7第五章习题课

合集下载

习题课专题教育课件公开课获奖课件省赛课一等奖课件

习题课专题教育课件公开课获奖课件省赛课一等奖课件
n 出现的概率, E( X ) 0.5, D( X ) 1 .
4n
20/35
由切比雪夫不等式
P{0.4 X 0.6} P{ X 0.5 0.1}
D( X )
1
1
0.12
1
0.9
0.01 4n
故 1 0.1,取n 1000 250.
0.04n
4
21/35
用正态逼近
P {0.4
解:设 5000 只零件的重量分别为 Xk , k 1,2,5000,
5000
E( Xk ) 0.5kg, D( Xk ) 0.12(kg)2,记 X Xk .
k 1
28/35
由独立同分布的中心极限定理
5000
Z
Xk
k 1
0.5 5000
X
2500近似服从标准正
0.1 5000
26/35

P V
1920
P V
1600 400
1920 1600
400
1
P
V
1600 400
0.8
1
(0.8)
0.2119.
即 16 只元件的寿命的总和大于 1920 小时的概率为
0.2119.
27/35
习题 5-4 设各零件的重量都是随机变量,它们相互 独立且服从相同的分布,其数学期望为 0.5kg,均方 差为 0.1kg ,问 5000 只零件的总重量超过 2510kg 的 概率是多少?
14/35
P(6800 X 7200) P( X E( X ) 200)
D( X )
np(1 p)
1 (200)2 1 (200)2
10000 0.7 0.3

第五章不定积分习题课

第五章不定积分习题课
(21)
(15) cot xdx lnsin x C
(22)
(16) sec xdx ln(sec x tan x) C

x2
1
a 2 dx

1 2a
ln
x x

a a

C

a2
1
x 2 dx

1 2a
ln
a a

x x

C
(17)
csc xdx ln(csc x cot x) C (23)
第五章 不定积分
第15页
(2) 三角函数有理式的积分
定义 由三角函数和常数经过有限次四则运算
构成的函数称之.一般记为 R(sin x,cos x)
令u tan x 2
sin
x

1
2u u2
x 2arctan u
cos
x

1 1

u2 u2
2 dx 1 u2 du

R(sin
第五章 不定积分
第1页
第五章 不定积分 习题课
嘉兴学院
30 May 2019
第五章 不定积分
第2页
一、主要内容
原函数
不定积分

择 u
分部 积分法
积分法
直接 积分法
基 本


效 方 法
第一换元法 第二换元法
几种特殊类型 函数的积分
分 表
嘉兴学院
30 May 2019
第五章 不定积分
第3页
1、原函数
嘉兴学院
30 May 2019
第五章 不定积分

北师大版(2024)七年级数学上册 第五章 习题课件 第9课 一元一次方程的应用(3)——行程问题

北师大版(2024)七年级数学上册 第五章  习题课件 第9课 一元一次方程的应用(3)——行程问题
答:李明花了60 min登山.
4. (BS七上P151改编)一天早晨,乐乐以80米/分的速度 上学,5分钟后乐乐的爸爸发现他忘了带数学书,爸 爸立即骑自行车以280米/分的速度去追乐乐,并且 在途中追上了他,请解决以下问题: (1)爸爸追上乐乐用了多长时间?
解:(1)设爸爸追上乐乐用了x分钟,则此时乐乐出门
(x+5)分钟.依题意,得280x=80(x+5),解得x=2.
答:爸爸追上乐乐用了2分钟.
(2) 爸爸追上乐乐后,乐乐搭爸爸的自行车回到学校,
结果提前了10分钟到校,若爸爸搭上乐乐后的骑行
速度为240米/分,求乐乐家离学校有多远. 解:(2)设爸爸搭上乐乐到学校共骑行了s米. 依题意,得 s s 10 ,解得s=1 200.
3 答:11张用A方法裁剪,8张用B方法裁剪,可使裁剪出 的侧面和底面恰好全部用完,能做20个盒子.
300 m的隧道需要20 s的时间.隧道的顶上有一盏灯,
垂直向下发光,灯泡照在火车上的时间是10 s. 求这
列火车的长度. 解:设这列火车的长度为x m.依题意,得 300 x x ,解得x=300.
20 10
答:这列火车的长度为300 m.
7.用长方形硬纸板做三棱柱盒子,每个盒子由3个矩形 侧面和2个正三角形底面组成,硬纸板可以按如图两 种方法进行裁剪.(裁剪后边角料不再利用)
第五章 一元一次方程 第9课 一元一次方程的应用(3)——
行程问题
1. 甲、乙两人从相距18千米的两地同时出发相向而行, 若甲的平均速度是4千米/时,乙的平均速度是5千米/ 时,则两人骑__2__小时后相遇.
2. 一辆慢车的速度为80千米/时,一辆快车的速度为100 千米/时,慢车在前,快车在后,两车之间的距离为 60千米,快车几小时追上慢车?

高等数学 第五章定积分习题课

高等数学 第五章定积分习题课


b
a
f ( x )dx ≤ ∫ g ( x )dx
a
b
⑧估值定理:设M 和 m 分别是函数 f ( x )在区间[a, b ]上的 估值定理: 最大值和最小值, 最大值和最小值,则
m (b − a ) ≤ ∫ f ( x )dx ≤ M (b − a )
a b
上连续, ⑨定积分中值定理:如果函数 f ( x ) 在闭区间[a, b ] 上连续 定积分中值定理: 则至少存在一点ξ ∈(a , b) ,使下式成立: 使下式成立: 使下式成立
b b b
b
a
b
b

b
a
f ( x )dx = ∫ f ( x )dx + ∫ f ( x )dx
a c
c
b
⑤区间长: ∫ 1dx = b − a 区间长:
a
b
保号性: ⑥保号性:如果在区间[a, b ]上, f ( x ) ≥ 0 ,则∫ a f ( x )dx ≥ 0
b
⑦单调性:如果在区间 [a, b ] 上, f ( x ) ≤ g ( x ) 则 单调性:
b

b
a
f ( x )dx = lim ∫ f ( x )dx −
t →b a
t
设 c ( a < c < b ) 为 f ( x ) 的瑕点,则有 的瑕点,

b a
f ( x )dx = ∫ f ( x )dx + ∫ f ( x )dx
a c
c
b
= lim ∫ f ( x )dx + lim ∫ f ( x )dx − +

b
a
f ′( x )dx = [ f ( x )] a = f (b) − f (a ) = a − b

实际问题与一元一次方程第4课时方案选择问题 2024-2025学年七年级数学上册(人教版2024)

实际问题与一元一次方程第4课时方案选择问题 2024-2025学年七年级数学上册(人教版2024)

解:由题意可知,实验开始 21 min 时的温度是
25 10
10 +
21 73(℃)
5
时间/min
0
5
10
15
20
25
温度/℃
10
25
40
55
70
85
(2)实验进行多长时间的温度是 34 ℃?
设实验开始 x min 后的温度是 34 ℃.
25 10
根据题意,得 10 +
x = 34. 解得 x = 8.
人均定额是多少件?
解:设此月人均定额是 x 件.
4 x 20 6 x 20

根据题意,得
.
4
5
解得 x = 45.
答:此月人均定额是 45 件.
(2)如果甲组工人此月人均实际完成的工作量比乙组的多 2 件,
那么此月人均定额是多少件?
设此月人均定额是 y 件.
根据题意,得 4 y 20 6 y 20 2 .
求每箱装多少个产品.
解:设每箱装 x 个产品.
8 x 4 11 x 1
根据题意,得

1 .
5
7
解得 x = 12.
答:每箱装 12 个产品.
7. 下表中记录了一次实验中时间和温度的数据,假设温度的
变化是均匀的.
时间/min
0
5
10
15
20
25
温度/℃
10
25
40
55
70
85
(1)实验进行 21 min 时的温度是多少?
选定一种空调后,售价是确定的,电费则与使用的时间有关.
设空调的使用年数是 t,

SX-7-010第五章平行线的判定和性质习题课

SX-7-010第五章平行线的判定和性质习题课
三、解答题
16.已知:如图,∠1=∠2,且BD平分∠ABC.
求证:AB∥CD.
17.已知:如图,AD是一条直线,∠1=65°,∠2=115°.求证:BE∥CF.
18.已知:如图,∠1=∠2,∠3=100°,∠B=80°.求证:EF∥CD.
19.已知:如图,FA⊥AC,EB⊥AC,垂足分别为A、B,且∠BED+∠D=180°.
求证:AF∥CD.
20如图,已知∠AMB=∠EBF,∠BCN=∠BDE,求证:∠CAF=∠AFD.
21)如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角A是120°,第二次拐的角B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,问∠C是多少度?说明你的理由.
22.(1)如图,若AB∥DE,∠B=135°,∠D=145°,你能求出∠C的度数吗?
A.AD∥BCB.AB∥CDC.∠3=∠4 D.∠A=∠C
6.如图1,a∥b,a、b被c所截,得到∠1=∠2的依据是()
A.两直线平行,同位角相等
B.两直线平行,内错角相等
C.同位角相等,两直线平行
D.内错角相等,两直线平行
7.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则直线c、d的位置关系为()
C.∠ACB+∠BAD=180°D.∠ACB=∠BAD
3.如图,直线a、b被直线c所截,现给出下列四个条件:
(1)∠1=∠2,(2)∠3=∠6,(3)∠4+∠7=180°,(4)∠5+∠8=180°,
其中能判定a∥b的条件是_________[ ]
A.(1)(3) B.(2)(4)
C.(1)(3)(4) D.(1)(2)(3)(4)

自动控制原理及其应用课后习题第五章答案

自动控制原理及其应用课后习题第五章答案
40 20 0 -20 -20dB/dec 10 1 2ωc -40dB/dec -60dB/dec 40 -40dB/dec
ω
20 0 -20
10 ωc
1
2 -20dB/dec
ω
-60dB/dec
10 ≈1 ω2 0.5 c
ω c=4.5
5 ≈1 ω c=7.9 ω 0.01 c3
第五章习题课 (5-17)
-20
低频段曲线: 低频段曲线: 20lgK=20dB φ (ω ) 0 ω1=5 ω2=15 -90 相频特性曲线: 相频特性曲线: -180 -270 φ ( )= -90o ω ω=0 φ ( )= -270o ω ω=∞
-60dB/dec
ω
第五章习题课 (5-2)
10(s+0.2) 1.33(5s+1) (5) G(s)= s2(s+0.1)(s+15)=s2(10s+1)(0.67s+1) 解: 低频段曲线: 低频段曲线: 20lgK=2.5dB
第五章习题课 (5-7)
5-7 已知奈氏曲线,p为不稳定极点个数, 已知奈氏曲线, 为不稳定极点个数 为不稳定极点个数, υ为积分环节个数,试判别系统稳定性。 为积分环节个数,试判别系统稳定性。 Im υ=2 (b) p=0 (a) p=0 Im υ=0
ω=0 Re -1 0 ω=0+ -1 0 ω=0 Re
第五章习题课 (5-1)
5-1(1) 已知单位负反馈系统开环传递函数, 已知单位负反馈系统开环传递函数, 当输入信号r(t)=sin(t+30o),试求系统的稳态 当输入信号 , 输出。 输出。 10 G(s)=(s+1) 10 解: φ(s)= (s+11) 10 = 10 = 10 ω A( )= 2 2 112+1√ 122 =0.905 √ 11 +( ) √ ω φ ( )=-tg-1ω =-tg-1 1 =-5.2o ω 11 11 cs(t)=0.9sin(t+24.8o)

高中数学第五章-习题课

高中数学第五章-习题课

习题课 复 数明目标、知重点1.巩固复数的概念和几何意义.2.理解并能进行复数的四则运算并认识复数加减法的几何意义.1.复数的四则运算若两个复数z 1=a 1+b 1i ,z 2=a 2+b 2i(a 1,b 1,a 2,b 2∈R ) (1)加法:z 1+z 2=(a 1+a 2)+(b 1+b 2)i ; (2)减法:z 1-z 2=(a 1-a 2)+(b 1-b 2)i ; (3)乘法:z 1·z 2=(a 1a 2-b 1b 2)+(a 1b 2+a 2b 1)i ; (4)除法:z 1z 2=a 1a 2+b 1b 2a 22+b 22+a 2b 1-a 1b 2a 22+b 22i(z 2≠0);(5)实数四则运算的交换律、结合律、分配律都适合于复数的情况; (6)特殊复数的运算:i n (n 为正整数)的周期性运算; (1±i)2=±2i ;若ω=-12±32i ,则ω3=1,1+ω+ω2=0.2.共轭复数与复数的模(1)若z =a +b i ,则z =a -b i ,z +z 为实数,z -z 为纯虚数(b ≠0). (2)复数z =a +b i 的模|z |=a 2+b 2, 且z ·z =|z |2=a 2+b 2. 3.复数加、减法的几何意义 (1)复数加法的几何意义若复数z 1、z 2对应的向量OZ 1→、OZ 2→不共线,则复数z 1+z 2是以OZ 1→、OZ 2→为两邻边的平行四边形的对角线OZ →所对应的复数. (2)复数减法的几何意义复数z 1-z 2是连接向量OZ 1→、OZ 2→的终点,并指向Z 1的向量所对应的复数.题型一 复数的四则运算例1 (1)计算:-23+i 1+23i +⎝ ⎛⎭⎪⎫21+i 2 012+(4-8i )2-(-4+8i )211-7i;(2)已知z =1+i ,求z 2-3z +6z +1的模.解 (1)原式=i (1+23i )1+23i +⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫21+i 2 1 006+(4-8i +8i -4)(4-8i +4-8i )11-7i=i +(-i)1 006+0=-1+i.(2)z 2-3z +6z +1=(1+i )2-3(1+i )+62+i =3-i 2+i =1-i ,∴z 2-3z +6z +1的模为 2.反思与感悟 复数的除法运算是复数运算中的难点,如果遇到(a +b i)÷(c +d i)的形式,首先应该写成分式的形式,然后再分母实数化. 跟踪训练1 (1)已知z1+i=2+i ,则复数z 等于( )A .-1+3iB .1-3iC .3+iD .3-i答案 B解析 方法一 ∵z1+i =2+i ,∴z =(1+i)(2+i)=2+3i -1=1+3i ,∴z =1-3i.方法二 设z =a +b i(a ,b ∈R ),∴z =a -b i , ∴a -b i1+i =2+i ,∴⎩⎪⎨⎪⎧a =1b =-3,z =1-3i. (2)i 为虚数单位,则⎝ ⎛⎭⎪⎫1+i 1-i 2 011等于( )A .-iB .-1C .iD .1答案 A解析 因为1+i 1-i =(1+i )21-i 2=i ,所以⎝ ⎛⎭⎪⎫1+i 1-i 2 011=i 2 011=i 4×502+3=i 3=-i ,故选A.题型二 复数的几何意义的应用例2 已知点集D ={z ||z +1+3i|=1,z ∈C },试求|z |的最小值和最大值.解 点集D 的图像为以点C (-1,-3)为圆心,1为半径的圆,圆上任一点P 对应的复数为z ,则|OP →|=|z |.由图知,当OP 过圆心C (-1,-3)时,与圆交于点A 、B ,则|z |的最小值是|OA |=|OC |-1=(-1)2+(-3)2-1=2-1=1,即|z |min =1;|z |的最大值是|OB |=|OC |+1=2+1=3,即|z |max =3.反思与感悟 复数和复平面内的点,以原点为起点的向量一一对应;复数加减法符合向量运算的平行四边形法则和三角形法则:|z 1-z 2|表示复数z 1,z 2对应的两点Z 1,Z 2之间的距离. 跟踪训练2 已知复数z 1,z 2满足|z 1|=3,|z 2|=5,|z 1-z 2|=10,求|z 1+z 2|的值.解 如图所示,设z 1,z 2对应点分别为A ,B ,以OA →,OB →为邻边作▱OACB ,则OC →对应的复数为z 1+z 2.这里|OA →|=3,|OB →|=5,|BA →|=10. ∴cos ∠AOB =|OA →|2+|OB →|2-|BA →|22|OA →||OB →|=32+52-102×3×5=45.∴cos ∠OBC =-45.又|BC →|=|OA →|=3,∴|z 1+z 2|=|OC →| =|OB →|2+|BC →|2-2|OB →||BC →|cos ∠OBC =58.题型三 有关两个复数相等的问题例3 设复数z 和它的共轭复数z 满足4z +2z =33+i ,求复数z . 解 设z =a +b i(a ,b ∈R ).因为4z +2z =33+i ,所以2z +(2z +2z )=33+i. 2z +2z =2(a +b i)+2(a -b i)=4a ,整体代入上式, 得2z +4a =33+i.所以z =33-4a 2+i2.根据复数相等的充要条件,得 ⎩⎨⎧a =33-4a2,b =12.解得⎩⎨⎧a =32,b =12.所以z =32+i2. 反思与感悟 两个复数相等是解决复数问题的重要工具.“复数相等”可以得到两个实数等式,为应用方程思想提供了条件,常用于确定系数,解复数方程等问题.跟踪训练3 z 是z 的共轭复数,若z +z =2,(z -z )i =2(i 为虚数单位),则z 等于( ) A .1+i B .-1-i C .-1+i D .1-i答案 D解析 方法一 设z =a +b i ,a ,b 为实数,则z =a -b i. ∵z +z =2a =2,∴a =1.又(z -z )i =2b i 2=-2b =2,∴b =-1.故z =1-i. 方法二 ∵(z -z )i =2,∴z -z =2i =-2i.又z +z =2,∴(z -z )+(z +z )=-2i +2, ∴2z =-2i +2,∴z =1-i.1.若z ∈C ,且|z +2-2i|=1,则|z -2-2i|的最小值是( ) A .2 B .3 C .4 D .5 答案 B2.已知复数z =1+2i1-i ,则1+z +z 2+…+z 2 014为( )A .1+iB .1-iC .iD .1答案 C3.设复数z 满足关系:z +|z |=2+i ,那么z 等于( ) A .-34+i B.34+i C .-34-i D.34-i答案 B解析 设z =a +b i(a ,b ∈R ),由已知a +b i +a 2+b 2=2+i由复数相等可得⎩⎨⎧a +a 2+b 2=2b =1,∴⎩⎪⎨⎪⎧a =34b =1,故z =34+i.4.已知z 1=1+2i ,z 2=m +(m -1)i ,且两复数的乘积z 1z 2的实部和虚部为相等的正数,则实数m 的值为________. 答案 34解析 z 1z 2=(1+2i)[m +(m -1)i]=[m -2(m -1)]+[2m +(m -1)]i =(2-m )+(3m -1)i ,所以2-m =3m -1,即m =34,且能使2-m =3m -1>0,满足题意.5.设复数z =1+i ,且z 2+az +bz 2-z +1=1-i ,求实数a ,b 的值.解 因为z =1+i ,所以z 2+az +b =(a +2)i +a +b ,z 2-z +1=i , 所以z 2+az +b z 2-z +1=a +b +(a +2)i i =(a +2)-(a +b )i.又z 2+az +bz 2-z +1=1-i. 所以⎩⎪⎨⎪⎧ a +2=1,-(a +b )=-1,解得⎩⎪⎨⎪⎧a =-1,b =2.[呈重点、现规律]1.复数的四则运算按照运算法则和运算律进行运算,其中除法运算的关键是将分母实数化; 2.复数的几何意义是数形结合思想在复数中的一大体现;3.利用两个复数相等可以解决求参数值(或范围)和复数方程等问题.一、基础过关1.复数1-2+i +11-2i 的虚部是( )A.15iB.15 C .-15iD .-15答案 B解析1-2+i +11-2i=-2-i 5+1+2i 5=-15+15i.故选B.2.设z =10i3+i ,则z 的共轭复数为( )A .-1+3iB .-1-3iC .1+3iD .1-3i答案 D解析 由z =10i3+i =10i (3-i )(3+i )(3-i )=1+3i ,得z =1-3i.3.若(m 2-5m +4)+(m 2-2m )i>0,则实数m 的值为( ) A .1 B .0或2 C .2 D .0 答案 D解析 由⎩⎪⎨⎪⎧m 2-5m +4>0m 2-2m =0,得m =0.4.设a ,b ∈R 且b ≠0,若复数(a +b i)3是实数,则( ) A .b 2=3a 2 B .a 2=3b 2 C .b 2=9a 2 D .a 2=9b 2答案 A解析 若(a +b i)3=(a 3-3ab 2)+(3a 2b -b 3)i 是实数,则3a 2b -b 3=0.由b ≠0,得b 2=3a 2.故选A.5.设i 是虚数单位,复数1+a i2-i 为纯虚数,则实数a =______.答案 2解析 设1+a i2-i=b i(b ∈R 且b ≠0),则1+a i =b i(2-i)=b +2b i ,所以b =1,a =2.6.复平面内点A 、B 、C 对应的复数分别为i 、1、4+2i ,由A →B →C →D 按逆时针顺序作平行四边形ABCD ,则|BD →|=________. 答案13解析 设D 点对应复数为z ,∵AB →=DC →, ∴1-i =-z +(4+2i),∴z =3+3i , ∴BD →对应的复数为2+3i ,∴|BD →|=13.7.已知a ∈R ,则z =(a 2-2a +4)-(a 2-2a +2)i 所对应的点在第几象限?复数z 对应的点的轨迹是什么?解 ∵a 2-2a +4=(a -1)2+3≥3, -(a 2-2a +2)=-(a -1)2-1≤-1,∴复数z 的实部为正数,虚部为负数,∴复数z 的对应点在第四象限.设z =x +y i(x 、y ∈R ),则⎩⎪⎨⎪⎧x =a 2-2a +4,y =-(a 2-2a +2)消去a 2-2a 得:y =-x +2(x ≥3). ∴复数z 的对应点的轨迹是一条射线,方程为y =-x +2(x ≥3). 二、能力提升8.在复平面内,复数(2-i)2对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案 D解析 (2-i)2=4-4i +i 2=3-4i ,∴对应点坐标(3,-4),位于第四象限. 9.设i 是虚数单位.z 是复数z 的共轭复数.若z ·z i +2=2z ,则z 等于( ) A .1+i B .1-i C .-1+i D .-1-i答案 A解析 设z =a +b i ,a ,b ∈R代入z ·z i +2=2z ,整理得:(a 2+b 2)i +2=2a +2b i则⎩⎪⎨⎪⎧ 2a =2a 2+b 2=2b ,解得⎩⎪⎨⎪⎧a =1b =1,因此z =1+i. 10.已知互异的复数a ,b 满足ab ≠0,集合{a ,b }={a 2,b 2},则a +b =________. 答案 -1解析 由题意⎩⎪⎨⎪⎧ a =a 2,b =b 2或⎩⎪⎨⎪⎧a =b 2,b =a 2, 因为a ≠b ,ab ≠0, ⎩⎨⎧a =-12+32i ,b =-12-32i 或⎩⎨⎧b =-12+32i ,a =-12-32i ,因此a +b =-1.11.设复数z =(1+i )2+3(1-i )2+i ,若z 2+a ·z +b =1+i ,求实数a ,b 的值.解 z =(1+i )2+3(1-i )2+i =2i +3-3i 2+i =3-i2+i=(3-i )(2-i )5=1-i. 因为z 2+a ·z +b =1+i , 所以(1-i)2+a (1-i)+b =1+i. 所以(a +b )-(a +2)i =1+i.所以⎩⎪⎨⎪⎧a +b =1,-(a +2)=1,解得a =-3,b =4.即实数a ,b 的值分别是-3,4.12.在复平面内,O 是原点,向量OA →对应的复数是2+i. (1)如果点A 关于实轴的对称点为B ,求向量OB →对应的复数; (2)如果(1)中点B 关于虚轴的对称点为C ,求点C 对应的复数.解 (1)设所求向量OB →对应的复数为z 1=a +b i(a ,b ∈R ),则点B 的坐标为(a ,b ). 已知A (2,1),由对称性可知a =2,b =-1. 所以OB →对应的复数为z 1=2-i.(2)设所求点C 对应的复数为z 2=c +d i(c ,d ∈R ), 则C (c ,d ).由(1),得B (2,-1). 由对称性可知,c =-2,d =-1. 故点C 对应的复数为z 2=-2-i. 三、探究与拓展13.是否存在复数z ,使其满足z ·z +2i z =3+a i ?如果存在,求实数a 的取值范围;如果不存在,请说明理由.解 设z =x +y i(x ,y ∈R ),则原条件等式可化为x 2+y 2+2i(x -y i)=3+a i.由复数相等的充要条件,得⎩⎪⎨⎪⎧x 2+y 2+2y =3,2x =a .消去x ,得y 2+2y +a 24-3=0. 所以当Δ=4-4⎝⎛⎭⎫a24-3=16-a 2≥0,即-4≤a ≤4时,复数z 存在. 故存在满足条件的复数z ,且实数a 的取值范围为-4≤a ≤4.高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解作比较。
解:
H
E(0) 1
a
b
b
E(0) 2
a
E(0) 1 0
0 a
E(0) 2
b
b a
H
(0)
H
En
E(0) n
H nn
m
/ Hm n 2
E(0) n
E(0) m
E1
E(0) 1
a
b2
E(0) 1
E(0) 2
E2
E(0) 2
a
b2
E(0) 2
E(0) 1
下面求能量的精确解。
E
6 2h2 L2
4U0a L
20U0
3
a
L
2
x3 x5 sin x x L (x 0)
3! 5!
Hnn
n H n
g
n
x2
n
x2 n
1
2
2
n(n 1) n 2 (2n 1) n
g
2
2
(2n
1)
n
1 2
h
g
2
(n 1)(n 2) n 2
E(2) n
m
/ H m n 2
E(0) n
E(0) m
g2
m
/
x2 2 mn
E(0) n
E(0) m
xm2n
m x2 n
1
2
2
n(n 1)m,n2 (2n 1)m,n
两个宽为a、高为 的小微U扰0 势垒中心位于

x
1 4
L
x
3 4
L
处,a是小量(例如 a = L /)10。0 试用一级微扰论计算修正后的基态能
量值及 和n 2的能n级差4 。
解: 一维无限深势阱的本征解为
E(0) n
n2 2h2 2 L2
U0
n 1, 2,3,L
(0) n
(
x)
2 sin n x
L L/4a/2
L
L 3L/4a/2
L
2U 0 a L
U0
n
cos
n
2
cos 3n
2
sin
n a
L
2U0a 2U0 cos n cos n sin n a
L n
2L
2U0a L
(1)k U0
k
2U 0 a
sin
2k
L
a
L
n 2k n 2k 1
能量近似值
En
E (0) n
E (1) n
L L
L H f 1
L
L
H f 2
L
H1f H2 f L
c(0) n1
c(0) n2
L
0
H ff
E (1) n
c(0) nf
H11
E (1) n
H12
L
H 21
H 22
E (1) n
L
L
L
L
H f 1
H f 2
L
H1f H2 f 0 L
H ff
E (1) n
能量的一级修正值为
,En一(1) 级近似值为
1 E
0
3E 0 0
0 0 2E
再求近似解。
E1 2 1 2 E2 2 1 2 E3 2
1 0 0 0 0
H
0
3
0
0
0
H
(0)
H
0 0 2 0 0
E1
1
0
2
13
02 1 (2)
1
1 2
2
E2
3
0
2
31
3
02 (2)
3
1 2
2
E3
2
02 2 1
02 2
3
2
4.一个一维无限深势阱如图所示,在 x和 0 x处有L两个无限高壁,
1 2
(E1(0)
E(0) 2
2a)
1 2
(
E(0) 2
E(0) 1
)
1
2b2
(
E(0) 2
E(0) 1
)2
E1
1 2
(E1(0)
E(0) 2
2a)
1 2
(E2(0)
E(0) 1
)
1
2b2
(
E(0) 2
E(0) 1
)2
E(0) 1
a
b2
E(0) 1
E(0) 2
E2
1 2
(E1(0)
E(0) 2
2a)
1 2
(E2(0)
E(0) 1
)
1
2b2
(
E(0) 2
E(0) 1
)2
E(0) 2
a
b2
E(0) 2
E(0) 1
显然,两种方法的结果一致。
3.设哈密顿算符的矩阵形式为
1 0
H
3
0
0 0 2
求其精确的本征值;若 =,1求其本征值至二级近似。
解: 先求精确解。
第五章习题课
一、小结
1.非简并定态微扰理论
En
E(0) n
Hˆ nn
m
/ Hm n 2
E(0) n
E(0) m
n
(0) n
m
/ Hm n
(0)
E(0) n
E(0) m
m
2.简并情况下的微扰理论 求解 在Hˆ 简E并n(0)子空间中的本征方程,即
H11
E (1) n
H 21
H12
H 22
E (1) n
LL
O
1 4
L
3 4
L
L
x
微扰势
H
U
0
0
L a x L a , 3L a x 3L a
42
4 24 2
42
x取其它值
能级修正值为
E (1) n
H nn
L
0
*(0) n
H
(0) n
dx
2U0 L/4a/2 sin2 n x dx 2U0 3L/4a/2 sin2 n x dx
En
E(0) n
E (1) n
近似波函数
f
n
c(0) (0) n n
1
二、例题
1.设一维谐振子的哈密顿算符为 ,Hˆ再(0)加上微扰
密顿算符为


(0)

p2
2
1 2
2 x2
gx2
试用微扰法求能量近似值。
解:
E(0) n
n
1 2
h
H,ˆ 系统gx的2 哈
E(1) n
(n 1)(n 2)m,n2
g2
x2
2
n2,n
E(0) n
E(0) n2
x2
2
n2,n
E(0) n
E(0) n2
g2
4 4
n(n 1)
2h
(n 1)(n 2)
2h
g2
4 4
4n 2
2h
n
1 2
h
2
g2
2
4
En
E(0) n
E (1) n
E(2) n
n
1 2
h
1
g
2
E(0) 1
a
b
b
E(0) 2
a
c1 c2
E
c1 c2
E(0) 1
a
E
b 0
b
E(0) 2
a
E
E
1 2
(E1(0)
E(0) 2
2a)
1 2
(
E(0) 2
E(0) 1
)2
4b2
2
1 2
(E1(0)
E(0) 2
2a)
1 2
(E2(0)
E(0) 1
)
1
2b
E(0) 2
E(0) 1
基态能量近似值
E1
E(0) 1
E (1) 1
2h2 2 L2
2U 0 a L
n 2和 n 的4 能级差
E
16 2h2
2 L2
2U0a L
U0
2
sin
4 a
L
4 2h2 2 L2
2U0a L
U0
sin
2 a
L
6 2h2 L2
U0
1 2
sin
4 a
L
sin
2 a
L
当 a 时= ,L 有
g2
2 24
实际上
H
p2
2
1 2
2 x2
gx2
p2
2
1 2
2
2g
x2
p2
2
1 2
2 x2
En
n
1 2
h
n
1 2
h
1
2g
2
2.在 H表(象0) 中,若哈密顿算符的矩阵形式为
HHale Waihona Puke E(0) 1ab
b
E(0) 2
a
其中,a、b为小的实数,且
E (0) 1
E。2(0求) 能量至二级修正,并与精确
相关文档
最新文档