高中数学解析几何椭圆性质与定义

合集下载

高三椭圆知识点总结

高三椭圆知识点总结

高三椭圆知识点总结椭圆是解析几何中的一个重要概念,它在高中数学中占据着重要的地位。

椭圆的相关知识点涉及到椭圆的定义、性质、方程、焦点、离心率等内容。

下面我们将对高三椭圆知识点进行总结,希望能够帮助同学们更好地理解和掌握这一部分内容。

1. 椭圆的定义。

椭圆是平面上到两个定点F1和F2的距离之和等于常数2a(a>0)的动点P的轨迹。

这两个定点称为椭圆的焦点,常数2a称为椭圆的长轴长度。

2. 椭圆的性质。

(1)椭圆的离心率e的性质,0<e<1。

(2)椭圆的离心率e与长轴、短轴的关系,e^2=1-b^2/a^2。

(3)椭圆的离心率e与焦点之间的距离的关系,PF1+PF2=2a=2a(1-e^2)。

3. 椭圆的方程。

椭圆的标准方程为,x^2/a^2+y^2/b^2=1。

其中,a和b分别为椭圆的长轴和短轴长度。

4. 椭圆的焦点。

椭圆的焦点到椭圆中心的距离为c,满足c^2=a^2-b^2。

5. 椭圆的参数方程。

椭圆的参数方程为:x=acosθ。

y=bsinθ。

其中,θ为参数,a和b分别为椭圆的长轴和短轴长度。

6. 椭圆的性质。

(1)椭圆的对称轴,椭圆有两条对称轴,分别为x轴和y轴。

(2)椭圆的准线,椭圆的长轴上任意一点到两个焦点的距离之和为常数2a,这个常数称为椭圆的准线。

7. 椭圆的切线方程。

椭圆上一点P(x0,y0)处的切线方程为:xx0/a^2+yy0/b^2=1。

通过以上知识点的总结,我们对高三椭圆的相关内容有了更深入的了解。

希望同学们能够通过不断地练习和思考,掌握椭圆的相关知识,提升数学水平。

高中椭圆的知识点归纳

高中椭圆的知识点归纳

高中椭圆的知识点归纳椭圆是高中数学中解析几何部分的重要内容,它在数学和实际应用中都有着广泛的应用。

下面我们来对高中椭圆的知识点进行一个全面的归纳。

一、椭圆的定义平面内与两个定点$F_1$、$F_2$的距离之和等于常数(大于$|F_1F_2|$)的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。

用数学语言表示为:$|PF_1| +|PF_2| = 2a$($2a >|F_1F_2| = 2c$)二、椭圆的标准方程1、焦点在$x$轴上的椭圆标准方程:$\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1$($a > b > 0$),其中$a$为椭圆的长半轴长,$b$为椭圆的短半轴长,$c =\sqrt{a^2 b^2}$为半焦距。

2、焦点在$y$轴上的椭圆标准方程:$\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1$($a > b > 0$)三、椭圆的几何性质1、范围对于焦点在$x$轴上的椭圆:$a \leq x \leq a$,$b \leq y \leq b$;对于焦点在$y$轴上的椭圆:$b \leq x \leq b$,$a \leq y \leq a$。

2、对称性椭圆关于$x$轴、$y$轴和原点对称。

3、顶点焦点在$x$轴上的椭圆顶点坐标为$(\pm a, 0)$,$(0, \pm b)$;焦点在$y$轴上的椭圆顶点坐标为$(0, \pm a)$,$(\pm b, 0)$。

4、离心率椭圆的离心率$e =\frac{c}{a}$,其中$0 < e < 1$。

离心率反映了椭圆的扁平程度,$e$越接近$0$,椭圆越接近于圆;$e$越接近$1$,椭圆越扁。

5、准线焦点在$x$轴上的椭圆准线方程为$x =\pm \frac{a^2}{c}$;焦点在$y$轴上的椭圆准线方程为$y =\pm \frac{a^2}{c}$。

四、椭圆中的一些重要结论1、焦半径公式对于焦点在$x$轴上的椭圆,若点$P(x_0, y_0)$在椭圆上,则左焦半径$|PF_1| = a + ex_0$,右焦半径$|PF_2| = a ex_0$;对于焦点在$y$轴上的椭圆,若点$P(x_0, y_0)$在椭圆上,则上焦半径$|PF_1| = a + ey_0$,下焦半径$|PF_2| = a ey_0$。

高二椭圆知识点总结

高二椭圆知识点总结

高二椭圆知识点总结一、椭圆的基本概念1.1 椭圆的定义椭圆是平面上到两个固定点的距离之和等于常数的点的轨迹。

具体来说,设两点为F₁和F₂,距离之和为常数2a,那么椭圆E的定义:E = {P∈R² | |PF₁| + |PF₂| = 2a}其中,P为椭圆上的点,F₁和F₂为两个固定点,a为椭圆的半长轴。

1.2 椭圆的几何性质椭圆有如下几何性质:(1)椭圆的离心率:椭圆的形状由离心率e来表征。

(2)椭圆的焦点:椭圆的两个焦点分别为F₁和F₂。

(3)椭圆的半长轴和半短轴:半长轴为椭圆的长轴的一半,半短轴为椭圆的短轴的一半。

1.3 椭圆和圆的关系可以看到,当两个焦点重合时,椭圆变成了圆。

这也说明圆是椭圆的一种特殊情况,也就是说圆是椭圆的特例。

二、椭圆的方程和性质2.1 椭圆的标准方程椭圆的标准方程为:x^2/a^2 + y^2/b^2 = 1其中,a为椭圆的半长轴,b为椭圆的半短轴。

2.2 椭圆的参数方程椭圆的参数方程为:x = a*cosθy = b*sinθ其中,θ为参数,a和b分别为椭圆的半长轴和半短轴。

2.3 椭圆的性质椭圆有许多重要的性质,如焦点、离心率、长轴、短轴等。

椭圆的性质对于解析几何的学习非常重要。

在实际应用中,我们可以利用这些性质进行问题的求解和分析。

2.4 椭圆的参数方程与标准方程的转化椭圆的参数方程与标准方程可以相互转化,通过参数方程与三角函数之间的关系,我们可以得到椭圆的标准方程。

三、椭圆的相关计算3.1 椭圆的面积椭圆的面积可以通过参数方程和积分来计算,最终可以得到椭圆的面积公式为:S = πab其中,a和b为椭圆的半长轴和半短轴。

3.2 椭圆的周长椭圆的周长也可以通过参数方程和积分来计算,最终可以得到椭圆的周长公式为:L = 4aE(e)其中,a为椭圆的半长轴,E(e)为椭圆的第二类椭圆积分,e为椭圆的离心率。

3.3 椭圆方程的化简对于一些复杂的椭圆方程,我们可以通过一些方法对椭圆方程进行化简,使得问题的求解变得更加简单。

椭圆的知识点总结

椭圆的知识点总结

椭圆的知识点总结一、椭圆的定义椭圆是平面上的一种特殊曲线,它的定义可以有多种方式。

在解析几何中,我们通常采用焦点-直线之和等于常数的定义来描述椭圆。

具体而言,椭圆定义为到两个固定点(焦点)的距离之和等于常数的点的集合。

这个常数被称为椭圆的长轴长度。

另外,椭圆还有一个短轴,它垂直于长轴且通过长轴的中点。

椭圆的长轴和短轴的长度决定了椭圆的形状。

二、椭圆的性质1. 焦点性质:椭圆有两个焦点,它们位于长轴上,且椭圆上任意一点到两个焦点的距离之和等于椭圆的长轴长度。

2. 直径性质:椭圆的直径是经过焦点的直线段,并且它恰好与椭圆相交于椭圆上的两点。

3. 周长性质:椭圆的周长可以用椭圆的半长轴和半短轴的长度来表示,即2πb+4aE(e),其中a和b分别为椭圆的长轴和短轴的长度,E(e)为第二类椭圆积分。

4. 质心性质:椭圆的质心位于椭圆的中心,且与椭圆的几何中心重合。

椭圆的质心满足椭圆上所有点到该质心的距离之和等于椭圆的长轴长度。

5. 对称性质:椭圆具有关于长轴和短轴的对称性,且同时具有关于两个焦点的对称性。

6. 离心率性质:椭圆的离心率e是一个重要的参数,它刻画了椭圆的形状。

椭圆的离心率满足0<e<1,且e=√(1-b²/a²)。

7. 焦点和直角坐标系的关系:椭圆在直角坐标系中的方程形式可以用来描述椭圆的形状,其一般方程为(x²/a²)+(y²/b²)=1。

三、椭圆的方程椭圆的方程通常以长轴和短轴的长度来表示,其一般方程为(x²/a²)+(y²/b²)=1。

在给定长轴和短轴的情况下,可以通过椭圆的方程来确定椭圆的形状和位置。

四、椭圆的焦点椭圆有两个焦点,它们分别位于长轴的两端。

椭圆上任意一点到两个焦点的距离之和等于椭圆的长轴长度。

焦点是椭圆的重要特性,它们的位置决定了椭圆的形状和方向。

五、椭圆的参数方程椭圆还可以用参数方程来描述。

高三复习椭圆知识点讲解

高三复习椭圆知识点讲解

高三复习椭圆知识点讲解椭圆,作为平面解析几何的一部分,是高三数学的重要知识点之一。

在高三学习阶段,对于椭圆的理解和熟练运用显得尤为重要。

本文将对高三复习椭圆的知识点进行讲解,帮助同学们加深对椭圆的理解,提升解题的能力。

一、椭圆的定义及性质椭圆是平面上到两个定点F1,F2的距离之和等于常数2a的点P的轨迹。

在椭圆中,常数2a称为长轴,定点F1和F2称为焦点,连结两个焦点的线段称为主轴,主轴的中点称为椭圆的中心。

椭圆还有一些重要的性质,如:离心率、焦距、短半轴等。

二、椭圆的方程在平面直角坐标系中,椭圆的方程有两种形式:标准方程和一般方程。

1. 标准方程:椭圆的标准方程为:$\dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = 1$,其中$a$和$b$分别是椭圆的长半轴和短半轴。

2. 一般方程:椭圆的一般方程为:$Ax^2 + By^2 + Cx + Dy + E = 0$,其中$A,B,C,D,E$为常数。

三、椭圆的基本性质1. 离心率:椭圆的离心率定义为$\varepsilon = \dfrac{c}{a}$,其中$c$为焦点到中心的距离,$a$为长半轴长。

离心率用来衡量椭圆的扁平程度,范围在0到1之间。

2. 焦距:椭圆的焦距定义为$2ae$,其中$a$为长半轴长,$e$为离心率。

3. 短半轴:椭圆的短半轴$b$满足$b = a\sqrt{1 - \varepsilon^2}$,其中$a$为长半轴长,$\varepsilon$为离心率。

四、椭圆的图像特点1. 椭圆的图像是一个闭合曲线,对称于$x$轴和$y$轴,且关于原点对称。

2. 当$a > b$时,椭圆的图像在$x$轴上开口,称为纵椭圆;当$a < b$时,椭圆的图像在$y$轴上开口,称为横椭圆。

3. 当离心率$\varepsilon = 0$时,椭圆退化为一个圆。

五、常用公式及运用1. 椭圆上一点P的坐标$(x, y)$,可由参数方程表示为:$x =a\cos\theta, y = b\sin\theta$。

椭圆的性质及知识点总结

椭圆的性质及知识点总结

椭圆的性质及知识点总结一、椭圆的定义和基本性质1.1 椭圆的定义椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。

设d1和d2分别表示P到F1和F2的距离,则椭圆的定义可以用数学表达式表示为|d1 + d2| = 2a 。

1.2 椭圆的基本性质(1)椭圆对称轴:椭圆有两个对称轴,分别称为长轴和短轴。

长轴的端点是两个焦点F1和F2,短轴与长轴垂直并通过椭圆的中心点。

(2)椭圆的焦点和离心率:椭圆的焦点是定义椭圆的两个定点F1和F2,离心率e是一个表示椭圆形状的参数,e的取值范围是0<e<1。

(3)椭圆的三大定律:椭圆有三个基本定律,分别是:(a)椭圆内到两个焦点的距离之和等于长轴的长度;(b)椭圆内到两个焦点的距离之差等于长轴的长度;(c)椭圆的面积等于πab,其中a和b分别是长轴和短轴的长度。

1.3 椭圆的方程椭圆的标准方程是x^2/a^2 + y^2/b^2 = 1,其中a和b分别是长轴和短轴的长度,椭圆的中心点位于原点(0,0)。

二、椭圆的相关知识点2.1 椭圆的离心率椭圆的离心率e的定义是e=c/a,其中c为焦距,a为长半轴的一半。

离心率越接近于0,椭圆形状越圆;离心率越接近于1,椭圆形状越扁。

2.2 椭圆的参数方程椭圆也可以用参数方程表示,参数方程为:x = a * cosθy = b * sinθ其中θ为参数,a和b分别是长轴和短轴的长度。

2.3 椭圆的焦半径椭圆的焦半径是指从椭圆的焦点到该椭圆上的任意一点P的距离,椭圆上各点的焦半径之和等于椭圆的周长。

2.4 椭圆的切线椭圆上的切线有一个特点:与椭圆相切的切线在切点处与切线的法线垂直。

根据这个特点可以求出椭圆上任意一点处的切线方程。

2.5 椭圆的焦点坐标椭圆的焦点坐标可以通过椭圆的离心率和焦距来求解。

焦点坐标为(±ae, 0),a为长轴的一半,e为椭圆的离心率。

2.6 椭圆的面积椭圆的面积可以通过参数法求解,面积为πab,其中a和b分别是长轴和短轴的长度。

高二椭圆知识点总结

高二椭圆知识点总结

高二椭圆知识点总结椭圆是高中数学中的一个重要内容,是解析几何中的一个基本图形。

在高二阶段,学生需要掌握椭圆的相关性质和定理,理解其在几何和代数方面的应用。

本文将对高二椭圆的知识点进行总结,帮助学生更好地掌握和理解此部分内容。

一、椭圆的定义和基本特性椭圆可定义为平面上到两个固定点F1和F2的距离之和为常数2a的点集。

其中,F1和F2称为椭圆的焦点,两焦点之间的距离为2c,椭圆的离心率定义为e=c/a。

椭圆的长轴和短轴分别是通过两焦点并且垂直于长轴的直线段,长轴的长度为2a,短轴的长度为2b。

椭圆的焦点在坐标系的x轴上,且原点为椭圆的中心。

椭圆的标准方程为 x^2/a^2 + y^2/b^2 = 1,其中a>b>0。

二、椭圆的性质和定理1. 焦半径定理:对于椭圆上的任意一点 P,设其到两个焦点的距离分别为 d1 和 d2,则有 d1 + d2 = 2a。

2. 定义两个焦点到椭圆上任意一点的距离之和为常数2a,我们可以得到椭圆的双离心性质。

3. 推论1:椭圆上的顶点为(±a, 0),端点为(0,±b)。

4. 推论2:椭圆的离心率满足 0 < e < 1,即离心率小于1且大于0。

5. 椭圆的重要性质之一是切线的斜率,切线的斜率等于 y =±(b/a) * sqrt(a^2 - x^2) 在该点的导数。

6. 椭圆的两条焦半径正好和椭圆上的法线垂直。

7. 椭圆的两条直径正交。

8. 椭圆的周长可以近似计算为C ≈ 2π * sqrt((a^2 + b^2) / 2)。

三、椭圆的应用1. 椭圆在几何方面的应用:椭圆的形状可以用来描述行星、卫星、地球轨道等运动的路径。

同时,在建筑设计中,椭圆的美学特性也得到了广泛应用。

2. 椭圆在代数方面的应用:椭圆的标准方程可以用来解决一些代数问题,如求解椭圆与直线的交点、椭圆与其他曲线的交点等等。

3. 椭圆在物理学中的应用:椭圆方程被广泛用于描述天体力学问题中天体的轨道。

高中数学解析几何专题1椭圆方程知识点及椭圆标准方程

高中数学解析几何专题1椭圆方程知识点及椭圆标准方程

椭圆知识点总结一、椭圆的定义:(1)第一定义:平面内与两定点21F F 、距离和等于常数()a 2(大于21F F )的点的轨迹叫做椭圆. (2)第二定义:平面上到定点的距离与到定直线的距离之比为常数e ,当10<<e 时,点的轨迹是椭圆. 椭圆上一点到焦点的距离可以转化为到准线的距离.椭圆定义的表达式:()0222121>>=+F F a a PF PF ;(){}.02,22121>>=+=F F a a PF PFP M 二、椭圆方程 1. 椭圆的标准方程:焦点在x 轴:()012222>>=+b a b y a x ; 焦点在y 轴:()012222>>=+b a b x a y .a 是长半轴长,b 是短半轴长,即焦点在长轴所在的数轴上,且满足.222c b a += 2. ()B A C B A C By Ax ≠=+均不为零,且、、22表示椭圆的条件为:122=+CBy C Ax ,122=+BC y A C x . 所以只有C B A 、、同号,且B A ≠时,方程表示椭圆;当B CA C >时,椭圆的焦点在x 轴上; 当BCA C <时,椭圆的焦点在y 轴上. 三、椭圆的几何性质(以()012222>>=+b a by a x 为例)1. 有限性:b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题.2. 对称性:关于原点、x 轴、y 轴对称。

3. 顶点(椭圆和它的对称轴的交点) 有四个:()()()().,0B ,0B 0,0,2121b b a A a A 、、、--4. 长轴、短轴、焦距:21A A 叫椭圆的长轴,a a A A ,221=是长半轴长; 21B B 叫椭圆的短轴,b b B B ,221=是短半轴长.21F F 叫椭圆的焦距;为()c 2.5. 离心率(1)椭圆焦距与长轴的比ac e =(2)22F OB Rt ∆,2222222OF OB F B +=,即222c b a +=.这是椭圆的特征三角形,并且22cos B OF ∠的值是椭圆的离心率.(3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -=越小,椭圆越扁;当e 接近于0时,c 越接近于0,从而22c a b -=越大,椭圆越接近圆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆的性质及应用一、圆锥曲线圆锥与平面的截线通常有:圆、椭圆、双曲线、抛物线,其中的椭圆、双曲线、抛物线叫圆锥曲线,其中抛物线是圆锥面与平行于某条母线的平面相截而得的曲线,双曲线是圆锥面与平行于轴的平面相截而得的曲线,圆是圆锥面与垂直于轴的平面相截而得的曲线,其他平面截取的则为椭圆。

圆锥曲线有一个共同的定义:即:圆锥曲线是到定点距离与到定直线间距离之比为常值的点之轨迹。

二、椭圆的定义椭圆是平面上到两定点的距离之和为常值的点之轨迹,也可定义为到定点距离与到定直线间距离之比为一个小于1常值的点之轨迹。

椭圆的第一定义:平面内与两定点F 、F'的距离的和等于常数2a (2a>|FF'|)的动点P 的轨迹叫做椭圆。

即:│PF │+│PF'│=2a ,其中两定点F 、F'叫做椭圆的焦点,两焦点的距离│FF'│叫做椭圆的焦距。

若2a=|FF'|,为线段,若2a<|FF'|,不存在。

下面确定椭圆的方程 现设P 的坐标为(x,y ),F 的坐标为(C,0)2a =2a =整理可得:22222222()()a c x a y a a c -+=-定义:222a c b -=则椭圆的方程可表示为: 椭圆在方程上可以写为标准式22221y x a b +=,(a>b>0),这样的椭圆长轴在x 轴上,焦点在X轴时,若22221y xb a+=,(a>b>0),这样的椭圆长轴在y 轴上。

焦点在y 轴时。

有两条线段,a 、b 中较大者为椭圆长半轴长,较短者为短半轴长,当a>b 时,焦点在x 轴上,焦距为: 222a c b -= 椭圆的第二定义由椭圆的第一定义:可到椭圆方程为:2222222221b x a b y b y a x =+⇒=+将222c a b -=代入,可得:22222222222222x a c a c x y c a x a c a y +=++⇒-=-+所以:()()22224222⎪⎭⎫ ⎝⎛±=±+⇒+⎪⎭⎫ ⎝⎛=-+a x a c c x y c a x a c c x y由此可得:()()ac ca x c x y c a x a c c x y=--+⇒+⎪⎭⎫⎝⎛=-+22224222 所以可得椭圆的第二个定义:平面上到定点F 距离与到定直线间距离之比为常数的点的集合(定点F 不在定直线上,该常数为小于1的正数),其中定点F为椭圆的焦点,定直线称为椭圆的准线(该定直线的方程是2axc=)。

常数e是椭圆的离心率。

(01)ce ea=<<注意:准线和焦点对应,左准线对应左焦点,右准线对应右焦点下面我们介绍第二定义的几何说明:可以找到两个球,它们均满足:和圆锥相切于一个圆,与截面相切于一个点。

一个在截面和圆锥顶角之间(即截得的圆锥体的内切球,小球),另一个在截面与圆锥顶角异侧(即圆锥体外切球,大球)。

两个球与截面相切的两个点即是两个焦点,两个球与圆锥相切的两个圆,那两个圆所在的两个平面(它们是平行的)分别与原来的截面的交线即是两条准线。

通过三角函数的知识应该可以证明截得的图形上的点到焦点和到相应准线的比值为定值设P为截面β与圆锥交线上的动点,两个球与截面β的交点为固定点,即为椭圆的焦点,平面β与平面α的交线为固定直线,即为椭圆的准线。

E为大球和截面β的交点,显然PP1为动点到定直线的距离,设大的球心为O,PE和PP2为大球外一点P到大球的两个切线,所以有PE=PP2思考为什么PE一定为切线,(PE为截面β内的直线,而截面β与球仅仅一个交点)椭圆的第三定义:椭圆的其他定义根据椭圆的一条重要性质也就是椭圆上的点与椭圆短轴两端点连线的斜率之积是定值(22ab-)可以得出:平面内与两定点的连线的斜率之积是常数k的动点的轨迹是椭圆,此时k应满足一定的条件,也就是排除斜率不存在的情况。

三、.圆锥曲线的几何性质:1.椭圆的面积是πab。

椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ ,y=bsinθ举例:若R y x ∈,,且62322=+y x ,则y x +的最大值是____,22y x +的最小值是___(答:5,2) 2. 标准形式为22221y x a b +=的椭圆在(x 0,y 0)点的切线为 :00221xx yy ab +=3.椭圆焦半径公式 |PF 1|=a+ex 0 |PF 2|=a-ex 04.直线与椭圆位置关系(1)弦长公式:若直线y kx b =+与圆锥曲线相交于两点A 、B ,且12,x x分别为A 、B 的横坐标,则AB=2121k x x +-,若12,y y 分别为A 、B 的纵坐标,则AB=21211y y k -+,(2)直线l :y=x+1与椭圆交于A ,B 两点,P 为椭圆上一点,求△PAB 面积的最大值.(3)相切、相交、相离的条件6.直线与圆锥曲线的位置关系:(1)相交:0∆>⇔直线与椭圆相交; 0∆>⇒直线与双曲线相交,但直线与双曲线相交不一定有0∆>,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故0∆>是直线与双曲线相交的充分条件,但不是必要条件;0∆>⇒直线与抛物线相交,但直线与抛物线相交不一定有0∆>,当直线与抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,故0∆>也仅是直线与抛物线相交的充分条件,但不是必要条件。

5.范围即|x|≤a ,|y|≤b ,这说明椭圆在直线x=±a 和直线y=±b 所围成的矩形里(图2-18).注意结合图形讲解,并指出描点画图时,就不能取范围以外的点.6.对称性x 轴、y 轴是椭圆的对称轴,原点是椭圆的对称中心即椭圆中心. 7.顶点只须令x=0,得y=±b,点B1(0,-b)、B2(0,b)是椭圆和y轴的两个交点;令y=0,得x=±a,点A1(-a,0)、A2(a,0)是椭圆和x轴的两个交点.强调指出:椭圆有四个顶点A1(-a,0)、A2(a,0)、B1(0,-b)、B2(0,b).8.离心率教师直接给出椭圆的离心率的定义:再讲清离心率e的几何意义:椭圆上一点到焦点的距离和它到准线的距离的比.∵a>c >0,∴ 0<e<1.再结合图形分析离心率的大小对椭圆形状的影响:(2)当e接近0时,c越接近0,从而b越接近a,因此椭圆接近圆;(3)当e=0时,c=0,a=b两焦点重合,椭圆图形就是圆了.课堂练习:1.已知是椭圆上一点,若到椭圆右准线的距离是,则到左焦点的距离为_______.2.若椭圆的离心率为,则它的长半轴长是___________.答案:1. 2.1或23.求下列椭圆的长轴和短轴的长、焦距、离心率、各个顶点和焦点坐标、准线方程:(1)25x2+4y2-100=0,(2)x2+4y2-1=0.4.我国发射的科学实验人造地球卫星的运行轨道是以地球的中心为一个焦点的椭圆,近地点距地面266Km,远地点距地面1826Km,求这颗卫星的轨道方程.的方程.4.答案:顶点(0,2)可能是长轴的端点,也可能是短轴的一个端点,故分两种情况求方程:5.点P 与一定点F(2,0)的距离和它到一定直线x=8的距离的比是1∶2,求点P 的轨迹方程,并说明轨迹是什么图形.三、例题讲解例1:求出椭圆方程13422=+y x 和134)1(22=+-y x 长轴顶点、焦点、准线方程; 解:因为把椭圆13422=+y x 向右平移一个单位即可以得到椭圆134)1(22=+-y x 所以问题1中的所有问题均不变,均为21,1,3,3=====a c e c b a 13422=+y x 长轴顶点、焦点、准线方程分别为:)0,2(±,)0,1(±4±=x ; 134)1(22=+-y x 长轴顶点、焦点、准线方程分别为:)0,12(+±,)0,11(+±14+±=x ; 思考:求出椭圆方程14322=+y x 准线方程例2、设AB 是过椭圆右焦点的弦,那么以AB 为直径的圆必与椭圆的右准线( ) A.相切 B.相离 C.相交 D.相交或相切 分析:如何判断直线与圆的位置关系呢?解:设AB 的中点为M ,则M 即为圆心,直径是|AB|;记椭圆的右焦点为F ,右准线为l ; 过点A 、B 、M 分别作出准线l 的垂线,分别记为d d d ,,21由梯形的中位线可知221d d d +=又由椭圆的第二定义可知e d AF =1||e d BF =2||即)(||||21d d e BF AF +=+ 又22||||2||21d d e BF AF AB +⋅=+=且10<<e 2||AB d >∴故直线与圆相离 例3、已知点M 为椭圆1162522=+y x 的上任意一点,1F 、2F 分别为左右焦点;且)2,1(A ①求||35||1MF MA +的最小值 ②求||||1MF MA +的最小值 ③求||||1MF MA +的最小值 ①分析:应如何把||351MF 表示出来解:左准线1l :3252-=-=c a x ,作1l MD ⊥于点D ,记||MD d = 由第二定义可知:53||1===a c e d MF ⇒ d MF 53||1= ⇒ ||351MF d = 故有||||||||35||1MD MA d MA MF MA +=+=+所以有当A 、M 、D 三点共线时,|MA|+|MD|有最小值:3251+ 即||35||1MF MA +的最小值是328变式1:||5||31MF MA +的最小值; 解:283283)||35||(3||5||311=⨯=+=+MF MA MF MA 变式2:||||531MF MA +的最小值; 解:52832853|)|35|(|53||||5311=⨯=+=+MF MA MF MA②()MA MF MF MA MF MA --=-+=+2211010||||| 其最小值=10-AF 2 课堂练习:已知11216,)3,2(22=+-y x F A 是的右焦点,点M 为椭圆的动点,求MF MA 2+的最小值,并求出此时点M 的坐标。

例4. 已知 , 为椭圆 上的两点, 是椭圆的右焦点.若 ,DAF11MF21的中点到椭圆左准线的距离是 ,试确定椭圆的方程.解:由椭圆方程可知 、两准线间距离为 .设 , 到右准线距离分别为 , ,由椭圆定义有 ,所以 ,则 , 中点到右准线距离为 ,于是 到左准线距离为 , ,所求椭圆方程为.例5.方程|2|)1()1(222++=-+-y x y x 表示什么曲线?解:222|2|)1()1(22=++-+-y x y x 122< ;即方程表示到定点的距离与到定直线的距离的比常数(且该常数小于1)∴方程表示椭圆 例6、(06四川高考15)如图把椭圆的长轴AB 分成8等分,过每个等分点作x 轴的垂线交椭圆的上半部分于721,P P P 七个点,F 是椭圆的一个焦点,则||||||721F P F P F P +++ = 解法一:53==a c e ,设i P 的横坐标为i x ,则i x i 455+-=不妨设其焦点为左焦点 由53||===a c e d F P i 得i i ex a c a x e F P i i i 432)455(535)(||2+=+-⋅+=+=+= 35)721(4372||||||721=++++⨯=+++ F P F P F P解法二:由题意可知1P 和7P 关于y 轴对称,又由椭圆的对称性及其第一定义可知a F P F P 2||||71=+,同理可知a F P F P 2||||62=+,a F P F P 2||||53=+,a F P =||4 故357||||||721==+++a F P F P F P例7.动圆与定圆C1:(x+1)2+y 2=36内切, 与定圆C2:(x-1)2+y 2=4外切,求圆心M 的方程。

相关文档
最新文档