中,若∠A+∠B=∠C+∠D,若∠C=2∠D,则∠C= .7.某足球场需铺设草皮,现有正三角形、正四边形、正五边形、正六边形、正八边形、正十边形6种形状的草皮,请你帮助工人师傅选择两种草皮来铺设足球场,可供选择的两种组合是.8.若一个n边形的边数增加一倍,则内角和将增加.9.如图,BC⊥ED于O,∠A=27°,∠D=20°,则∠B= ,∠ACB= .10.如图,由平面上五个点A、B、C、D、E连接而成,则∠A+∠B+∠C+∠D+∠E= .二、选择题11.如果一个三角形的三个外角之比为2:3:4,则与之对应的三个内角度数之比为()A.4:3:2 B.5:3:1 C.3:2:412.三角形中至少有一个内角大于或等于()A.45° B.55° C.60° D.65°13.如图,下列说法中错误的是()A.∠1不是三角形ABC的外角B.∠B<∠1+∠2C.∠ACD是三角形ABC的外角D.∠ACD>∠A+∠B14.如图,C在AB的延长线上,CE⊥AF于E,交FB于D,若∠F=40°,∠C=20°,则∠FBA的度数为()A.50° B.60° C.70° D.80°15.三条线段a=5,b=3,c的值为整数,由a、b、c为边可组成三角形()A.1个B.3个C.5个D.无数个16.多边形每一个内角都等于150°,则从此多边形一个顶点发出的对角线有()A.7条B.8条C.9条D.10条17.如图,△ABC中,D为BC上的一点,且S△ACD =S△ABD,则AD为()A.高B.中线 C.角平分线 D.不能确定18.现有长度分别为2cm、4cm、6cm、8cm的木棒,从中任取三根,能组成三角形的个数为()A.1 B.2 C.3 D.4三、解答题(共46分)19.如图,在三角形ABC中,∠B=∠C,D是BC上一点,且FD⊥BC,DE⊥AB,∠AFD=140°,你能求出∠EDF的度数吗?20.如图,有甲、乙、丙、丁四个小岛,甲、乙、丙在同一条直线上,而且乙、丙在甲的正东方,丁岛在丙岛的正北方,甲岛在丁岛的南偏西52°方向,乙岛在丁岛的南偏东40°方向.那么,丁岛分别在甲岛和乙岛的什么方向?21.已知等腰三角形的周长是16cm.(1)若其中一边长为4cm,求另外两边的长;(2)若其中一边长为6cm,求另外两边长;(3)若三边长都是整数,求三角形各边的长.22.如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,试问BE∥DF吗?为什么?《第11章三角形》参考答案与试题解析一、填空题1.如果三角形的一个角等于其它两个角的差,则这个三角形是三角形.【考点】三角形内角和定理.【分析】三角形三个内角之和是180°,三角形的一个角等于其它两个角的差,列出两个方程,即可求出答案.【解答】解:设三角形的三个角分别为:a、b、c,则由题意得:解得:a =90°故这个三角形是直角三角形.【点评】本题考查直角三角形的有关性质,可利用方程进行求解.2.已知△ABC中,AD⊥BC于D,AE为∠A的平分线,且∠B=35°,∠C=65°,则∠DAE的度数为.【考点】三角形内角和定理.【分析】首先根据三角形的内角和定理和角平分线的定义求出∠EAC的度数,再根据三角形的内角和定理求出∠DAC的度数,进而求∠DAE的度数.【解答】解:∵∠B=35°,∠C=65°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣35°﹣65°=80°.∵AE为∠BAC的平分线,∴∠EAC=∠BAC=×80°=40°.∵AD⊥BC,∴∠ADC=90°,在△ADC中,∵∠DAC=180°﹣∠ADC﹣∠C=180°﹣90°﹣65°=25°,∴∠DAE=∠EAC﹣∠DAC=40°﹣25°=15°.故答案为:15°.【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.3.△ABC中,如果∠A=∠B=3∠C,则∠A= .【考点】三角形内角和定理.【分析】根据题意可得出2∠A=∠B=6∠C,设∠C=x,则∠B=6x,∠A=3x,再由三角形内角和定理即可得出x的值,进而得出结论.【解答】解:∵ABC中,∠A=∠B=3∠C,∴2∠A=∠B=6∠C,设∠C=x,则∠B=6x,∠A=3x,∵∠A+∠B+∠C=180°,∴3x+6x+x=180°,解得x=18°,∴∠A=3x=54°.故答案为:54°.【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.4.已知,如图,∠ACD=130°,∠A=∠B,那么∠A的度数是°.【考点】三角形的外角性质.【分析】直接根据三角形内角与外角的性质解答即可.【解答】解:∵∠ACD是△ABC的外角,∴∠ACD=∠A+∠B,∵∠ACD=130°,∠A=∠B,∴∠A==65°.【点评】本题比较简单,考查的是三角形外角的性质,即三角形的外角等于不相邻的两个内角的和.5.如图所示,图中有个三角形,个直角三角形.【考点】三角形.【分析】三角形有:△ABC、△ADE、△ADB、△ADC、△CDE;根据直角三角形性质,直角三角形有:△ADE、△ADB、△ADC、△CDE.【解答】解:由分析知:图中有5个三角形,4个直角三角形.【点评】本题考查三角形和直角三角形的判定,认真列举即可.6.四边形ABCD中,若∠A+∠B=∠C+∠D,若∠C=2∠D,则∠C= .【考点】多边形内角与外角.【分析】先根据任意四边形的内角和为360°及∠A+∠B=∠C+∠D,∠C=2∠D列出关于∠D的关系式,求出∠D的度数,再由∠C=2∠D即可求解.【解答】解:∵任意四边形的内角和为360°,∴∠A+∠B+∠C+∠D=360°,∵∠A+∠B=∠C+∠D,∠C=2∠D,∴∠A+∠B+∠C+∠D=6∠D=360°,∴∠D=60°,∴∠C=2×60°=120°.【点评】本题考查的是四边形的内角和定理,解答此题的关键是根据四边形的内角和定理及四个角之间的关系列出关于∠D的关系式,再求出∠C的度数即可.7.某足球场需铺设草皮,现有正三角形、正四边形、正五边形、正六边形、正八边形、正十边形6种形状的草皮,请你帮助工人师傅选择两种草皮来铺设足球场,可供选择的两种组合是.【考点】平面镶嵌(密铺).【专题】开放型.【分析】选择两种草皮来铺设足球场,共15种可能.根据正多边形的组合能否铺满地面,关键是看位于同一顶点处的几个角之和能否为360°:若能,则说明能铺满;反之,则说明不能铺满.依此得出可供选择的两种组合.【解答】解:正三角形、正四边形内角分别为60°、90°,当60°×3+90°×2=360°,故能铺满;正三角形、正五边形内角分别为60°、108°,显然不能构成360°的周角,故不能铺满;正三角形、正六边形内角分别为60°、120°,当60°×2+120°×2=360°,故能铺满;正三角形、正八边形内角分别为60°、135°,显然不能构成360°的周角,故不能铺满;正三角形、正十边形内角分别为60°、144°,显然不能构成360°的周角,故不能铺满;正四边形、正五边形内角分别为90°、108°,显然不能构成360°的周角,故不能铺满;正四边形、正六边形内角分别为90°、120°,显然不能构成360°的周角,故不能铺满;正四边形、正八边形内角分别为90°、135°,当90°+135°×2=360°,故能铺满;正四边形、正十边形内角分别为90°、144°,显然不能构成360°的周角,故不能铺满;正五边形、正六边形内角分别为108°、120°,显然不能构成360°的周角,故不能铺满;正五边形、正八边形内角分别为108°、135°,显然不能构成360°的周角,故不能铺满;正五边形、正十边形内角分别为108°、144°,当108°×2+144°=360°,故能铺满;正六边形、正八边形内角分别为120°、135°,显然不能构成360°的周角,故不能铺满;正六边形、正十边形内角分别为120°、144°,显然不能构成360°的周角,故不能铺满;正八边形、正十边形内角分别为135°、144°,显然不能构成360°的周角,故不能铺满.故可供选择的两种组合是:正三角形和正四边形、正三角形和正六边形、正四边形和正八边形、正五边形、正十边形中任选两种即可.【点评】解决此类题,可以记住几个常用正多边形的内角,及能够用两种正多边形镶嵌的几个组合.8.若一个n边形的边数增加一倍,则内角和将增加.【考点】多边形内角与外角.【分析】n边形的内角和是(n﹣2)•180°,将n边形的边数增加一倍就变成2n边形,2n边形的内角和是(2n﹣2)•180°,据此即可求得增加的度数.【解答】解:∵n边形的内角和是(n﹣2)•180°,∴2n边形的内角和是(2n﹣2)•180°,∴将n边形的边数增加一倍,则它的内角和增加:(2n﹣2)•180°﹣(n﹣2)•180°=n×180°.故答案为n×180°.【点评】本题主要考查了多边形的内角和公式,整式的化简,都是需要熟练掌握的内容.9.如图,BC⊥ED于O,∠A=27°,∠D=20°,则∠B= ,∠ACB= .【考点】直角三角形的性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BEO=∠A+∠D,再根据直角三角形两锐角互余列式计算即可求出∠B,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACB=∠D+∠COD.【解答】解:∵∠A=27°,∠D=20°,∴∠BEO=∠A+∠D=27°+20°=47°,∵BC⊥ED,∴∠B=90°﹣∠BEO=90°﹣47°=43°;在Rt△COD中,∠ACB=∠D+∠COD=20°+90°=110°.故答案为:43°;110°.【点评】本题考查了直角三角形两锐角互余的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.10.如图,由平面上五个点A、B、C、D、E连接而成,则∠A+∠B+∠C+∠D+∠E= .【考点】三角形的外角性质;三角形内角和定理.【分析】延长CE交AB于F,再根据三角形内角与外角的关系求出∠BFC=∠A+∠C,∠D+∠DEG=∠EGB,再根据三角形内角和定理解答即可.【解答】解:延长CE交AB于F,∵∠BFC是△ACF的外角,∴∠BFC=∠A+∠C,∵∠EGB是△EDG的外角,∴∠EGB=∠D+∠DEG,∵∠B+∠BFC+∠EGB=180°,∴∠A+∠B+∠C+∠D+∠E=180°.【点评】此题比较简单,解答此题的关键是延长CE交AB于F,构造出△BGF,利用三角形外角的性质把所求的角归结到一个三角形中,再根据三角形内角和定理求解.二、选择题11.如果一个三角形的三个外角之比为2:3:4,则与之对应的三个内角度数之比为()A.4:3:2 B.5:3:1 C.3:2:4【考点】三角形的外角性质.【分析】已知三角形三个外角的度数之比,可以设一份为k°,根据三角形的外角和等于360°列方程求三个内角的度数,确定三角形内角的度数,然后求出度数之比.【解答】解:设一份为k°,∵三个外角之比为2:3:4,∴三个外角的度数分别为2k°,3k°,4k°,∵2k°+3k°+4k°=360°,解得k°=40°,∴三个外角分别为80°,120°和160°,∵三角形外角与它相邻的内角互补,与之对应的三个内角的度数分别是100°,60°和20°,即三个内角的度数的比为5:3:1.故选B.【点评】本题考查三角形外角的性质及三角形的外角与它相邻的内角互补的知识,解答的关键是沟通外角和内角的关系.12.三角形中至少有一个内角大于或等于()A.45° B.55° C.60° D.65°【考点】三角形内角和定理.【分析】根据三角形的内角和为180°解答即可.【解答】解:∵三角形的内角和为180°,∴当三个内角均小于60°时不能构成三角形,∴三角形中至少有一个内角大于或等于60°.故选C.【点评】此题比较简单,考查的是三角形的内角和为180°.13.如图,下列说法中错误的是()A.∠1不是三角形ABC的外角B.∠B<∠1+∠2C.∠ACD是三角形ABC的外角D.∠ACD>∠A+∠B【考点】三角形的外角性质.【分析】根据三角形的外角等于和它不相邻的两个内角的和,判断A正确,D错误;由三角形外角的定义,判断C正确;三角形的外角大于和它不相邻的任何一个内角,判断B正确.【解答】解:A、∠1不是三角形ABC的外角,正确;B、∠B<∠1+∠2,正确;C、∠ACD是三角形ABC的外角,正确;D、∠ACD=∠A+∠B,故D错误.故选D.【点评】本题考查三角形外角的性质以及考查三角形内角与外角的关系.14.如图,C在AB的延长线上,CE⊥AF于E,交FB于D,若∠F=40°,∠C=20°,则∠FBA的度数为()A.50° B.60° C.70° D.80°【考点】三角形的外角性质;三角形内角和定理.【分析】先根据三角形内角和定理求出∠EDF的度数,再根据对顶角的性质求出∠CDB的度数,由三角形外角的性质即可求出∠FBA的度数.【解答】解:∵CE⊥AF于E,∴∠FED=90°,∵∠F=40°,∴∠EDF=180°﹣∠FED﹣∠F=180°﹣90°﹣40°=50°,∵∠EDF=∠CDB,∴∠CDB=50°,∵∠C=20°,∠FBA是△BDC的外角,∴∠FBA=∠CDB+∠C=50°+20°=70°.故选C.【点评】本题考查的是三角形内角和定理及外角的性质,解答此题的关键是熟知以下知识:(1)三角形的内角和为180°;(2)三角形的外角等于与之不相邻的两个内角的和.15.三条线段a=5,b=3,c的值为整数,由a、b、c为边可组成三角形()A.1个B.3个C.5个D.无数个【考点】三角形三边关系.【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边c的范围,根据c的值为整数,即可确定c的值.从而确定三角形的个数.【解答】解:c的范围是:2<c<8,因而c的值可以是:3、4、5、6、7共5个数,因而由a、b、c为边可组成5个三角形.故选C.【点评】本题需要理解的是如何根据已知的两条边求第三边的范围.16.多边形每一个内角都等于150°,则从此多边形一个顶点发出的对角线有( )A .7条B .8条C .9条D .10条【考点】多边形内角与外角;多边形的对角线.【分析】多边形的每一个内角都等于150°,多边形的内角与外角互为邻补角,则每个外角是30度,而任何多边形的外角是360°,则求得多边形的边数;再根据不相邻的两个顶点之间的连线就是对角线,则此多边形从一个顶点出发的对角线共有(n ﹣3)条,即可求得对角线的条数.【解答】解:∵多边形的每一个内角都等于150°,∴每个外角是30°,∴多边形边数是360°÷30°=12,则此多边形从一个顶点出发的对角线共有12﹣3=9条.故选C .【点评】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.多边形从一个顶点出发的对角线共有(n ﹣3)条.17.如图,△ABC 中,D 为BC 上的一点,且S △ACD =S △ABD ,则AD 为( )A .高B .中线C .角平分线D .不能确定【考点】三角形的面积.【分析】过A 作AE ⊥BC ,分别计算S △ACD 、S △ABD ,根据S △ACD =S △ABD 即可求得BD =DC ,即可解题.【解答】解:过A 作AE ⊥BC ,则S △ACD =BD •AE ,S △ABD =BC •AE ,∵S △ACD =S △ABD ,∴BD =BC ,∴AD 为中线.故选B .【点评】本题考查了三角形面积的计算,考查了三角形中线的定义.本题中求证BD =DC 是解题的关键.18.现有长度分别为2cm 、4cm 、6cm 、8cm 的木棒,从中任取三根,能组成三角形的个数为( )A .1B .2C .3D .4【考点】三角形三边关系.【分析】根据三角形的三边关系定理,只要满足任意两边的和大于第三边,即可确定有哪三个木棒组成三角形.【解答】解:能组成三角形的三条线段是:4cm 、6cm 、8cm .只有一种结果.故选A .【点评】考查三角形的边时,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.三、解答题(共46分)19.如图,在三角形ABC 中,∠B =∠C ,D 是BC 上一点,且FD ⊥BC ,DE ⊥AB ,∠AFD =140°,你能求出∠EDF 的度数吗?【考点】等腰三角形的性质.【分析】由于DF ⊥BC ,DE ⊥AB ,所以∠FDC =∠FDB =∠DEB =90°,又因为△ABC 中,∠B =∠C ,所以∠EDB =∠DFC ,因为∠AFD =140°,所以∠EDB =∠DFC =40°,所以∠EDF =90°﹣∠EDB =50°.【解答】解:∵DF ⊥BC ,DE ⊥AB ,∴∠FDC=∠FDB=∠DEB=90°,又∵∠B=∠C,∴∠EDB=∠DFC,∵∠AFD=140°,∴∠EDB=∠DFC=40°,∴∠EDF=90°﹣∠EDB=50°.【点评】本题考查了等腰三角形的性质;利用三角形的内角和定理求解角的度数是正确解答本题的关键.20.如图,有甲、乙、丙、丁四个小岛,甲、乙、丙在同一条直线上,而且乙、丙在甲的正东方,丁岛在丙岛的正北方,甲岛在丁岛的南偏西52°方向,乙岛在丁岛的南偏东40°方向.那么,丁岛分别在甲岛和乙岛的什么方向?【考点】方向角;垂线;平行线的性质.【专题】应用题.【分析】根据方向角的定义即可求解.分别作A M∥CD,N B∥CD,根据两直线平行,内错角相等即可求得∠1与∠2的度数.【解答】解:设甲岛处的位置为A,乙岛处的位置为B,丙岛处的位置为D,丁岛处的位置为C.作A M∥CD,N B∥CD,如图:∵丁岛在丙岛的正北方,∴CD⊥AB.∵甲岛在丁岛的南偏西52°方向,∴∠ACD=52°.又∵A M∥CD,∴∠1=∠ACD=52°.∴丁岛在甲岛的北偏东52°方向.∵乙岛在丁岛的南偏东40°方向,∴∠BCD=40°.又∵B N∥CD,∴∠2=∠BCD=40°,∴丁岛在乙岛的北偏西40°方向.【点评】本题主要考查了方向角的定义和平行线的性质,是一个基础的内容.21.已知等腰三角形的周长是16cm.(1)若其中一边长为4cm,求另外两边的长;(2)若其中一边长为6cm,求另外两边长;(3)若三边长都是整数,求三角形各边的长.【考点】等腰三角形的性质;三角形三边关系.【分析】(1)(2)由于未说明已知的边是腰还是底,故需分情况讨论,从而求另外两边的长.(3)根据三边长都是整数,且周长是16cm,还是等腰三角形,所以可用列表法,求出其各边长.【解答】解:(1)如果腰长为4cm,则底边长为16﹣4﹣4=8cm.三边长为4cm,4cm,8cm,不符合三角形三边关系定理.所以应该是底边长为4cm.所以腰长为(16﹣4)÷2=6cm.三边长为4cm,6cm,6cm,符合三角形三边关系定理,所以另外两边长都为6cm;(2)如果腰长为6cm,则底边长为16﹣6﹣6=4cm.三边长为4cm,6cm,6cm,符合三角形三边关系定理.所以另外两边长分别为6cm和4cm.如果底边长为6cm,则腰长为(16﹣6)÷2=5cm.三边长为6cm,5cm,5cm,符合三角形三边关系定理,所以另外两边长都为5cm;(3)因为周长为16cm,且三边都是整数,所以三角形的最长边小于8cm且是等腰三角形,我们可用列表法,求出其各边长如下:7cm,7cm,2cm;6cm,5cm,5cm;6cm,6cm,4cm,共有这三种情况.【点评】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.当题目指代不明时,一定要分情况讨论,把符合条件的保留下来,不符合的舍去.22.如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,试问BE∥DF吗?为什么?【考点】平行线的判定;多边形内角与外角.【专题】探究型.【分析】要证BE∥DF,需证∠FDC=∠BEC,由于已知里给出了两条角平分线,四边形ABCD内角和为360°,∠A=∠C=90°,可得:∠FDC+∠EBC=90°,在△BCE中,∠BEC+∠EBC=90°,等角的余角相等,就可得到∠FDC=∠BEC,即可证.【解答】解:平行.∵∠A=∠C=90°,四边形ABCD的内角和为360°,∴∠ADC+∠ABC=180°,∵BE平分∠ABC,DF平分∠ADC,∴∠FDC+∠EBC=90°.又∵∠C=90°,∴∠BEC+∠EBC=90°,∴∠FDC=∠BEC,∴BE∥DF.【点评】本题利用了角平分线性质和判定,四边形的内角和为360°,同角的余角相等.。
第11章 卤素和氧族元素 习题参考答案

第11章 卤素和氧族元素 习题参考答案1. 解:(1) 2NaCl + 2H2O 电解2↑+Cl2↑(2)2Br−+Cl22 + 2Cl−;3 Br2+3CO32−−+ BrO3−+3CO2↑;5Br−+ BrO3−+ 6H+2+3H2O2. 解:(1) 2Br−+Cl22+ 2Cl−(2) 6Ca(OH) 2(热) +6Cl2 Ca(ClO3)2+ 5 CaCl2+ 2H2O(3) I2+ 2HClO32+ 2HIO3(4) 4KClO4+KCl3. 解:(1)以食盐为基本原料制备Cl2、NaOH、NaClO、Ca(ClO)2、KClO3、HClO4;2NaCl + 2H2O 电解2↑+Cl2↑Cl2 + 2NaOH(冷) NaClO + NaCl + H2O2Cl2 + 2Ca(OH)2(冷) 2 + CaCl2 + 2H2O3Cl2 + 6KOH(热) KClO3 + 5KCl + 3H2O4KClO3 3KClO4 + KClKClO4 + H2SO4(浓) 减压蒸馏4 + HClO4(2)以萤石(CaF2)为基本原料制备F2。
CaF2 + H2SO4(浓) CaSO4 +2HF↑KOH + 2HF KHF2 + H2O2KHF2电解2↑+ F2↑(3) 2KI+Cl2I2+ KCl3I2 KIO3 + 5KI + 3H2O4. 解:(1)Cl2 + 2KOH(冷) KClO + KCl + H2O(2)3Cl2 + 6KOH(热) KClO3 + 5KCl + 3H2O(3)KClO3 KCl+3Cl2↑+ 3H2O(4)2KClO3 2KCl+ 3O2↑(5)I2+ 5H2O23+ 4H2O(6)KClO 3+6KI+ 3H 2SO 4KCl+3I 2+ 3K 2SO 4+ 3H 2O5. 解:(1)FeCl 3与Br 2水能共存。
因 \E (BrO 3−/Br 2) = 1.5V > \E (Fe 3+/Fe 2+) = 0.771V ,所以FeCl 3和Br 2不会发生氧化还原反应,也不发生其它反应,故能共存。
第11章思考题和习题解答.

第11章 供配电系统的运行和管理11-1.节约电能有何重要意义?答:节约电能的意义主要表现为:1.缓解电力供需矛盾。
节约电能可以节约煤炭、水力、石油等一次能源,使整个能源资源得到合理使用,缓解电力供需矛盾,并能减轻能源部门和交通运输部门的紧张程度。
2.节约国家的基建投资。
节约电能可以节约国家用于发电、输配电及用电设备所需要的投资,给整个国民经济带来很大的利益,有利于国民经济的发展。
3.提高企业的经济效益。
节约电能可以减少企业的电费开支,降低生产成本,积累资金,提高企业的经济效益。
4.推动企业用电合理化。
节约电能可以推动企业采用新技术、新材料、新设备、新工艺,加速设备改造和工艺改革,从而提高企业的经营管理水平,使企业生产能力得到充分发挥,促进企业生产水平的不断发展和提高。
11-2.什么叫负荷调整?有哪些主要调整措施?答:根据供电系统的电能供应情况及各类用户不同的用电规律,合理地安排各类用户的用点时间,以降低负荷高峰,填补负荷的低谷(即所谓的“削峰填谷”),充分发挥发、变电设备的潜能,提高系统的供电能力。
负荷调整的主要措施:①同一地区各厂的厂休日错开;②同一厂内各车间的上下班时间错开,使各个车间的高峰负荷分散;③调整大容量用电设备的用点时间,使它避开高峰负荷时间用电,做到各时段负荷均衡,从而提高了变压器的负荷系数和功率因数,减少电能的损耗。
④实行“阶梯电价+分时电价” 的综合电价模式。
“阶梯电价”全名为“阶梯式累进电价”,是指把户均用电量设置为若干个阶梯,随着户均消费电量的增长,电价逐级递增。
峰谷分时电价是指根据电网的负荷变化情况,将每天24小时划分为高峰、平段、低谷等时段,各时段电价不同,以鼓励用电客户合理安排用电时间,削峰填谷,提高电力资源的利用效率。
11-3.什么叫经济运行?什么叫变压器的经济负荷?答:经济运行是指整个电力系统的有功损耗最小,获得最佳经济效益的设备运行方式。
变压器的经济负荷S ec.T ,就是应满足变压器单位容量的综合有功损耗△P/S 为最小值的条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章 机械波和电磁波三. 计算题1. 一横波沿绳子传播时的波动方程式为 0.05cos(104)y t x ππ=- (SI)。
(1)求此波的振幅、波速、频率和波长;(2)求绳子上各质点振动的最大速度和最大加速度;(3)求x=0.2m 处的质点在t=1s 时的相位,它是原点处质点在哪一时刻的相位? (4)分别画出t=1s ,1.25s ,1.5s 各时刻的波形。
解:(1)原波动方程式可改写为 0.05cos10)2.5xy t =-π( (SI) 由波动方程式可知A =0.05m ,ν=5Hz , 2.5/u m s =,u=λν=0.5m ,00ϕ=(2)0.5 1.57/m v A m s ωπ===,222549.3/m a A m s ωπ===(3)x =0.2m 处质点在t =1s 时的相位为(0.2,1)(10140.2)9.2ϕπππ=⨯-⨯= 与t 时刻前坐标原点的相位相同,则(0,)(1040)9.2t t ϕπππ=⨯-⨯= 得t =0.92s(4)t =1s 时,0.05cos(104)0.05cos 4()y x x m πππ=-=t =1.25s 时,0.05cos(12.54)0.05sin 4()y x x m πππ=-= t =1.50s 时,0.05cos(154)0.05cos 4()y x x m πππ=-=-分别画出其波形图如下图所示:图42. 设有一平面简谐波 0.02cos 2()0.010.3t xy π=- (SI)。
(1)求其振幅、波长、频率和波速。
(2)求x=0.1m 处质点振动的初相位。
解:(1)由波动方程有A =0.02m ,λ=0.3m ,ν=100Hz ,00ϕ=,且30/u m s λν==(2)00.100.122()0.010.33x πϕπ==-=-3. 已知一沿x 轴正向传播的平面余弦波在t=1/3s 时的波形如图4所示,且周期T=2s 。
(1)写出O 点和P 点的振动表达式; (2)写出该波的波动表达式; (3)求P 点离O 点的距离。
解:解:由波形曲线可得A =0.1m ,λ=0.4m ,且0.2/u m s Tλ==,2/rad s Tπωπ== (1)设波动表达式为0cos[()]x y A t uωϕ=-+ 由图可知O 点的振动相位为23π,即10032()33Ot t s t ππϕωϕϕ==+=+=得O 点的初相03πϕ=所以O 点的振动表达式为0.1cos()()3O y t m ππ=+同样P 点的振动相位为013[()]30.232PPt t s x x t u==-+=-+=-ππππϕωϕ,得70.2330P x m m =≈()所以P 点的振动表达式为50.1cos()()6P y t m =-ππ (2)波动表达式为0.1cos[(5)]()3y t x m ππ=-+(3)P 点离O 点的距离为70.2330P x m m =≈()图1三. 计算题1. 一平面简谐声波的频率为500Hz ,在空气中以速度u=340m/s 传播。
到达人耳时,振幅A=10-4cm ,试求人耳接收到声波的平均能量密度和声强(空气的密度ρ=1.29kg/m 3)。
解:人耳接收到声波的平均能量密度为226316.3710/2w A J m ρω-==⨯ 人耳接收到声波的声强为322.1610/I wu W m -==⨯2. 一波源以35000W 的功率向空间均匀发射球面电磁波,在某处测得波的平均能量密度为7.8×10-15J/m 3,求该处离波源的距离。
电磁波的传播速度为3.0×108m/s 。
解:设该处距波源r ,单位时间内通过整个球面的能量为24P SA S r π== 则4(4)(4) 3.4510r P S P wu m ππ===⨯3. 一列沿x 轴正向传播的简谐波,已知t 1=0和t 2=0.25s 时的波形如图1所示。
试求: (l )P 的振动表达式; (2)此波的波动表达式; (3)画出O 点的振动曲线。
解:由图1中的波形曲线可知A =0.2m ,1T s =, 0.6m =λ,1T s =,11Hz Tν==, 0.6/u m s λν==(1) 由P 点的振动状态知02P πϕ=-,故P 点的振动表达式为0.2cos(2)()2P y t m ππ=-(2)由O 点的振动状态知02O πϕ=,故O 点的振动表达式为0.2cos(2)()2O y t m ππ=+所以波动表达式为100.2cos[2()]0.2cos(2)()0.6232x y t t x m πππππ=-+=-+ (3)O 点的振动曲线如下图所示图1三.计算题1.同一介质中的两个波源位于A 、B 两点,其振幅相等,频率都是100Hz ,相位差为π,若A 、B 两点相距为30m ,波在介质中的传播速度为400m/s ,试求AB 连线上因干涉而静止的各点的位置。
1.解:建立如下图所示的坐标轴,根据题意,设0A ϕ=,B ϕπ=,且4um λν==在A 、B 间任选一点C ,两波在C 点引起的振动分别为cos[()]cos ()AC A x xy A t A t u u ωϕω=-+=-()cos[()]BC x L y A t u-=++ωπ两振动使C 点静止的相位差应为(21)C BC AC k ϕϕϕπ∆=-=+ 即 ()2[()]()(2)(21)x L x t t x L k u u πωπωππλ-++--=-+=+ 解得 215,0,1,2,,7x k k =+=±±±即AB 连线间因干涉而静止的点距A 点为(1,3,5,…,29)m ,共有15个。
在A 、B 两点外侧连线上的其他任意点,比如D 点和E 点,A 、B 两相干波的传播方向相同,并且在这些点处均为同相叠加,是干涉加强区域,所以在A 、B 两点外侧的连线上没有静止点。
2.两个波在一很长的弦线上传播,设其波动表达式为10.06cos (0.020.8)2y x t π=- 20.06cos(0.020.8)2y x t π=+用SI 单位,求:(1)合成波的表达式;(2)波节和波腹的位置。
解:(1)ω=0.4πrad/s ,U=40m/s,λ=200m ,将两波改写成如下形式120.06cos(0.4)200y t x =-ππ,220.06cos(0.4)200y t x =+ππ 则合成波为122(2cos )cos 0.12cos0.01cos0.4y y y A x t x t =+==πωππλ这是个驻波。
(2)波节有cos0.010x π=0.01(21)2x k ππ=+故波节位置为 50(21),0,1,2,x k m k =+=±±波腹有 cos0.011x π=0.01x k ππ=故波腹位置为100,0,1,2,x k m k ==±±3.(1)火车以90km/h 的速度行驶,其汽笛的频率为500Hz 。
一个人站在铁轨旁,当火车从他身旁驶过时,他听到的汽笛声的频率变化是多大?设声速为340m/s 。
(2)若此人坐在汽车里,而汽车在铁轨旁的公路上以54km/h 的速率迎着火车行驶。
试问此人听到汽笛声的频率为多大?解:设声波在空气中传播的速率为u ,波源(汽笛)的频率为ν,波源(火车)运动的速率为39010/25/3600S m s m s υ⨯==,观察者的运动速率为35410/15/3600R m s m s υ⨯==。
当波源和观察者沿两者的连线运动时,观察者接收到的频率为RR Su u +=-υννυ (1)火车向着观察者运动时观察者接收到的频率为1340()()50054034025S S u Hz Hz u ννυ==⨯=-- 火车远离观察者运动时观察者接收到的频率为2340()50046634025Hz Hz ν=⨯=+则频率变化为1274Hz ννν∆=-= (2)车中的观察者接收到的频率为34015500563.534025R S S u Hz Hz u υννυ++==⨯=--国培学习心得通过这次培训让我对新课程理念下的教学方式与学习方式的变革有了新的理解;让我对做一个富有人格魅力的教师充满了希望;解开了我在教学中的很多方面的迷惑,让我知道了如何有效的开发课程资源,更好的利用课程资源进行教学,为培养我们中学英语教师的专业能力指明了方向,并学会了实现自我的价值,改变自己的心态,用阳光灿烂的心态面对工作和生活。
尤其是参加了11月23号的视频答疑学习,更觉醍醐灌顶、受益匪浅。
“国培计划”真是一次难得的机会。
经过这一阶段的学习,我主要有以下几点深刻的心得:一、“国培”学习使我们更加全面深刻地理解了新课标理念,为实施素质教育奠定了基础。
《英语课程标准》要求教师引导学生主动学习,帮助他们形成以能力发展为目的的学习方式,鼓励学生通过体验、实战、讨论、合作和探究等方式,发展听、说、读、写的综合语言技能,促进学生知识与技能、情感、态度、价值观的整体发展,对培养适应未来需要的创新人才具有重要的意义。
“国培”专家深入浅出的讲析、诠释无不紧扣新课标理念,让我们这些一线的教师学习后无不对新课标又有了一个全新的认识,丰实了我们的头脑,使我们领悟到了新时期英语教学的精神实质,为教学能力的提升奠定了基础。
二、我觉得教师应树立新观念。