推挽开关电源工作原理
开关电源半桥和全桥推挽电路工作原理

开关电源半桥和全桥推挽电路工作原理下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注! Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!开关电源:半桥与全桥推挽电路的工作原理解析开关电源是现代电子设备中不可或缺的一部分,其核心部分包括多种拓扑结构,其中半桥和全桥推挽电路是常见的两种。
推挽开关电源原理讲解

推挽开关电源原理讲解1.输入直流电源:推挽开关电源的输入电源为直流电源,通常是12V或24V的电压。
这个直流电源是通过电池或者直流电源适配器提供的。
2.方波发生器:推挽开关电源中有一个方波发生器,它通过以一定频率和占空比产生高频方波信号。
这个方波信号的频率通常在几十kHz到几百kHz之间。
3.驱动电路:方波信号通过驱动电路传递给弹簧刷式直流电机的转子。
当方波信号为高电平时,转子朝一个方向旋转;当方波信号为低电平时,转子朝另一个方向旋转。
这样,方波信号的高低电平变化使得转子不断地旋转,进而形成交流电信号。
4.变压器:向弹簧刷式直流电机的转子加上一个变压器,可以将直流电转换为交流电。
变压器中的绕组将转子产生的信号隔离开来,从而将信号输出到负载端。
5.输出负载:推挽开关电源的输出端连接到负载,负载可以是无线电设备、汽车电子设备等。
当交流信号通过负载时,可以起到提供相应功能的作用,例如无线电接收天线的放大。
推挽开关电源的主要优点包括效率高、输出稳定、结构简单等。
它可以根据输入信号的变化迅速调整输出功率,从而适应不同负载要求。
此外,推挽开关电源可以轻松实现高效率的电能转换,例如将12V的直流电源转换为220V的交流电源。
不过,推挽开关电源也存在一些缺点。
例如,在使用时,可能会产生电磁干扰,需要采取相应的屏蔽措施。
另外,由于其工作频率较高,需要使用高速开关元件和驱动电路,增加了系统的复杂性和成本。
总之,推挽开关电源是一种常用的电源变换电路,通过转换直流电为交流电实现了电能的高效转换。
其工作原理简单,并且具有高效率、输出稳定等优点,因此被广泛应用于各种电子设备中。
推挽电路工作原理

推挽电路工作原理
推挽电路是一种常见的功率放大电路,它主要由NPN型和PNP 型的晶体管组成,能够实现高效率的功率放大。
在本文中,我们将详细介绍推挽电路的工作原理,以及其在电子领域中的应用。
推挽电路的工作原理基于NPN型和PNP型晶体管的工作特性。
在推挽电路中,NPN型和PNP型晶体管交替工作,实现了对输入信号的放大和输出信号的驱动。
当输入信号为正半周时,NPN型晶体管导通,将信号放大并输出;而当输入信号为负半周时,PNP型晶体管导通,同样将信号放大并输出。
这样,推挽电路能够实现对输入信号的完整放大和输出,同时还能有效地消除交叉失真。
推挽电路在电子领域中有着广泛的应用,其中最常见的就是在功率放大器中的应用。
由于推挽电路能够实现高效率的功率放大,因此在音响设备、功放设备以及各类电子设备中都能见到其身影。
此外,推挽电路还常常用于马达驱动电路中,能够实现对马达的高效驱动,提高了系统的整体效率和稳定性。
除了功率放大和马达驱动外,推挽电路还常常用于各类开关电路中。
由于其能够实现高效的信号放大和输出,因此在开关电源、
逆变器等领域都有着广泛的应用。
推挽电路不仅能够提高系统的工作效率,还能够减小系统的功耗,提高系统的稳定性和可靠性。
总的来说,推挽电路作为一种常见的功率放大电路,在电子领域中有着广泛的应用。
其工作原理基于NPN型和PNP型晶体管的工作特性,能够实现高效率的功率放大和信号输出。
在功率放大器、马达驱动器以及开关电路中都有着重要的作用,为电子设备的性能提升和系统的稳定性提供了有力支持。
推挽电路的应用前景广阔,相信在未来的电子领域中会有更多的创新应用涌现。
bst-sw推挽电路工作原理详解

bst-sw推挽电路工作原理详解
BST-SW推挽电路是一种常见的电子电路,主要用于将直流电压转换为交流电压。
其工作原理如下:
1. 当输入的直流电压加在BST-SW推挽电路的两个开关管(通常为硅开关管)上时,其中一个开关管处于正向偏置状态(导通状态),另一个开关管处于反向偏置状态(截止状态)。
2. 在正偏置的开关管中,电流从基极流向集电极,而在反向偏置的开关管中,电流从集电极流向基极。
由于电流的单向流动,流过两个开关管的电流方向相反。
3. 当其中一个开关管导通时,其集电极电压为低电平,而另一个开关管的集电极电压为高电平。
这个高低电平的变化会产生交流电压。
4. 当输入的直流电压改变方向时,其中一个开关管变为反向偏置,另一个变为正向偏置。
这样,电流的方向也会发生改变,从而改变交流电压的相位。
5. 通过调节输入的直流电压的大小和方向,可以控制交流电压的大小和相位。
总的来说,BST-SW推挽电路通过利用开关管的开关特性,将直流电压转换为交流电压。
这种电路广泛应用于逆变器、变频器等电子设备中。
1。
4二极管推挽式开关电源工作原理详解

一、概述二极管推挽式开关电源是一种常见的电源供应电路,具有高效率、稳定性好等特点。
本文将对二极管推挽式开关电源的工作原理进行详细解析,希望能对读者有所帮助。
二、二极管推挽式开关电源的概念二极管推挽式开关电源是指采用二极管和开关管构成的推挽结构来实现电源的开关控制。
其工作原理是利用开关管周期性地导通和截止来实现电源输出的控制,从而达到稳定、可靠的电源输出。
三、二极管推挽式开关电源的结构二极管推挽式开关电源通常由输入滤波电路、整流电路、开关管驱动电路、开关管组成,其中开关管驱动电路起到了至关重要的作用。
1. 输入滤波电路:用于对输入电压进行滤波和稳压处理,以保证输入电源的稳定性和可靠性。
2. 整流电路:将交流输入电压经过整流处理转换为直流电压,并对其进行滤波,以得到稳定的直流电压。
3. 开关管驱动电路:用于对开关管的控制,通过精确的脉冲信号来控制开关管的导通和截止。
4. 开关管:负责将输入电压转换为需要的输出电压,并通过控制其导通和截止来实现电源的稳定输出。
四、二极管推挽式开关电源的工作原理二极管推挽式开关电源的工作原理主要包括两个方面,一是整流电路的工作原理,二是开关管的工作原理。
1. 整流电路的工作原理整流电路通过将交流输入电压转换为直流电压,同时进行滤波处理,以得到稳定的直流电压。
其主要工作原理是利用二极管的导通和截止来实现正负半周电压的整流和滤波。
2. 开关管的工作原理开关管是二极管推挽式开关电源中至关重要的部件,其主要工作原理是周期性地通过控制其导通和截止来实现稳定的电源输出。
当开关管导通时,输入电压通过变压器传递到输出端,当开关管截止时,输出端电压得到稳定。
五、二极管推挽式开关电源的优缺点二极管推挽式开关电源作为一种常见的电源供应电路,其优缺点也是显而易见的。
1. 优点:(1)高效率:相比传统的线性稳压电源,二极管推挽式开关电源具有更高的转换效率,能够节省能源。
(2)稳定性好:开关控制能够精确地控制输出电压,使得电源的稳定性更高。
推挽电路原理开关电源

推挽电路原理开关电源推挽电路是一种常用于驱动直流电机的电路,它通过两个互补的开关管(一般是NPN型和PNP型晶体管)控制电机的正反转。
推挽电路可以提供较大的电流输出,并且具有较好的工作效率和响应速度,因此广泛应用于各种电机驱动和开关功率放大电路中。
推挽电路的原理如下:1.基本结构:推挽电路由两个互补的开关管组成,一般一个为NPN型晶体管和一个为PNP型晶体管。
两个开关管交替工作,通过控制它们的导通和截止状态来实现电机的正反转。
2.工作原理:推挽电路有两种工作状态:正转状态和反转状态。
在正转状态下,NPN晶体管处于导通状态,PNP晶体管处于截止状态。
这时电流从电源经过NPN管流向电机,电机开始正转。
在反转状态下,PNP晶体管处于导通状态,NPN晶体管处于截止状态。
这时电流从电源经过PNP管流向电机,电机开始反转。
推挽电路通过两个开关管的交替工作,实现了电机的正反转,并且其中一条开关管工作时另一条开关管处于截止状态,大大降低了功率损耗和热量。
3.控制电平:推挽电路的控制电平是通过控制NPN和PNP晶体管的基极电压来实现的。
当NPN的基极电压为高电平,PNP的基极电压为低电平时,电路处于正转状态;当NPN的基极电压为低电平,PNP的基极电压为高电平时,电路处于反转状态。
4.保护电路:为了防止电机在正反转过程中产生反电动势以及反冲电流对驱动电路造成损害,推挽电路通常还配备了反电势保护电路,如二极管并联等。
总结:推挽电路通过控制NPN和PNP晶体管的导通和截止状态来实现电机的正反转。
它具有较大的电流输出、较好的工作效率和响应速度,广泛应用于各种电机驱动和开关功率放大电路中。
推挽电路工作原理

推挽电路工作原理
推挽电路是一种常用的电子电路,常用于功率放大和电流驱动等应用。
它的工作原理可以简单描述为:通过两个互补工作的开关管(一般为晶体管或场效应管)的交替开关,实现输入信号的放大和驱动负载的作用。
具体来说,推挽电路由两个互补工作的开关管组成。
一个是NPN型开关管,另一个是PNP型开关管,它们的工作状态正好互补。
当输入信号为高电平时,NPN型开关管导通,而PNP型开关管截止;当输入信号为低电平时,NPN型开关管截止,而PNP型开关管导通。
这样,通过交替导通和截止,输入信号可以被放大并驱动到负载上。
在推挽电路中,两个开关管的互补工作是通过一个控制电路来实现的。
这个控制电路负责控制两个开关管的导通与截止。
当输入信号为高电平时,控制电路使NPN型开关管导通,PNP 型开关管截止;当输入信号为低电平时,控制电路使NPN型开关管截止,PNP型开关管导通。
这样一来,输入信号通过控制电路的控制,可以实现两个开关管的交替工作,将输入信号放大并驱动到负载上。
推挽电路的工作原理有以下几个特点:首先,由于推挽电路使用了两个互补工作的开关管,可以避免单个开关管的不足,提高了整个电路的性能和可靠性;其次,推挽电路的输出是两个开关管交替工作的结果,可以实现高电平和低电平的输出,适用于各种不同的电路需求;最后,推挽电路能够提供相对较大的输出功率,适用于功率放大和电流驱动等高功率应用。
总而言之,推挽电路通过两个互补工作的开关管的交替工作,实现输入信号的放大和驱动负载的作用。
它的工作原理简单而实用,可以广泛应用于各种电子电路中。
3.推挽式开关电源的实际电路

3.1.3自激型推挽式开关电源中功率开关管的选择(P.185)
1.最大集-射极电压Uce的确定 2.最大集极电流Icm的确定 3.最小电流放大倍数和输入驱动电流的计算
4.功率开关管的损耗和结点温度计算 5.开关速度的确定
6.功率开关管二次击穿额定值的确定
3.1自激型推挽式开关电源电路 3.1.4自激型推挽式双变压器开关电源电路(P.189)
3.2他激型推挽式开关电源电路
3.2.4他激型推挽式开关电源电路中的PWM/PFM电路
(6). UC3525A/UC3527A应用电路 p.207 UC3525A/UC3527A应用电路1 磁耦合推挽隔离式开关稳压电源(GTR)(P.208)
UC3525A/UC3527A应用电路1 磁耦合推挽隔离式开关稳压电源(GTR)(P.208)
3.2他激型推挽式开关电源电路
3.2.3他激型推挽式开关电源电路中的双管共态导通问题
1.采用RC电路延迟导通来避免双管共态导通现象 (2).延迟功率开关管导通(P.197-198)
2.采用延迟导通脉冲来避免双管共态导通现象(P.198-199) 3.减小功率开关管存储时间的有效方法(P.200-202)
3、转换效率:
PO U i 1 U o PI Ui U o 1
分析表明:
①.转换效率与输出电压的关系如图3-4
②.不宜采用桥式整流技术 ③.合理设计功率开关变压器 ④.选择开关特性好、上升时间和下降时间都较小的开关管
3.1自激型推挽式开关电源电路
3.1.1自激型推挽式开关电源的构成与原理
(U i U ces ) 108 Ui NP 108 4 fBS SC 4 fBS SC
2.基极绕组匝数的计算
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
推挽开关电源工作原理
推挽开关电源是一种常用的电源供电方式,它的工作原理可以简单概括为将输入电压通过推挽电路转换为输出电压的过程。
推挽开关电源具有高效率、稳定性好、输出电压范围广等优点,被广泛应用于各种电子设备中。
推挽开关电源的工作原理如下:首先,输入电压通过输入端进入推挽电路。
推挽电路由两个开关管组成,一个是NPN型晶体管,另一个是PNP型晶体管。
这两个晶体管分别被驱动,使其交替导通和截止。
当NPN晶体管导通时,输出端与输入端相连,此时输出端的电压与输入电压相等;当PNP晶体管导通时,输出端与地相连,此时输出端的电压为零。
通过这种交替导通和截止的方式,可以实现输出电压的转换。
推挽开关电源的工作过程可以分为两个阶段:导通阶段和截止阶段。
在导通阶段,NPN晶体管导通,输入电压通过NPN晶体管传递到输出端,输出端的电压与输入电压相等。
在截止阶段,PNP晶体管导通,输出端与地相连,输出端的电压为零。
通过不断交替进行导通和截止,可以实现输出电压的稳定转换。
推挽开关电源的输出电压可以通过调节驱动两个晶体管的信号波形的占空比来实现。
占空比是指晶体管导通时间与总周期之比。
通过改变占空比,可以改变导通阶段和截止阶段的时间比例,从而改变
输出电压的大小。
当占空比增大时,导通时间增加,输出电压也增大;当占空比减小时,导通时间减少,输出电压也减小。
推挽开关电源还可以通过添加滤波电路来提高输出电压的稳定性。
滤波电路可以滤除电源中的噪声和纹波,使输出电压更加稳定。
常用的滤波电路包括电容滤波和电感滤波。
电容滤波通过将电容与输出端相连,利用电容的充放电特性来平滑输出电压;电感滤波通过将电感与输出端相连,利用电感的储能和释能特性来平滑输出电压。
通过合理选择和设计滤波电路,可以使输出电压的纹波系数降低到很小的水平,提高输出电压的稳定性。
推挽开关电源是一种高效、稳定的电源供电方式,其工作原理是通过推挽电路将输入电压转换为输出电压。
通过调节晶体管的导通和截止时间,可以实现输出电压的转换。
通过添加滤波电路,可以提高输出电压的稳定性。
推挽开关电源在各种电子设备中得到了广泛应用,为电子设备的稳定运行提供了可靠的电源支持。