流态化原理

合集下载

流态化基础知识和流型分类

流态化基础知识和流型分类
发展历程
流态化技术自20世纪初被发现以来, 经历了从实验室研究到工业应用的漫 长过程,现已广泛应用于化工、能源 、环保等领域。
颗粒床层特性与流动状态
颗粒床层特性
颗粒床层是由固体颗粒堆积而成,具 有多孔性、可压缩性和渗透性等特性 。
流动状态
颗粒床层在气体或液体作用下可表现 为固定床、流化床和输送床等不同的 流动状态。
影响因素
流体速度、固体颗粒性质(如粒径、密度、形状等)、床层高度、温度、压力等都会对床层流型产生影响。
03
颗粒性质对流型影响研究
颗粒形状、大小及分布规律探讨
颗粒形状对流型的影响
球形颗粒在流化床中易于形成均匀流化,而非球形颗粒( 如片状、纤维状)可能导致流化不均匀或产生沟流现象。
颗粒大小对流型的影响
摩擦力对流型的影响
摩擦力使颗粒间相互摩擦产生热量和磨损, 影响床层的稳定性和流动行为。高摩擦力可 能导致床层内局部温度升高和颗粒磨损加剧 ,进而影响整体流型。
04
气体参数对流型影响研究
气体速度、压力变化规律探讨
气体速度对流型的影响
随着气体速度的增加,流型从固定床逐渐过渡到流化床,床层膨胀度增加,颗粒间的相 互作用力减弱,流型变得更加均匀。
物料循环和排放控制
根据生产需求控制物料的循环量和排放量;在操作过程中 密切关注物料循环和排放情况,及时调整相关参数以保持 稳定的物料平衡。
提高设备性能,降低能耗措施
设备结构优化
操作参数优化
通过改进设备结构,如采用高效分布板、 优化旋风分离器结构等,提高设备的流化 效率和分离效率,降低能耗。
通过调整操作参数,如气体速度、温度和 压力等,使设备在最佳状态下运行,提高 设备性能并降低能耗。

第三章 固体流态化技术

第三章    固体流态化技术

沟流对反应过程的影响:沟流现象发生时,大部分气体没有 与固体颗粒很好接触就通过了床层,这在催化反应时会引起催 化反应的转化率降低。由于部分颗粒没有流化或流化不好,造 成床层温度不均匀,从而引起催化剂的烧结,降低催化剂的寿 命和效率。
4、恒定的压降
流化床的重要优点
流化床床层压降 =(重量-浮力)/单位床截面积
固定床阶段 床层不动 u1 ut

流化床阶段 u1 ut开始悬浮
颗粒输送阶段 u1 ut 颗粒带走
u ,u1 ,u1 ut
(a)固定床
(b)流化床
(c)气力输送
此时流体的真正速 度 u < 颗粒的沉降 速度u0
此时u= u0 颗粒悬浮于流体中,床层 有一个明显的上界面,与 沸腾水的表面相似
流化阶段,压降与气速无关,始终保持定值
固定床 流化床 C ΔP B A ¢ u 带出开始
m P ( p ) g Ap
起始流化速度
表观速度 流体通过颗粒床层的压降
D( 带出速度 )
推导:
流化床阶段,近似认为颗粒处于动态平衡。
即:总曳力 总重力 总浮力
p f A Fg Fb AL(1 )(s ) g
此时u> u0
固体流态化运用在粉粒状物料的输送、混合、加热或冷 却、干燥、吸附、煅烧和气固反应等过程中。
3、流化床存在的基础—大量颗粒群居 颗粒能在相当宽范围内悬而不走,离开群体的个别颗粒上 升后, 速度将减小,则会回落。
浮力
曳力 u1(实际速度) 重力
u(表观速度)
二、实际流化现象
流态化按其性状的不同,可以分成两类, 即散式流态化和聚式流态化。
主要用途:

第六章气固流态化基础(2024)

第六章气固流态化基础(2024)
流化床反应器利用气体流过固体颗粒床层时使固体颗粒悬浮并呈流态化状态,以实现气固 相反应。其特点包括良好的传热传质性能、均匀的温度分布和易于控制反应过程。
类型与结构
根据反应类型和需求,流化床反应器可分为多种类型,如固定床反应器、移动床反应器和 循环流化床反应器等。其结构通常包括反应器主体、气体分布器、固体颗粒循环系统和控 制系统等。
通过气体或液体以一定速度穿过 固体颗粒层,使颗粒之间产生相 互作用和能量传递,从而实现流 态化。
2024/1/29
5
气固流态化的重要性
与传统的间歇式生产方式相比, 气固流态化技术可降低能耗和生 产成本。
气固流态化技术不仅应用于化工 、冶金等领域,还可拓展到环保 、新能源等领域。
2024/1/29
提高生产效率 降低能耗
在气固流态化系统中,通过设置合适的分离 装置,可实现气体和固体颗粒的有效分离, 以满足不同工艺需求。
2024/1/29
催化剂再生
在石油化工等领域中,催化剂的再生是一个重要环 节。利用流态化技术可实现催化剂的高效再生和循 环利用。
粉体输送
利用气固流态化的原理,可实现粉体物料的 高效输送和分配,广泛应用于化工、冶金等 领域。
颗粒粘结
某些物料在流化床内可能发生粘结现象,形 成团聚体或结块。粘结可能导致床层塌落、 沟流以及传热和传质效率下降等问题。
2024/1/29
26
气体分布不均与沟流现象
气体分布不均
在气固流态化过程中,气体的不均匀分布是 一个常见问题。气体分布不均可能导致床层 内的温度和浓度梯度增大,从而影响产品质 量和收率。
强化传质方法
强化传质的方法包括增加气体流速、减小固体颗粒粒径、提高床层温度和压力等。此外 ,采用催化剂或添加反应促进剂等方法也可以提高传质效率。同时,优化流化床结构和

“利用流态化原理解释颗粒终端速度(带出速度),为什么等于自由沉降速度?”论文

“利用流态化原理解释颗粒终端速度(带出速度),为什么等于自由沉降速度?”论文

流态化基本原理【摘要】流态化技术是利用流动流体的作用,将固体颗粒群悬浮起来,从而使固体颗粒具有某些流体表观特征,利用这种流体与固体间的接触方式实现生产过程的操作。

自由沉降速度,又称终端速度。

指任一颗粒的沉降不因流体中存在其他颗粒而受到干扰时,在等速阶段里颗粒相对于流体的运动速度。

即加速阶段终了时颗粒相对于流体的速度。

关键词:流态化;固体;颗粒;沉降1流态化与自由沉降流态化一般指固体流态化,又称假液化,简称流化,它是利用流动流体的作用,将固体颗粒群悬浮起来,从而使固体颗粒具有某些流体表观特征,利用这种流体与固体间的接触方式实现生产过程的操作,称为流态化技术,属于粉体工程的研究范畴。

流态化技术是一种强化流体(气体或液体)与固体颗粒间相互作用的操作,如在直立的容器内间歇地或连续地加入颗粒状固体物料,控制流体以一定速度由底部通入,使其压力降等于或略大于单位截面上固体颗粒的重量,固体颗粒即呈悬浮状运动而不致被流体带走。

流态化技术在强化某些单元操作和反应过程以及开发新工艺方面,起着重要作用,广泛应用于化学、石油、冶金、原子能等工业的焙烧、干燥、吸附、气化、催化反应和催化裂化等许多过程中。

单个颗粒在流体中的沉降过程称为自由沉降。

若颗粒数量较多,相互间距离较近,则颗粒沉降时相互间会干扰,称为干扰沉降。

颗粒刚开始沉降时,速度u 为零,则曳力也为零,颗粒在净质量力(质量力与浮力之差)作用下沿质量力方向作加速运动,随着运动速度u的增加,曳力开始由零不断增大,直至与净质量力相等为止,这时,颗粒加速度减为零,速度u达到一恒定值,也是最大值,此后,颗粒等速下降,这一最终的运动速度称为沉降速度。

由此可见,单个颗粒在流体中的沉降过程分为两个阶段:加速段和等速段,对于小颗粒,加速段极短,通常可以忽略,于是,整个沉降过程都可认为是匀速沉降。

2流态化现象将一批固体颗粒堆放在多孔的分布板上形成床层,使流体自下而上通过床层。

由于流体的流动及其与颗粒表面的摩擦,造成流体通过床层的压力降。

流态化一章

流态化一章

§1.2 流态化的状态 及其它流态化形式
一、流态化状态与判别准则
聚式流态化aggregative fluidization
散式流态化dispersed fluidization 1.聚式流态化(不均匀流化床,气体流化床)水-铅
气泡相bubble phase:就是内部几乎没有固体颗粒,仅在其边壁或 外表面 有固体颗粒环绕的运动空间
六、气-固流化床的一般性评价
1.良好的床层均温性
上下或左右方向的温度梯度均在10~20℃之内 固体颗粒的热容量比相同体积气体的热容量高100~ 1000倍
2.较高的传热传质速率
3.输送能力大 4.可利用或加工粉末状物料
不足 :
(1)固体物料的停留时间不均匀 (2)气流分布不均会影响气-固接触效率 (3)颗粒磨损与设备磨损严重
曳力
浮力
重力
压降值△P单调增加
幻灯片 115
流态化过程曲线
2.流态化床阶段
气流对颗粒的曳力 + 气流对颗粒的浮力 = 颗粒 受到的重力
AP Lmf A(1 mf ) f g Lmf A(1 mf ) s g P Lmf (1 mf )( s f ) g
2.多层流态化床
定义: 在传统的单层气-固流态化系统的基础 上,在床内不同高度设置多块气体布风 板,将床层分成多段区域,这就构成了 多层流态化床
优点:
该床既可以保持原单层床的诸多优点(如
床层均温 性、传热性能优越等) 在一定程度上抑制床内气体与颗粒的混 合,改善气、固相的滞留时间分布 可借助流化介质的再分布,使大气泡变 小,降低扩散阻力,提高传质、传热速率。
固体颗粒可以参加化学反应 :气化、燃烧 不参加化学反应,如气相化学反应中的固 体催化剂 参与多种物理过程 : 热空气干燥粮食

流态化原理

流态化原理
⑤ 输送床 当气速增加到载流点速度Upt以后快速床被破坏, 则进入气力输送床阶段。
1.4 散式流化与聚式流化
散式流化 以液体为流化介质的流化床,床层随流体 的增加平衡膨胀,床层中的固体颗粒彼此散开运 动,流化得很均匀。压力降与速度的关系接近理 想曲线,这种流化床叫做散式流化床或均匀流化 床。 聚式流化 以气体为流化介质的流化床,床层中的固 体颗粒不是单独存在的,而是许多颗粒以集团形 式团聚在一起。气体是以气泡形式通过床层,流 速较高时,固体颗粒运动猛烈,床层搅动得很厉 害,床的膨胀比小于散式流化,气体把颗粒带出, 形成一个稀相,这种流化床叫不均匀流化床,即 聚式流化。再生器及反应上部就是聚式流化。
1 气泡的形成与形状
气体通过分布器后,很快形成气泡,随着气泡的上升, 小气泡合并成大气泡,气泡直径扩大。初始生成的气泡 大小与分布器孔径和气速大小有关,孔径与气速大,则 生成的气泡就大。如图,气泡的形状是上半部呈半球形, 下半部凹入,这部分称作尾波区,约占球形体积的2030%,尾波区夹带有固体颗粒,气泡中基本不含固体颗 粒。 气泡向上运动的速度大于床层 平均速度,气泡越大上升速度越快 。实际上气泡形状是经常变化的, 以上所说的形状是理想状态。
• 它们是与流化状态有关的参数学者给出一个这样 计算公式:
2 umf 0.0078 dp p f
ut gdp 2 p f
/18uf
g / uf
dp 固体颗粒直径
p、 f 固体颗粒及气体密度,g / cm 2
g-重力加速度,981cm/s2 uf-气体的粘度,pa·s 鼓泡流化床 uf一般为0.6-1m/s 即60-100cm/s
u>ut
稀相输送(输送床)

《固体流态化技术》课件

《固体流态化技术》课件

新型流态化技术的研发
随着科技的不断发展,新型流态化技术也不断涌现,如气固 流态化技术、液固流态化技术等,这些新型流态化技术具有 更高的效率和更好的应用前景。
新型流态化技术的研发需要不断探索和尝试,通过实验和模 拟等方式,不断优化和完善技术参数和工艺条件,提高技术 的应用效果和可靠性。
智能化与自动化的提升
进一步拓展。
技术局限
颗粒大小限制
固体流态化技术对固体颗粒的大小有 一定要求,过小的颗粒可能导致技术 效果不佳。
操作参数敏感
该技术的操作参数较为敏感,需要精 确控制以获得最佳效果。
高成本
固体流态化技术的设备成本较高,增 加了应用成本。
稳定性问题
在某些情况下,固体流态化技术的稳 定性有待提高。
技术挑战与前景
01
化工
用于反应、分离、混合等工艺过 程,如石油化工、化学反应工程 等。
02
03
能源
环保
用于煤炭、生物质等固体燃料的 燃烧、气化、热解等过程,提高 能源利用效率。
用于固体废弃物的处理、处置和 资源化利用,如城市垃圾焚烧、 工业废弃物处理等。
02
固体流态化技术的原 理
基本原理
固体流态化技术的基本原理是利用流 体对固体颗粒进行作用,使固体颗粒 呈现出流体的某些特性,从而实现固 体颗粒的流动和运输。
04
固体流态化技术的优 缺点
技术优势
高效性
固体流态化技术能够实现连续 、大规模的物质处理,提高了
生产效率。
节能环保
该技术能够降低能耗,减少环 境污染,符合绿色发展理念。
灵活性
固体流态化技术适用于多种不 同性质的固体颗粒,应用范围 广泛。
可扩展性

流态化工程原理

流态化工程原理

流态化工程原理流态化工程原理是指通过控制流体的运动状态和物理特性来实现特定的工艺目标或应用需求的一种技术。

它在化工、石油、能源、环保等领域中广泛应用,为工业生产提供了重要的技术支持和创新方向。

流态化工程原理的基本概念是将固体颗粒悬浮于气体或液体介质中,通过调节流体的速度和流态化剂的添加来改变固体颗粒的运动状态。

在流态化状态下,固体颗粒的运动呈现出流体的特性,具有类似于液体的流动性和类似于气体的均匀性。

这种特性使得流态化工程成为一种高效的物料搬运和反应控制技术。

流态化工程原理的核心是流体的运动和相互作用。

在流态化过程中,流体中的颗粒受到气体或液体的作用力,呈现出不同的运动状态,如床层流动、颗粒间的碰撞和混合等。

这些运动状态对于实现特定的工艺目标至关重要,如颗粒的分离、搬运和反应等。

流态化工程原理的应用范围非常广泛。

在化工领域,流态化工程可以用于固体颗粒的分离、干燥、反应和催化等过程。

例如,在石化工业中,流态化工程可以用于催化剂的制备和石油的加工。

在环保领域,流态化工程可以用于废气和废水的处理和净化。

在能源领域,流态化工程可以用于燃煤和生物质的燃烧,以及核能的利用等。

流态化工程原理的核心是控制流体的运动和相互作用。

通过调节流体的速度和流态化剂的添加,可以改变固体颗粒的运动状态,从而实现特定的工艺目标。

流态化工程既有理论研究,又有实际应用。

在理论研究方面,流态化工程涉及流体力学、热力学和物质传递等多个学科的知识。

在实际应用方面,流态化工程需要考虑工艺流程、设备设计和操作控制等多个方面的问题。

流态化工程原理的研究和应用对于推动工业生产的发展具有重要意义。

它可以提高物料搬运和反应过程的效率,减少能源和原材料的消耗,降低环境污染和废物排放。

同时,流态化工程也为新材料的研发和应用提供了技术支持和创新思路。

通过研究流态化工程原理,我们可以更好地理解和掌握流体的运动规律和相互作用机制,为工业生产的可持续发展做出贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

流化床阶段
颗粒输送阶段
• u>ut
散式流化 • 流化床内固体颗 粒均匀分布在流 动流体中,并在 各个方向上作随 机运动,床层中 各部分密度几乎 相等,床层上界 面平稳而清晰, 这种现象被称为 散式流化。
聚式流化 • 聚式流化也称鼓 泡流化,是床层 中出现组成不同 的两个相,即含 固体颗粒甚少的 不连续气泡相, 以及含固体颗粒 较多、分布较均 匀的连续乳化相, 乳化相内的液固 运动状况和空隙 率接近初始流化 状态
固定床阶段
• u<ut • 颗粒基本静止不动
• 当流体速度增大到一定程度后,颗粒松动、 调整,床层膨胀,处于起始或临界流化态。 如果流体的流升高到使全部颗粒刚好悬浮 于向上流动的流体中而能做随机运动,此 时流体与颗粒之间的摩擦阻力恰好与其净 重力相平衡。此后,床层高度L将随流速 提高而升高,这种床层成为流化床。
特性 • 两相密度差小的 系统趋向散式流 化,大部分液固流化属于散式 流化 • 气-固流化系统 多属于聚式流化
流态化技术的应用
流态化技术在强化某些单元操作和反 应过程以及开发新工艺方面,起着重 要作用,广泛应用于化学、石油、冶 金、原子能等工业的焙烧、干燥、吸 附、气化、催化反应和催化裂化等许 多过程中。
(a)图所示的贯穿沟流和(b)图所示的局部沟流。
Thank U very much!
流态化基本原理
流化态现象
三种情况
• 固定床阶 段 • 流化床阶 段 • 颗粒输送 阶段
两种形式
• 散式流化 • 聚式流化
流化床特征
• 理想状态 • 实际状态
两种不正常现象
• 腾涌 • 沟流
流态化

流态化一般指固体流态化,简称流化,它是利用流动流体的 作用,将固体颗粒群悬浮起来,从而使固体颗粒具有某些流 体表观特征,利用这种流体与固体间的接触方式实现生产过 程的操作,称为流态化技术,属于粉体工程的研究范畴。
特征:是气体通过床层时形成短路,如图
所示。
产生原因:主要与颗粒特性和气体分布板
的结构有关。比如:颗粒的粒度很细(粒 径小于40μm)、密度大且气速很低时;潮 湿的物料和易于粘结的物料;气体分布板 设计不好,布气不均,如孔太少或各个风有与 固体颗粒很好接触就通过了床层,这在催 化反应时会引起催化反应的转化率降低。 由于部分颗粒没有流化或流化不好,造成 床层温度不均匀,从而引起催化剂的烧结, 降低催化剂的寿命和效率。 处理方法:应对物料预先进行干燥并适当 加大气速,另外分布板的合理设计也是十 分重要的。还应注意风帽的制造、加工和 安装,以免通过风帽的流体阻力相差过大 而造成布气不均。
相关文档
最新文档