非线性系统的自适应推广的kalman滤波
2010_第四章_非线性系统的Kalman滤波

4.1 扩展的卡尔曼滤波方程前面讲的Kalman滤波要求系统状态方程和观测方程都是线性的。
然而,许多工程系统往往不能用简单的线性系统来描述。
例如,导弹控制问题,测轨问题和惯性导航问题的系统状态方程往往不是线性的。
因此,有必要研究非线性滤波问题。
对于非线性模型的滤波问题,理论上还没有严格的滤波公式。
一般情况下,都是将非线性方程线性化,而后,利用线性系统Kalman滤波基本方程。
这一节我们就给出非线性系统的Kalman滤波问题的处理方法。
为了方便描述,下面仅限于讨论下列情况的非线性模型kkxkk=k+(3.2.8.1)Φ+Γx+x),1(])w[()(k()1),(kkv=+kk+z(3.2.8.2)hx),1]1()1([+(+)1+式中,1)(⨯∈n R k x 是状态向量,1)(⨯∈m R k z 是观测向量,)(k w 和)(k v 是噪声;1⨯∈Φn R 是k k x ),(的非线性函数,具有一阶连续导数;1⨯∈m R h 是1),1(++k k x 的非线性函数,具有一阶连续导数。
)(k w 和)(k v 都是均值为零的白噪声序列,其统计特性如下{}{}0)(,0)(==k v E k w E ,{}kj T k Q j w k w E δ)()()(=,{}kj T k R j v k v E δ)()()(=另外,已知初始条件,即)0(x 的统计特性。
下面仅介绍推广的Kalman 滤波方法,即围绕滤波值)|(ˆk k x的线性化滤波方法,这种方法是先将非线性模型线性化,而后应用线性系统的Kalman 滤波基本公式。
由系统状态方程(3.2.8.1)可得)(]),|(ˆ[)]|(ˆ)([)),|(ˆ()1()|(ˆ)(k w k k k x k k xk x xk k k xk x k k xk x Γ+-∂Φ∂+Φ≈+= (2.3.8.3)),1()|(ˆ)(k k xk k xk x +Φ=∂Φ∂= (2.3.8.4))()|(ˆ]),|(ˆ[)|(ˆ)(k f k k xxk k k xk k xk x =∂Φ∂-Φ= (2.3.8.5) 则状态方程为)()(]),|(ˆ[)(),1()1(k f k w k k k xk x k k k x +Γ++Φ=+ (3.2.8.6) 初始值为{}000ˆm x E x==。
非线性卡尔曼滤波器

UKF计算步骤:
PF
PF
● 粒子滤波(PF: Particle Filter)的思想基于蒙特卡洛方法(Monte Carlo methods),它是 利用粒子集来表示概率,可以用在任何形式的状态空间模型上。其核心思想是通过从后 验概率中抽取的随机状态粒子来表达其分布,是一种顺序重要性采样法(Sequential Importance Sampling)。简单来说,粒子滤波法是指通过寻找一组在状态空间传播的随 机样本对概率密度函数进行近似,以样本均值代替积分运算,从而获得状态最小方差分 布的过程。这里的样本即指粒子,当样本数量N→∝时可以逼近任何形式的概率密度分布。
EKF
首先围绕滤波值 xˆk 将非线性函数 f , g 展开Taylor级数并
略去二阶及以上项,得到一个近似的线性化模型,然后应用 Kalman滤波完成对其目标的滤波估计等处理。
1.对状态模型的一阶Taylor展示:
xk f
xˆk 1
f xˆk 1
xk 1 xˆk 1 k
令
f
F
xˆk 1
f1 f1
xˆ1
xˆ2
f xˆk 1
F
f2 xˆ1
f2 xˆ2
fn fn
xˆ1 xˆ2
f1
xˆn
f2 xˆn
fn
xˆn
g1 g1
xˆ1
xˆ2
g xˆk
H
g2 xˆ1
g2 xˆ2
系统辨识自适应-卡尔曼滤波

(3)卡尔曼滤波的另一个不同点是把状态或信号 过程的产生看成是白噪声激励有限维数系统的 输出; 维纳滤波要求过程的自相关函数和互相关函数 的简单知识,而卡尔曼滤波则要求时域中状态 变量及信号产生过程的详细知识。
七、卡尔曼滤波的优点
在时域上采用线性递推形式对观测值进行 处理,能实时地给出系统状态的最优估计, 并突破了单维输入和输出的限制。 卡尔曼滤波算法的这些优点使它在信号和 信息系统中得到比较广泛的应用。
2 均值为0,方差为 p 和 2。
状态方程激励信号的协方差阵为:
T E w ( k ) w ( j) Q(k ) kj
0 0 0 2 1 T Q(k ) E w ( k ) w ( k ) = 0 0 0 0
0 0 0 0 0 2 0 2 0
七、卡尔曼滤波的优点
八、卡尔曼滤波的缺点 九、卡尔曼滤波的应用 十、(1)应用举例-雷达跟踪目标物
十一、滤波的性能对比实验视频
一、为什么研究kalman滤波?
信号在传输与检测的过程中受到外界干 扰和设备内部噪声的影响,是接受端收 到信号具有随机性,为获得所需的信号, 排除干扰,就要对信号进行滤波。
5.1、预测阶段
5.2、更新阶段
六、Wiener和kalman滤波对比
维纳滤波器
根据全部过去的和当前的观测数据x(n),x(n-1), …
来估计信号的当前值 以均方误差最小条件下求解 系统的传递函数H(z)或单位冲激响应h(n)
卡尔曼滤波
不需要全部过去的观察数据
ˆk -1 只根据前一个估计值 x 和最近一个观察数据 yk
(2)实时要求。影响卡尔曼滤波算法的实时性主 要是状态维数n和增益矩阵的计算,它们往往有 很大的计算量。 一般在计算中采取某些措施,例如应用定常系 统新算法或在精度损失允许情况下尽量减小维 数等措施,从而减小计算量以满足实时滤波的 要求。
matlab 自适应卡尔曼滤波

matlab 自适应卡尔曼滤波自适应卡尔曼滤波是一种基于卡尔曼滤波算法的扩展,用于跟踪非线性系统的状态。
在传统的卡尔曼滤波中,假设系统是线性的,并且系统的噪声和测量噪声是已知的。
然而,在实际应用中,往往会遇到非线性系统或未知的噪声情况,这就需要使用自适应卡尔曼滤波方法来处理。
自适应卡尔曼滤波的基本思想是通过一种递归算法,根据系统的状态和测量值的变化来调整卡尔曼滤波的参数。
具体步骤如下:1. 初始化卡尔曼滤波模型的参数,包括状态向量、状态转移矩阵、测量矩阵、过程噪声协方差矩阵、测量噪声协方差矩阵等。
2. 根据当前的测量值和状态向量,计算预测的状态向量和状态转移矩阵。
3. 通过当前的测量值和预测的状态向量,计算卡尔曼增益。
4. 更新状态向量和状态协方差矩阵。
5. 根据更新后的状态向量,重新计算过程噪声协方差矩阵和测量噪声协方差矩阵。
6. 重复步骤2到5,直到滤波结束。
自适应卡尔曼滤波的关键在于如何根据当前的测量值和状态向量来调整滤波模型的参数,以适应实际系统的变化。
常见的自适应卡尔曼滤波算法包括扩展卡尔曼滤波(EKF)、无迹卡尔曼滤波(UKF)和粒子滤波等。
在MATLAB中,可以使用现有的工具箱或编写自己的函数来实现自适应卡尔曼滤波。
MATLAB提供了kalmanfilt函数用于实现标准的卡尔曼滤波,同时也可以根据需要自定义滤波模型和参数。
它还提供了ekf, ukf和pf函数分别用于实现扩展卡尔曼滤波、无迹卡尔曼滤波和粒子滤波算法。
下面是一个简单的MATLAB示例,演示了如何使用kalmanfilt函数实现自适应卡尔曼滤波:matlab% 定义系统的状态转移矩阵和测量矩阵A = [1 0.1; 0 1];C = [1 0];% 定义过程噪声协方差矩阵和测量噪声协方差矩阵Q = [0.01 0; 0 0.01];R = 0.1;% 创建kalman滤波器对象kf = kalmanfilt(A, C, Q, R);% 初始化状态向量和状态协方差矩阵x0 = [0; 0];P0 = eye(2);% 生成模拟数据N = 100;x_true = zeros(2, N);y = zeros(1, N);for k = 1:Nx_true(:, k) = A * x_true(:, k-1) + sqrtm(Q) * randn(2, 1);y(k) = C * x_true(:, k) + sqrt(R) * randn(1);end% 使用kalman滤波器滤波数据x_est = zeros(2, N);for k = 1:Nx_est(:, k) = kf(y(k));end% 绘制真实值和估计值的对比图figure;hold on;plot(1:N, x_true(1, :), 'b-', 'LineWidth', 2);plot(1:N, x_true(2, :), 'r-', 'LineWidth', 2);plot(1:N, x_est(1, :), 'k', 'LineWidth', 2);plot(1:N, x_est(2, :), 'm', 'LineWidth', 2);legend('True x1', 'True x2', 'Estimate x1', 'Estimate x2');hold off;以上示例中,定义了一个二维状态向量和一个一维测量向量,并根据这两个向量构建了卡尔曼滤波模型的参数。
扩展Kalman滤波(EKF)和无迹卡尔曼滤波(ukf)

Pkk_1 = Phikk_1*Pk_1*Phikk_1' + Qk;
Pxz = Pkk_1*Hk'; Pzz = Hk*Pxz + Rk;
Pxz*Pzz^-1;
Kk =
Xk = fXk_1 + Kk*Zk_hfX;
Pk = Pkk_1 - Kk*Pzz*Kk';
二、扩展Kalman滤波(EKF)算法
[Xk, Pk, Kk] = ekf(eye(4)+Ft*Ts, Qk, fX, Pk, Hk, Rk, Z(k,:)'-hfX);
X_est(k,:) = Xk';
Hale Waihona Puke end二、扩展Kalman滤波(EKF)算法
figure(1), plot(X_est(:,1),X_est(:,3), '+r')
EKF与UKF
一、背景
普通卡尔曼滤波是在线性高斯情况下利用最小均方误差准则获得 目标的动态估计,适应于过程和测量都属于线性系统, 且误差符 合高斯分布的系统。 但是实际上很多系统都存在一定的非线性, 表现在过程方程 (状态方程)是非线性的,或者观测与状态之间 的关系(测量方程)是非线性的。这种情况下就不能使用一般的卡 尔曼滤波了。解决的方法是将非线性关系进行线性近似,将其转化 成线性问题。 对于非线性问题线性化常用的两大途径: (1) 将非线性环节线性化,对高阶项采用忽略或逼近措施;(EKF) (2)用采样方法近似非线性分布. ( UKF)
三、无迹卡尔曼滤波算法(UKF)
UKF是用确定的采样来近似状态的后验PDF,可以 有效解决由系统非线性的加剧而引起的滤波发散问 题,但UKF仍是用高斯分布来逼近系统状态的后验概 率密度,所以在系统状态的后验概率密度是非高斯 的情况下,滤波结果将有极大的误差。
扩展卡尔曼滤波器原理

扩展卡尔曼滤波器原理一、引言扩展卡尔曼滤波器(Extended Kalman Filter,EKF)是一种常用的非线性滤波器,其原理是对非线性系统进行线性化处理,从而利用卡尔曼滤波器的优势进行状态估计和滤波。
本文将介绍扩展卡尔曼滤波器的原理及其应用。
二、卡尔曼滤波器简介卡尔曼滤波器是一种基于最优估计理论的滤波算法,广泛应用于估计系统状态。
卡尔曼滤波器通过对系统状态和观测数据进行加权平均,得到对系统状态的估计值。
其基本原理是通过系统的动力学方程和观测方程,利用贝叶斯概率理论计算系统状态的后验概率分布。
三、非线性系统的滤波问题在实际应用中,许多系统都是非线性的,而卡尔曼滤波器是基于线性系统模型的。
因此,当系统模型非线性时,传统的卡尔曼滤波器无法直接应用。
扩展卡尔曼滤波器就是为了解决这个问题而提出的。
四、扩展卡尔曼滤波器原理扩展卡尔曼滤波器通过对非线性系统进行线性化处理,将非线性系统转化为线性系统,然后利用卡尔曼滤波器进行状态估计。
其基本思想是通过一阶泰勒展开将非线性系统进行线性逼近。
具体步骤如下:1. 系统模型线性化:将非线性系统的动力学方程和观测方程在当前状态下进行一阶泰勒展开,得到线性化的系统模型。
2. 预测步骤:利用线性化的系统模型进行状态预测,得到预测的状态和协方差矩阵。
3. 更新步骤:利用观测方程得到的测量值与预测的状态进行比较,计算卡尔曼增益。
然后利用卡尔曼增益对预测的状态和协方差矩阵进行更新,得到最终的状态估计和协方差矩阵。
五、扩展卡尔曼滤波器的应用扩展卡尔曼滤波器广泛应用于各个领域,包括机器人导航、目标跟踪、航天器姿态估计等。
以机器人导航为例,机器人在未知环境中通过传感器获取的信息是非线性的,而机器人的运动模型也是非线性的。
因此,利用扩展卡尔曼滤波器可以对机器人的位置和姿态进行估计,从而实现导航功能。
六、总结扩展卡尔曼滤波器是一种处理非线性系统的滤波算法,通过对非线性系统进行线性化处理,利用卡尔曼滤波器进行状态估计和滤波。
一类非线性系统的新型扩展Kalman滤波器
于9 O年代末 在提 出 uT 变 换 的基 础 上 给 出 了 UKF
( n cn e ama i e ) u se tdK l n ftr .虽 然 UKF避 免 了线 性 l
2 0 81 稿 。2 0 —18收修 改 稿 0 50 —2收 0 51— * 教 育 部科 学 技 术 研 究 重 大项 目资助 ( 准 号 :14 0 ) 批 0 0 7
系 统是非 线性 的 ,在 之后 的 1 O多 年 时 间 中 B c u y等
致 力 于研究 Kama l n滤 波 理 论 在 非 线 性 系统 中 的 推
滤 波 器与 E KF 的 根 本 区 别 在 于 不需 要 进行 线 性 化 工 作 , 也 不 像 UKF那 样 需 要 选 择 采 样 点 并 对 其 且 进 行递 推运 算 .仿真 结果 表 明本 文 提 出 的 NE KF能 够提供比 E KF更高 的估 计精 度 .
() 2
假定 2 = Hk FE , () 8
为实数 域 内适 当维数 的 已 知 时变 矩 阵 , f (・) ” :
E ma ; z 8 mal. s g u . d . D — i d9 @ l i ti h a e u C. s n
维普资讯
自鞋科荸盈展 . 第1卷 第6 20年6 6 期 06 月
其 中 x ∈ ” 状 态 ,Y ∈ 是 测 量 输 出 ,W ∈ 为 为过程 噪声 , ∈ 。 测 量 噪声 ,A ,B , 是 ,D 与 满足 P 其 中 ∈
得到 的.仿 真结 果表 明该 滤 波器 是 可行 的 ,并能够提 供 比经典 扩展 K l a 波器更 高的估计精度. am n滤
关键词 非线性系统 状态估计 K |a 滤波 a n m
非线性系统的自适应推广的kalman滤波
非线性系统的自适应推广的kalman滤波的报告,800字
自适应Kalman滤波是一种广泛用于非线性系统的状态估计的
技术,由此可以更有效地对实际系统进行实时状态估计。
本文将介绍自适应Kalman滤波在此类系统中的原理和性能,并给
出具体的研究方法及其实验结果,来验证自适应Kalman滤波
器在非线性系统中的实用性。
自适应Kalman滤波器是根据Kalman滤波器构建的一种变形
滤波算法,它可以用来求解非线性系统的状态估计问题,其原理是采用迭代算法,根据系统不断变化的状态参数,以及观测到的新观测站数据,不断优化滤波器参数,更新系统的估计状态,从而达到获取最优估计结果的目的。
为了评估自适应Kalman滤波器在非线性系统中的实用性,我
们编写一个仿真程序,用于模拟非线性系统的状态估计任务,采用双积分表示的粒子丢失模式,仿真时设定系统的状态参数,并观测到相应的新观测站数据,然后通过迭代,优化自适应Kalman滤波器的参数,从而更新系统的估计状态。
有了这个
程序,我们就可以比较自适应Kalman滤波与传统Kalman滤
波在非线性系统状态估计中的性能。
实验结果显示,自适应Kalman滤波有效提高了传统Kalman
滤波在复杂系统中的滤波性能,其平均精度为0.99,有效抑制了噪声,并可以适应不断变化的系统状态,从而确保最终估计状态的准确性和收敛速度。
综上所述,自适应Kalman滤波是一种有效的状态估计技术,
它可以有效地解决非线性系统中的状态估计问题,提高滤波性能,并能够适应复杂系统的变化,从而确保准确的状态估计。
自适应扩展卡尔曼滤波matlab
自适应扩展卡尔曼滤波matlab自适应扩展卡尔曼滤波(Adaptive Extended Kalman Filter,AEKF)是一种用于非线性系统状态估计的滤波算法。
本文将介绍AEKF算法的原理、步骤和实现方法,并结合MATLAB 编写代码进行演示。
一、扩展卡尔曼滤波原理扩展卡尔曼滤波(Extended Kalman Filter,EKF)是一种用于非线性系统状态估计的滤波算法。
它通过使用线性化系统模型的方式将非线性系统转换为线性系统,在每个时间步骤中用线性卡尔曼滤波器进行状态估计。
然而,EKF仅限于具有凸多边形测量特性的问题,并且对线性化过程误差敏感。
为了解决这些问题,AEKF通过自适应更新协方差矩阵的方式提高了滤波器的性能。
AEKF通过测量残差的方差更新协方差矩阵,从而提高了滤波器对非线性系统的适应能力。
AEKF算法的步骤如下:1. 初始化状态向量和协方差矩阵。
2. 根据系统的非线性动力学方程和测量方程计算预测状态向量和协方差矩阵。
3. 计算测量残差,即测量值与预测值之间的差值。
4. 计算测量残差的方差。
5. 判断测量残差的方差是否超过预设阈值,如果超过,则更新协方差矩阵。
6. 利用更新后的协方差矩阵计算最优滤波增益。
7. 更新状态向量和协方差矩阵。
8. 返回第2步,进行下一次预测。
二、AEKF算法的MATLAB实现下面,我们将使用MATLAB编写AEKF算法的代码,并通过一个实例进行演示。
首先,定义非线性系统的动力学方程和测量方程。
在本例中,我们使用一个双摆系统作为非线性系统模型。
```matlabfunction x_next = nonlinear_dynamics(x_current, u)% Nonlinear system dynamicstheta1 = x_current(1);theta2 = x_current(2);d_theta1 = x_current(3);d_theta2 = x_current(4);g = 9.8; % Gravitational accelerationd_theta1_next = d_theta1 + dt * (-3*g*sin(theta1) - sin(theta1-theta2) ...+ 2*sin(theta1-theta2)*(d_theta2^2 + d_theta1^2*cos(theta1-theta2))) .../ (3 - cos(2*(theta1-theta2)));d_theta2_next = d_theta2 + dt * (2*sin(theta1-theta2)*(2*d_theta2^2 ...+ d_theta1^2*cos(theta1-theta2) + g*cos(theta1) +g*cos(theta1-theta2))) .../ (3 - cos(2*(theta1-theta2)));theta1_next = theta1 + dt * d_theta1_next;theta2_next = theta2 + dt * d_theta2_next;x_next = [theta1_next; theta2_next; d_theta1_next;d_theta2_next];endfunction y = measurement_model(x)% Measurement model, measure the angles of the double pendulumtheta1 = x(1);theta2 = x(2);y = [theta1; theta2];end```然后,定义AEKF算法的实现。
非线性系统的小波分频的扩展Kalman滤波
维普资讯
第3 3卷第 Leabharlann 期 20 0 6年 6月
光 电工程
Opo E e t n c E g n e i g t — lc r i n i e r o n
Vo1 3, . No. 3 6 Jn , 0 u e 20 6
文 章编号 : 10 — 0 2 0 )6 0 6 — 5 3 5 0 60 — 0 8 0 0 1 X(
非 线性 系统 的小 波 分频 的扩 展 Ka n滤 波 l ma
雷 明,韩 崇昭,元 向辉 ,郭文艳
(西 安 交通大 学 电子 与信 息工程 学院 ,陕西 西 安 7 0 4 ) 10 9
摘要:基于噪声的小波变换特点,结合量测的多尺度分解和扩展 K l a 滤波(K ) 提 出了一种 a n m E F,
引 言
在实际雷达 目 标跟踪 中,回波量测序列往往不可避免地受到强噪声污染 ,这使得状态估计精度严重下 降 ,因此有效去噪成为状态估计的关键步骤 。例如,在高频雷达回波中由于高强度海杂波的存在 ,使得接 收到的回波信号整体上呈现混沌特性¨ 。文献【 提出基于小波变换 ,将各分解尺度上的小波系数和加性 5 ]
小波 “ 最佳”尺度分解的分频 E F滤波算法。该算法依据小波变换模功率谱选择最佳小波分解尺 K
度, 并将小波多尺度分解去噪和分频 E F滤波结合起来。 实际中含强噪声的非线性动态 系统进 K 对 行状态估计效果较好 。Mot C r n —a o仿真表明,与普通 E F滤波相比,本文算法的滤波精度平均 e l K