高中数学解析几何知识点总结
高中数学中的解析几何知识点总结

高中数学中的解析几何知识点总结解析几何是数学中的一个重要分支,主要研究几何图形在坐标系中的性质和关系。
在高中数学中,解析几何是一个重要的学习内容。
本文将对高中数学中的解析几何知识点进行总结,帮助读者更好地理解和掌握相关知识。
一、平面直角坐标系平面直角坐标系是解析几何的基础,用来描述平面上的点和直线。
平面直角坐标系由x轴和y轴组成,它们相交于原点O。
在平面直角坐标系中,每个点都可以用有序数对(x, y)表示,其中x是该点在x轴上的坐标,y是该点在y轴上的坐标。
二、点的位置关系在平面直角坐标系中,可以根据点的坐标确定其位置关系。
1. 同一直线上的点:设A(x₁, y₁)、B(x₂, y₂)和C(x₃, y₃)是平面直角坐标系中的三个点,如果它们满足斜率相等的条件,即 (y₂ - y₁) / (x₂ - x₁) = (y₃ - y₁) / (x₃ - x₁)那么点A、B和C在同一直线上。
2. 垂直关系:设AB和CD是平面直角坐标系中两条直线,如果它们的斜率互为负倒数,即(y₂ - y₁) / (x₂ - x₁) = -1 / ((y₄ - y₃) / (x₄ - x₃))那么直线AB和CD垂直。
3. 平行关系:设AB和CD是平面直角坐标系中两条直线,如果它们的斜率相等,即(y₂ - y₁) / (x₂ - x₁) = (y₄ - y₃) / (x₄ - x₃)那么直线AB和CD平行。
三、直线的方程在解析几何中,直线可以用不同的形式表示其方程。
常见的有点斜式、斜截式和一般式。
1. 点斜式:设直线L过坐标系中的点A(x₁, y₁)且斜率为k,那么直线L的点斜式方程为y - y₁ = k(x - x₁)2. 斜截式:设直线L与y轴相交于点B,且直线L的斜率为k,那么直线L的斜截式方程为y = kx + b3. 一般式:设直线L的方程为Ax + By + C = 0,其中A、B、C为常数且A和B不同时为0,那么该直线L的一般式方程为Ax + By + C = 0四、直线的性质在解析几何中,对于两条直线的位置关系,有以下几个重要的性质。
高中数学解析几何知识点总结

高中数学解析几何知识点总结高中数学解析几何知识点总结笔记空间两条直线只有三种位置关系:平行、相交、异面。
按是否共面可分为两类:(1)共面:平行、相交(2)异面:异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:范围为(0°,90°)esp。
空间向量法。
两异面直线间距离:公垂线段(有且只有一条)esp。
空间向量法。
若从有无公共点的角度看可分为两类:(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面。
直线和平面的位置关系:直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行。
①直线在平面内——有无数个公共点②直线和平面相交——有且只有一个公共点直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。
空间向量法(找平面的法向量)规定:a、直线与平面垂直时,所成的角为直角;b、直线与平面平行或在平面内,所成的角为0°角。
由此得直线和平面所成角的取值范围为[0°,90°]。
最小角定理:斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角。
三垂线定理及逆定理:如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直。
直线和平面垂直直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直。
直线a叫做平面的垂线,平面叫做直线a 的垂面。
直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。
直线和平面平行——没有公共点直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。
直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
高中数学解析几何知识点总结

高中数学解析几何知识点总结一、平面解析几何在平面解析几何中,我们主要研究平面上的点、直线、圆、曲线等几何对象。
平面解析几何的基本思想是用代数方法研究几何问题,通过建立坐标系和引入坐标变量的方法,将几何问题转化为代数问题进行研究。
在平面解析几何中,有一些重要的知识点需要掌握,下面我们将逐一进行讲解。
1. 坐标系坐标系是平面解析几何的基本工具,它通过数轴的方式将平面上的点和几何对象进行了定位。
常见的坐标系有直角坐标系和极坐标系两种。
直角坐标系是由水平轴和垂直轴组成的,水平轴称为x轴,垂直轴称为y轴。
平面上的每个点通过它的横坐标x和纵坐标y来确定,就可以唯一确定一个点的位置。
例如,点A(x,y)表示了点A在坐标系中的位置。
极坐标系是以原点O和一条射线作为坐标轴,用点到原点的距离r和与射线的夹角θ来表示点的位置。
在极坐标系中,点的坐标表示为(r,θ)。
2. 直线的方程在直角坐标系中,直线可以用方程y=ax+b或者y=kx+b来表示,其中a、b、k为常数。
当a≠0时,直线的方程为y=ax+b,a称为直线的斜率,b称为直线的截距;当a=0时,直线的方程为y=b,其斜率为0,直线与y轴平行。
另外,直线还可以用斜截式、截距式、两点式等来表示,学生需要灵活掌握不同表示方法,并能够相互转化。
3. 圆的方程在平面解析几何中,圆是一个重要的几何对象,它的方程可以用不同的形式表示。
在直角坐标系中,圆的方程一般写为(x-a)²+(y-b)²=r²,其中(a,b)为圆心的坐标,r为圆的半径。
4. 曲线的方程除了直线和圆之外,学生还需要学习其他曲线的方程,如抛物线、椭圆、双曲线等。
这些曲线都有各自的方程形式,在解析几何中有着重要的应用。
5. 解析几何的基本性质和定理在学习平面解析几何时,学生还需要掌握一些基本的性质和定理,如两点间的距离公式、直线的斜率公式、直线与圆的位置关系、圆与圆的位置关系等。
高中数学解析几何知识点总结大全

高中数学解析几何知识点总结大全解析几何是高中数学的重要分支之一,通过运用代数和几何的方法来研究几何图形的性质和变换。
下面是高中数学解析几何的知识点总结,供参考:一、直线与平面的位置关系1.直线与平面的交点个数:直线和平面可以有0个、1个或无数个交点。
2.平面与平面的位置关系:两个平面可以相交、平行或重合。
二、向量及其代数运算1.向量的概念:向量是具有大小和方向的量。
2.向量的表示方法:向量可以用有向线段或坐标表示。
3.向量的加法:向量的加法满足平行四边形法则。
4.向量的数乘:向量的数乘是一个向量与一个实数的乘积。
5.向量的数量积:向量的数量积是两个向量之间的乘积,结果是一个实数。
6.向量的乘法运算法则:分配律、结合律和交换律。
三、直线及其方程1.平面直角坐标系:平面直角坐标系包括坐标轴、坐标原点和相应的正方向。
2.直线的方程:直线可以用一般式、点斜式、两点式或截距式表示。
3.直线的性质:平行、垂直、斜率、倾斜角等。
4.直线的位置关系:两条直线可以相交、平行或重合。
四、曲线及其方程1.圆的方程:圆可以用标准方程、一般方程或截距方程表示。
2.椭圆、双曲线和抛物线的方程:椭圆、双曲线和抛物线可以用一般式表示。
3.曲线的性质:焦点、准线、离心率等概念的理解。
4.曲线的位置关系:两条曲线可以相交、相切或没有交点。
五、空间直线及其方程1.空间直线的方程:空间直线可以用对称式、参数方程或直角坐标式表示。
2.空间直线的位置关系:两条空间直线可以相交、平行或重合。
3.空间直线与平面的位置关系:空间直线可以与平面相交、平行或测度为零。
六、空间曲线及其方程1.空间曲线的方程:空间曲线可以用参数方程或直角坐标式表示。
2.空间曲线与平面的位置关系:空间曲线可以与平面相交、触及或完全包含。
七、立体图形1.点、线、面、体的概念:点是没有长度、宽度和高度的,线是一系列相连的点,面是一系列相连的线,体是一系列相连的面。
2.立体图形的表面积:立方体、长方体、正方体、球体、圆柱体、圆锥体和棱锥体的表面积计算公式。
高中数学解析几何知识点归纳总结

高中数学解析几何知识点归纳总结
1. 直线与平面的位置关系
- 直线与平面的交点可以有三种情况:交于一点、平行或重合。
- 直线与平面的夹角可以分为三种情况:直线在平面内、直线
与平面垂直或直线在平面外。
- 两个平面的位置关系可以分为三种情况:相交于一直线、平
行或重合。
2. 平面的方程
- 平面的方程有两种形式:点法式和一般式。
- 点法式方程:通过平面上一点和法向量来确定平面方程。
- 一般式方程:由平面的法向量和一个常数项确定平面方程。
3. 直线的方程
- 直线的方程也有两种形式:点向式和一般式。
- 点向式方程:通过直线上一点和方向向量来确定直线方程。
- 一般式方程:由直线的法向量和一个常数项确定直线方程。
4. 平面和直线的距离
- 平面和直线的距离可以使用点到平面的距离公式或点到直线
的距离公式。
5. 直线与直线的位置关系
- 直线与直线的位置关系可以分为三种情况:相交于一点、平
行或重合。
6. 空间中的球面与圆
- 空间中的球面方程与二维平面上的圆方程类似。
- 空间中的球面与圆的方程可以通过中心点和半径来确定。
7. 二次曲线
- 二次曲线包括椭圆、双曲线和抛物线。
- 二次曲线的方程可以通过焦点、直径等要素来确定。
以上是高中数学解析几何的一些主要知识点。
通过研究和掌握
这些知识,你将能够更好地理解和应用解析几何的相关概念和方法。
高中数学解析几何知识点总结

高中数学解析几何知识点总结1.直线方程直线和圆的方程是解析几何中的重要知识点之一。
在直线方程的研究中,我们需要掌握以下几个要点:1.1 直线的倾斜角直线的倾斜角是指一条直线向上的方向与x轴正方向所成的最小正角。
当直线与x轴平行或重合时,其倾斜角为0度或180度。
需要注意的是,当直线垂直于x轴时,其斜率不存在。
1.2 直线方程的几种形式直线方程可以表示为点斜式、截距式、两点式和斜截式。
其中,当直线经过两点时,即在x轴和y轴上的截距分别为a和b(a≠0,b≠0)时,直线方程为y = (-a/b)x + 1.1.3 直线系直线系是指斜截式方程y = kx + b中的k和b均为确定的数值时,所表示的一组直线。
当b为定值,k变化时,它们表示过定点(0,b)的直线束;当k为定值,b变化时,它们表示一组平行直线。
2.平行和垂直的直线在解析几何中,平行和垂直的直线是常见的情况。
判断两条直线是否平行或垂直,需要注意以下几点:2.1 两条直线平行的条件两条直线平行的条件是:它们是两条不重合的直线,且在它们的斜率都存在的前提下,斜率相等。
需要特别注意的是,抽掉或忽视其中任一个“前提”都会导致结论的错误。
2.2 两条直线垂直的条件两条直线垂直的条件是:它们的斜率之积为-1.同样需要注意的是,在判断两条直线是否垂直时,需要确保它们的斜率都存在。
以上是解析几何中直线方程和平行、垂直直线的基本知识点总结。
掌握这些知识点,对于研究和理解解析几何的其他内容将会有很大的帮助。
本文主要介绍了直线和圆的方程,其中包括直线的平行和垂直方程,过定点的直线方程以及过两条直线交点的直线方程等内容。
同时还介绍了关于点和直线对称的性质,以及圆的标准方程和特例。
下面对每个部分进行小幅度的改写和格式修正。
一、直线方程1.直线的平行和垂直方程直线的平行和垂直方程是很重要的概念,它们可以帮助我们更好地理解直线的性质和特点。
其中,与直线 Ax+By+C=0平行的直线方程是 Ax+By+m=0(m为实数,且C≠m);与直线Ax+By+C=0 垂直的直线方程是Bx-Ay+m=0(m为实数)。
高中数学解析几何总结

高中数学解析几何总结解析几何是数学中的一个重要分支,它是研究几何对象的位置、相互关系和性质的一种方法。
高中数学解析几何主要包括二维解析几何和三维解析几何两个方面。
下面我将从坐标系、直线、圆、曲线以及空间几何等方面,对高中数学解析几何进行全面总结。
一、坐标系坐标系是解析几何的基础。
平面直角坐标系由两个数轴(x轴和y轴)以及它们的交点(原点)组成。
空间直角坐标系由三个数轴(x轴、y轴和z轴)以及它们的交点(原点)组成。
使用坐标系可以通过坐标来表示几何对象的位置。
二、直线直线是解析几何中最基本的图形,也是其他图形的基础。
直线的一般方程为Ax+By+C=0,其中A、B和C是常数。
直线的斜率用k表示,斜截式方程为y=kx+b,其中k是斜率,b是截距。
两直线的位置关系可以通过它们的方程和斜率来确定。
三、圆圆是平面解析几何中的一个重要图形。
圆的一般方程为(x-a)²+(y-b)²=r²,其中(a,b)是圆心坐标,r是半径。
利用圆的方程,可以求解圆的相关性质,例如圆心、半径、切线方程以及与其他图形的位置关系。
四、曲线曲线是解析几何的又一个重要内容。
常见的曲线有抛物线、椭圆、双曲线等。
这些曲线可以通过几何性质或代数方程来描述。
例如,抛物线的一般方程为y=ax²+bx+c,其中a、b和c是常数,a≠0。
五、空间几何空间几何是解析几何的三维扩展。
在空间几何中,坐标系由三个轴(x轴、y轴和z轴)以及它们的交点(原点)构成。
与平面几何相似,利用坐标系可以表示一点、一直线以及一平面在空间中的位置。
此外,空间几何还包括点、直线、平面之间的位置关系以及空间几何体的性质等。
六、向量向量是解析几何中一个重要的工具。
向量具有大小和方向。
向量的表示可以使用它的起点和终点的坐标表示,也可以使用其分量表示。
向量的加法、减法、数量积和向量积等运算可以通过坐标的运算来进行。
向量的一些性质和定理,如平行向量的性质、垂直向量的性质以及柯西-斯瓦尔茨不等式等,也是解析几何中需要掌握的内容。
高中数学解析几何知识点总结

高中数学解析几何知识点总结直线:倾斜角与斜率:定义:直线与x轴正向所成的角称为直线的倾斜角,其正切值即为直线的斜率。
范围:倾斜角的范围为0°到180°。
特殊情况:当直线垂直于x轴时,斜率不存在。
直线方程:点斜式:已知直线上一点P(x0,y0)及直线的斜率k,则直线方程为y-y0=k(x-x0)。
注意,当斜率不存在时,此形式不适用。
斜截式:已知直线在y 轴上的截距b和斜率k,则直线方程为y=kx+b。
圆:圆的标准方程:描述圆的基本形式。
圆心与半径:定义圆的中心和大小。
切线、弧长、扇形、弓形:描述圆上或圆周围的特定部分。
二次曲线:椭圆:定义、标准方程、焦点、准线等性质。
双曲线:定义、标准方程、焦点、准线等性质。
抛物线:定义、标准方程、焦点、准线等性质。
向量:向量的运算:包括向量的加减、数量积、向量积等。
向量的性质:如向量的模、方向余弦等。
向量的几何应用:平面向量:涉及平面上点的坐标表示、点和点之间的距离、线段的中点、向量共线与垂直、三角形的重心、内心、外心、垂心等概念。
空间向量:涉及空间向量的坐标表示、点和点之间的距离、平面的方程、直线与平面的位置关系、平面与平面的位置关系、球与球的位置关系等概念。
空间中的直线与平面:直线的参数方程和对称方程:描述直线在三维空间中的位置和方向。
平面的一般式和截距式方程:描述平面在三维空间中的位置和方向。
以上仅为高中数学解析几何部分的主要知识点概述,具体内容可能因教材版本和学校教学计划而有所差异。
在实际学习过程中,还需结合具体教材和课堂讲解来深入理解各个知识点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学解析几何知识点总结IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】§07. 直线和圆的方程 知识要点一、直线方程.1. 直线的倾斜角:一条直线向上的方向与x 轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x 轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是)0(1800παα ≤≤.注:①当 90=α或12x x =时,直线l 垂直于x 轴,它的斜率不存在.②每一条直线都存在惟一的倾斜角,除与x 轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定. 2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式.特别地,当直线经过两点),0(),0,(b a ,即直线在x 轴,y 轴上的截距分别为)0,0(,≠≠b a b a 时,直线方程是:1=+by ax .注:若232--=x y 是一直线的方程,则这条直线的方程是232--=x y ,但若)0(232≥--=x x y 则不是这条线. 附:直线系:对于直线的斜截式方程b kx y +=,当b k ,均为确定的数值时,它表示一条确定的直线,如果b k ,变化时,对应的直线也会变化.①当b 为定植,k 变化时,它们表示过定点(0,b )的直线束.②当k 为定值,b 变化时,它们表示一组平行直线. 3. ⑴两条直线平行:1l ∥212k k l =⇔两条直线平行的条件是:①1l 和2l 是两条不重合的直线. ②在1l 和2l 的斜率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.(一般的结论是:对于两条直线21,l l ,它们在y 轴上的纵截距是21,b b ,则1l ∥212k k l =⇔,且21b b ≠或21,l l 的斜率均不存在,即2121A B B A =是平行的必要不充分条件,且21C C ≠)推论:如果两条直线21,l l 的倾斜角为21,αα则1l ∥212αα=⇔l . ⑵两条直线垂直:两条直线垂直的条件:①设两条直线1l 和2l 的斜率分别为1k 和2k ,则有12121-=⇔⊥k k l l 这里的前提是21,l l 的斜率都存在. ②0121=⇔⊥k l l ,且2l 的斜率不存在或02=k ,且1l 的斜率不存在. (即01221=+B A B A 是垂直的充要条件) 4. 直线的交角:⑴直线1l 到2l 的角(方向角);直线1l 到2l 的角,是指直线1l 绕交点依逆时针方向旋转到与2l 重合时所转动的角θ,它的范围是),0(π,当 90≠θ时21121tan k k k k +-=θ. ⑵两条相交直线1l 与2l 的夹角:两条相交直线1l 与2l 的夹角,是指由1l 与2l 相交所成的四个角中最小的正角θ,又称为1l 和2l 所成的角,它的取值范围是 ⎝⎛⎥⎦⎤2,0π,当90≠θ,则有21121tan k k k k +-=θ.5. 过两直线⎩⎨⎧=++=++0:0:22221111C y B x A l C y B x A l 的交点的直线系方程λλ(0)(222111=+++++C y B x A C y B x A 为参数,0222=++C y B x A 不包括在内) 6. 点到直线的距离:⑴点到直线的距离公式:设点),(00y x P ,直线P C By Ax l ,0:=++到l 的距离为d ,则有2200BA C By Ax d +++=.注:1. 两点P 1(x 1,y 1)、P 2(x 2,y 2)的距离公式:21221221)()(||y y x x P P -+-=.特例:点P(x,y)到原点O 的距离:||OP = 2. 定比分点坐标分式。
若点P(x,y)分有向线段1212PP PP PP λλ=所成的比为即,其中P 1(x 1,y 1),P 2(x 2,y 2).则 λλλλ++=++=1,12121y y y x x x特例,中点坐标公式;重要结论,三角形重心坐标公式。
3. 直线的倾斜角(0°≤α<180°)、斜率:αtan =k4. 过两点1212222111),(),,(x x y y k y x P y x P --=的直线的斜率公式:.12()x x ≠当2121,y y x x ≠=(即直线和x 轴垂直)时,直线的倾斜角α=︒90,没有斜率⑵两条平行线间的距离公式:设两条平行直线)(0:,0:212211C C C By Ax l C By Ax l ≠=++=++,它们之间的距离为d ,则有2221BA C C d +-=.注;直线系方程1. 与直线:A x +B y +C= 0平行的直线系方程是:A x +B y +m =0.( m R, C ≠m ).2. 与直线:A x +B y +C= 0垂直的直线系方程是:B x -A y +m =0.( m R)3. 过定点(x 1,y 1)的直线系方程是: A(x -x 1)+B(y -y 1)=0 (A,B 不全为0)4. 过直线l 1、l 2交点的直线系方程:(A 1x +B 1y +C 1)+λ( A 2x +B 2y +C 2)=0 (λ?R ) 注:该直线系不含l 2.7. 关于点对称和关于某直线对称:⑴关于点对称的两条直线一定是平行直线,且这个点到两直线的距离相等.⑵关于某直线对称的两条直线性质:若两条直线平行,则对称直线也平行,且两直线到对称直线距离相等.若两条直线不平行,则对称直线必过两条直线的交点,且对称直线为两直线夹角的角平分线.⑶点关于某一条直线对称,用中点表示两对称点,则中点在对称直线上(方程①),过两对称点的直线方程与对称直线方程垂直(方程②)①②可解得所求对称点. 注:①曲线、直线关于一直线(b x y +±=)对称的解法:y 换x ,x 换y. 例:曲线f (x ,y )=0关于直线y =x –2对称曲线方程是f (y +2 ,x –2)=0.②曲线C: f (x ,y )=0关于点(a ,b)的对称曲线方程是f (a – x , 2b – y )=0. 二、圆的方程.1. ⑴曲线与方程:在直角坐标系中,如果某曲线C 上的 与一个二元方程0),(=y x f 的实数建立了如下关系:①曲线上的点的坐标都是这个方程的解. ②以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线方程;这条曲线叫做方程的曲线(图形).⑵曲线和方程的关系,实质上是曲线上任一点),(y x M 其坐标与方程0),(=y x f 的一种关系,曲线上任一点),(y x 是方程0),(=y x f 的解;反过来,满足方程0),(=y x f 的解所对应的点是曲线上的点.注:如果曲线C 的方程是f(x ,y)=0,那么点P 0(x 0 ,y)线C 上的充要条件是f(x 0 ,y 0)=0 2. 圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-. 特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+.注:特殊圆的方程:①与x 轴相切的圆方程222)()(b b y a x =±+- )],(),(,[b a b a b r -=或圆心 ②与y 轴相切的圆方程222)()(a b y a x =-+± )],(),(,[b a b a a r -=或圆心③与x 轴y 轴都相切的圆方程222)()(a a y a x =±+± )],(,[a a a r ±±=圆心 3. 圆的一般方程:022=++++F Ey Dx y x .当0422F E D -+时,方程表示一个圆,其中圆心⎪⎭⎫⎝⎛--2,2E D C ,半径2422FE D r -+=.当0422=-+F E D 时,方程表示一个点⎪⎭⎫⎝⎛--2,2E D . 当0422F E D -+时,方程无图形(称虚圆). 注:①圆的参数方程:⎩⎨⎧+=+=θθsin cos r b y r a x (θ为参数).②方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是:0=B 且0≠=C A 且0422 AF E D -+.③圆的直径或方程:已知0))(())((),(),(21212211=--+--⇒y y y y x x x x y x B y x A (用向量可征).4. 点和圆的位置关系:给定点),(00y x M 及圆222)()(:r b y a x C =-+-. ①M 在圆C 内22020)()(r b y a x -+-⇔②M 在圆C 上22020)()r b y a x =-+-⇔( ③M 在圆C 外22020)()(r b y a x -+-⇔ 5. 直线和圆的位置关系:设圆圆C :)0()()(222 r r b y a x =-+-; 直线l :)0(022≠+=++B A C By Ax ; 圆心),(b a C 到直线l 的距离22BA C Bb Aa d +++=.①r d =时,l 与C 相切;附:若两圆相切,则⇒⎪⎩⎪⎨⎧=++++=++++02222211122F y E x D y x F y E x D y x 相减为公切线方程.②r d 时,l 与C 相交;附:公共弦方程:设 有两个交点,则其公共弦方程为0)()()(212121=-+-+-F F y E E x D D . ③r d 时,l 与C 相离.附:若两圆相离,则⇒⎪⎩⎪⎨⎧=++++=++++002222211122F y E x D y x F y E x D y x 相减为圆心21O O 的连线的中与线方程.由代数特征判断:方程组⎪⎩⎪⎨⎧=++=-+-0)()(222C Bx Ax r b y a x 用代入法,得关于x (或y )的一元二次方程,其判别式为∆,则:l ⇔=∆0与C 相切; l ⇔∆0 与C 相交; l ⇔∆0 与C 相离.注:若两圆为同心圆则011122=++++F y E x D y x ,022222=++++F y E x D y x 相减,不表示直线.6. 圆的切线方程:圆222r y x =+的斜率为k 的切线方程是r k kx y 21+±=过圆022=++++F Ey Dx y x上一点),(00y x P 的切线方程为:0220000=++++++F y y E x x Dy y x x . 0:0:222222111221=++++=++++F y E x D y x C F y E x D y x C①一般方程若点(x 0 ,y 0)在圆上,则(x – a)(x 0 – a)+(y – b)(y 0 – b)=R 2. 特别地,过圆222ry x =+上一点),(00y x P 的切线方程为200r y y x x =+.②若点(x 0 ,y 0)不在圆上,圆心为(a,b)则⎪⎩⎪⎨⎧+---=-=-1)()(2110101R x a k y b R x x k y y ,联立求出⇒k7. 求切点弦方程:方法是构造图,则切点弦方程即转化为公共弦方程. 如图:ABCD 四类共圆. 已知O Θ的方程022=++++F Ey Dx y x …① 又以ABCD 为圆为方程为2))(())((k b x y y a x x x A A =--+--…②4)()(222b y a x R A A -+-=…③,所以BC 的方程即③代②,①②相切即为所求. 三、曲线和方程1.曲线与方程:在直角坐标系中,如果曲线C 和方程f(x,y)=0的实数解建立了如下的关系:1) 曲线C 上的点的坐标都是方程f(x,y)=0的解(纯粹性);2) 方程f(x,y)=0的解为坐标的点都在曲线C 上(完备性)。