最新人教版高中理科数学一轮复习全套单元测试题含答案及解析
高考数学(人教A版理科)一轮复习课时跟踪检测13Word版含答案

课时追踪检测( 十三 ) 1.函数f ( x) = ( x+ 2a)( x-a) 2的导数为 ()A.2( x2-a2) C.3( x2-a2)答案: C B.2( x2+a2) D.3( x2+a2)分析:∵ f ( x)=( x+2a)( x- a)2= x3-3a2x+2a3,∴ ′()=3(x 2-a2) .fx2.曲线y=sin x+e x在点(0,1)处的切线方程是 ()A.x- 3y+3= 0B.x- 2y+ 2= 0 C.2x-y+1= 0D.3x-y+ 1= 0答案: C分析:∵ y=sinx x,x+e,∴ y′=cos x+e∴y′|x=0=cos 0+ e0= 2,∴曲线y= sin x+e x在点(0,1)处的切线方程为y-1=2( x-0),即 2x-y+ 1= 0.3.曲线y =x在x= 0 处的切线方程是xln 2+- 1=0,则= ()a y a1B.2A.21C.ln 2D.ln 2答案: A分析:由题知y′= a x ln a, y′|x=0=ln a,又切点为(0,1),故切线方程为x ln a- y+1 1= 0,∴a=2.4.若f ( x) =2xf′(1) +x2,则f′(0)= ()A.2B.0C.- 2D.- 4答案: D分析: f ′(x)=2f ′(1)+2x,∴令 x=1,得 f ′(1)=- 2,∴′(0) = 2′(1) =- 4.f f5.已知曲线y= ln x的切线过原点,则此切线的斜率为()A.e B.- e11C.e D.-e答案: C分析: y=ln x 的定义域为(0,+∞),且 y′=1,设切点为( x0,ln x0),则 y′|x=x=1,x0x0切线方程为 y-ln x0=1(0,0) ,因此- ln x0=- 1,解得x0= e,故此( x-x0) .由于切线过点x01切线的斜率为 .e- 2x+ 1在点 (0,2) 处的切线与直线y=0和 y= x 围成的三角形的面积为() 6.曲线y= e11A.B.322C.3D.1答案: A分析: y′|x=0=(-2e-2x)|x =0=-2,故曲线y=e-2x+1在点(0,2)处的切线方程为y=-2x+ 2,易得切线与直线y=0和 y=x 的交点分别为(1,0)22,3,3,故围成的三角形的面积为121×1×=.2337.已知y=f ( x) 是可导函数,如图,直线y= kx+2是曲线 y=f ( x)在 x=3处的切线,令(x ) =xf(x),′()是 () 的导函数,则g′(3) = ()g g xg xA.- 1B.0 C.2D.4答案: B分析:由题图可知,曲线y= f ( x)在x=3处切线的斜率等于-13,∴f′(3)=-13,∵g( x)= xf ( x),∴ g′(x)= f ( x)+ xf ′(x),∴ g′(3)= f (3)+ 3f′(3),又由题图可知f (3)=1,∴g′(3)1= 1+3× - 3 =0.8.设点P是曲线y= x3-23x+ 3上的随意一点,点P处切线倾斜角α 的取值范围为()A. 0,π∪5π,π262πB. 3,ππ2πC. 0,2∪ 3 ,ππ5πD.2,6答案: C分析:由于y′=3x2-3≥-3,故切线斜率k≥-3,因此切线倾斜角α 的取值范围是0,π2π,π.2∪39.已知函数f ( x) =x ln x,若f′ ( x0) = 2,则x0= ________.答案: e分析: f ′(x)=ln x+1,由 f ′(x )=2,即ln x +1=2,解得 x =e.00010.若直线l与幂函数y=x n的图象相切于点A(2,8) ,则直线l 的方程为________.答案: 12x-y- 16= 0分析:由题意知,A(2,8)在 y=x n上,∴2n=8,∴ n=3,∴y′=3x22过点 (2,8) .∴y- 8= 12( x- 2),即,直线 l 的斜率 k=3×2=12,又直线 l直线 l的方程为12x-y-16= 0.11.在平面直角坐标系xOy中,点 M在曲线 C:y= x3- x 上,且在第二象限内,已知曲线C 在点处的切线的斜率为2,则点的坐标为 ________.M M答案: ( - 1,0)分析:∵ y′=3x2-1,曲线 C在点 M处的切线的斜率为2,∴ 3x2- 1=2,x=± 1. 又∵点在第二象限,∴x=- 1,∴y=( -1) 3-( -1)=0,∴点的坐标为 ( - 1,0) .M M12.设函数f (x) = (x-)(x-)(x- )(,b,c是两两不等的常数 ) ,则a+a b c a f abb +fc= ________.f c答案: 0分析:∵ f ( x)= x3-( a+ b+ c) x2+( ab+ bc+ ca) x- abc,∴ f ′(x)=3x2-2( a+ b+ c) x +ab+bc+ ca,f′(a)=( a- b)( a- c),f′(b)=( b- a)( b- c),f′(c)=( c- a)( c- b).a + f bc ∴fab + fc=a+b+ca - ba - cb - a b -c c - ac - b=a b - c - b a - c + c a - ba -b a - c=0.b - c1π1.已知函数 f ( x ) = x cos x ,则 f ( π ) +f ′2=()31A .- πB .- π2231C .- πD .- π答案: C11分析:∵ f ′(x ) =- x 2cos x + x ( - sinx ) ,π 1 23∴f ( π ) + f ′ 2 =- π + π ·( - 1) =- π .2.设曲线 y = 1+ cosx在点 π , 1 处的切线与直线 x -ay + 1= 0 平行,则实数 a 等于sin x 2()1 A .- 1 B .2 C .- 2 D .2答案: A- 1- cos x分析:∵ y ′=2,sinxπ1∴y ′ x = 2 =- 1,由条件知 a =- 1,∴ a =- 1.3.若点 P 是曲线 y =x 2 -ln x 上随意一点,则点 P 到直线 y =x - 2 的最小值为 () A .1B . 2C .2D . 32答案: B1分析:由于定义域为 (0 ,+∞ ) ,因此 y ′= 2 x- x = 1,解得 x = 1,则在 P (1,1) 处的切线 方程为 x - y = 0,因此两平行线间的距离为 2 = 2.d =24. 已知函数 f ( x ) = x , g ( x ) = a ln x , a ∈ R ,若曲线 y = f ( x ) 与曲线 y = g ( x ) 订交,且在交点处有共同的切线,则切线方程为________.1e答案: y = 2e x + 21a分析: f ′(x ) =, g ′(x ) =( x > 0) ,由已知得2 xxx = a lnx ,e1 a解得 a = 2,2x= x,x = e 2.∴两条曲线交点的坐标为(e 2,e) ,切线的斜率为 k = f ′(e 2) = 1 ,∴切线的方程为y -e2e= 1 ( x -e 2) ,即 y = 1 x + e.2e2e 25.已知函数 f ( x ) = x 3-4x 2+ 5x -4.(1) 求曲线 f ( x ) 在点 (2 , f (2)) 处的切线方程;(2) 求经过点 A (2 ,- 2) 的曲线 f ( x ) 的切线方程.解: (1) ∵ f ′(x ) = 3x 2-8x + 5,∴f ′(2) = 1,又 f (2) =- 2,∴曲线 f ( x ) 在点 (2 ,f (2)) 处的切线方程为 y - ( -2) = x -2,即 x - y - 4= 0.3 2(2) 设切点坐标为 ( x 0, x 0- 4x 0+ 5x 0- 4) , 2∵f ′(x 0) = 3x 0- 8x 0+ 5,2∴切线方程为 y - ( -2) = (3 x 0-8x 0+ 5)( x -2) ,又切线过点 ( x , x 3 2- 4x + 5x - 4) ,0 0 0 0322∴x 0- 4x 0 + 5x 0-2= (3 x 0- 8x 0+ 5)( x 0- 2) ,整理得 ( x 0- 2) 2 ( x 0- 1) = 0,解得 x = 2 或 x = 1,∴经过(2 ,- 2) 的曲线f ( x ) 的切线方程为x - -4=0 或 y +2=0.Ayb6.设函数 f ( x ) = ax -x ,曲线 y = f ( x ) 在点 (2 , f (2)) 处的切线方程为 7x - 4y - 12= 0. (1) 求 f ( x ) 的分析式;(2) 证明曲线 f ( x ) 上任一点处的切线与直线x = 0 和直线 y = x 所围成的三角形面积为定值,并求此定值.7解: (1) 方程 7x - 4y -12= 0 可化为 y =4x - 3,b1当x = 2时,1′()=b2a-2=2,a=1,f(x) =x = . 又+2,于是解得故y2fx a x b7b=3.a+4=4,3-x.(2)设 P( x0, y0)为曲线上任一点,由y′= 1+30, 0)处的切线方程为y-0=3-0),即y- x -3 2知,曲线在点(1+ (x x0x01+360,-6=20) .令x= 0,得y=-x0,进而得切线与直线x=0的交点坐标为x0. 令x0( x-xy= x,得 y= x=2x,进而得切线与直线y= x 的交点坐标为(2 x2x ) .00,016因此点 P( x0, y0)处的切线与直线x=0, y= x 所围成的三角形的面积为S=2-x0|2 x0|=6.故曲线 y= f ( x)上任一点处的切线与直线 x=0, y= x 所围成的三角形面积为定值,且此定值为 6.。
智慧测评新高考人教A版理科数学一轮总复习课时训练2.4指数函数(含答案详析)

第二篇第 4 节一、选择题x- x,若 f(a)= 3,则 f(2a)等于 ()1.已知 f( x)= 2+ 2A. 5 B .7C. 9D. 11分析:由 f(a)=3得 2a+ 2-a= 3,两边平方得22a+ 2-2a+ 2= 9,即 22a+ 2-2a=7,故 f(2a)= 7,选 B.答案: B2. (2014 天津市滨海新区联考)设 a= 40.7,b= 0.30.5, c= log23,则 a、 b、 c 的大小关系是 ()A. b<a<c B .b<c<aC. a<b<c D. a<c<b分析: a= 40.7>4 12= 2,0<b=0.30.5<1,1< c= log23<2,因此 b<c<a,应选 B.答案: B3. (2014 杭州一检 )设函数 f(x)= 2|x|,则以下结论中正确的选项是() A. f(-1)< f(2)< f(-2) B .f(-2)<f( -1)< f(2)C. f(2)< f( -2)<f(- 1)D. f(-1)< f(-2)< f(2)分析:由题意, f(x)= 2|x|= 2|-x|= f( -x) ,即 f(x)为偶函数.f- 1 = f 1 ,故f - 2 = f 2 .明显 x≥ 0 时, f(x)= 2x单一递加.因此 f(1)< f(2)< f(2) ,即 f(- 1)<f(-2)< f(2) .应选 D.答案: Dx |x|a4. (2014 陕西汉中模拟 )函数 y = x (a>1)的图象的大概形状是( )分析: 当 x>0 时, y = a x ;当 x<0 时, y =- a x .又 a>1,应选 B.答案: B5. (2014 北京市延庆log 4x , x>0, 则 ff 1=()3 月模拟 )已知函数 f(x)=3x , x ≤ 0,161 A . 9B. 91C .- 9D .-9分析: 由于 f 1 = log 4 1=- 2,16 16121因此 ff 16=f(- 2) = 3-= 9.应选 B.答案: B3 x, 0≤ x ≤ 1,6.(2014 湖南长沙模拟 )已知函数则不等式 1<f(x)<4 的解集为f( x)=x 2- 4x + 4, x>1,()A . [0,1] ∪ (3,4)B .(0,1] ∪ (3,4)C . (0,1) ∪ (3,4)D . (0, log 34)∪ (3,4)分析: 当 0≤ x ≤1 时, 1<3x <4,解得 0<x<log 34,此时 0<x ≤ 1.当 x>1 时, 1< x 2- 4x + 4<4 ,联合 x>1,解得 3<x<4.故所求不等式的解集是(0,1] ∪(3,4) .应选 B.答案: B二、填空题17. (2014 吉林市二模 )已知函数 f(x)= -x 2, x>0则 f(f(9)) = ________.2x , x ≤ 0,1分析: f(f(9)) = f(- 3)= .8答案:188.设函数 - |x|且 a ≠1) ,若 f(2) = 4,则 f(- 2)与 f(1) 的大小关系是 ________.f(x) =a (a>0 分析: ∵f(2)= a -21= 4,∴a = 2.1-|x|= 2|x|,∴f(x)= 2∴f(- 2)= 4, f(1) = 2,∴f(- 2)> f(1).答案: f(- 2)> f(1)9.函数 f( x)= a x +2013- 2014(a>0 且 a ≠ 1)所经过的定点是________.分析: 令 x + 2013= 0,得 x =- 2013,这时 y = 1- 2014=- 2013,故函数过定点 (-2013,- 2013).答案: (- 2013,- 2013)x10.已知函数 f( x)= |2 - 1|, a<b<c ,且 f(a)>f(c)>f(b),则以下结论中,必定建立的是________ .① a<0, b<0, c<0; ② a<0,b ≥ 0, c>0;- ac; a c③2 <2④2 +2 <2.分析: 画出函数 f(x)= |2x - 1|的大概图象 (如下图 ) ,由图象可知: a<0, b 的符号不确立, 0< c<1,故①②错;∵f(a)= |2a - 1|, f(c) = |2c - 1|,∴|2a - 1|>|2c - 1|,即 1-2a >2c - 1,故 2a + 2c <2,④建立.又 2a + 2c >2 2a +c,∴2a +c<1 ,∴a +c<0 ,∴-a>c ,∴2-a>2c ,③不建立.答案: ④三、解答题11.化简以下各式:(1)[(0.064 1 -2.5 2 - 3 3 05 ) ] 3 - π;3 8a 4- 8a 1b33 2(2)3 3÷a - 2- 2 b ×a · a (a>0, b>0) .2 + 23 2 3 a 5a ab + 4b 33 3a · a解: (1)原式=3 52 3 270.48 - 15-23-32 3= 0.4- 23- 2-1= 0.4-1-52= 0.15a 3 a - 8ba a 6 (2)原式= 2 112×11×1a 3+ 2a 3b 3+4b 3 a 3- 2b 3 a 62a - 8ba=1313a 3 - 2b 3 2a - 8b a=a - 8b=a2.12.已知定义域为R 的函数(1)求 a, b 的值;(2)若对随意的t∈R,不等式-2x+ bf(x)=2x+1+a是奇函数.22恒建立,求 k 的取值范围.f(t-2t)+ f(2t - k)<0解: (1)∵f(x)是定义域为R 的奇函数,-1+ b∴f(0)= 0,即= 0,2+ a解得 b= 1.-2x+ 1进而有 f(x)=.2x+1+ a1- 2+1-2+ 1又由 f(1) =- f(- 1)知=-,4+a1+a解得 a= 2.经查验 a= 2 合适题意,∴所求 a、 b 的值为 2,1.(2)由 (1)知 f(x)=- 2x+ 11+1.=-2x+1+2 2 2x+1由上式易知f(x)在 ( -∞,+∞) 上为减函数.又因 f(x)是奇函数,进而不等式f(t 2- 2t)+ f(2t2- k)<0 ,等价于 f(t2- 2t)< -f(2t2- k)= f( - 2t 2+ k).因 f(x)是减函数,因此由上式推得 t2- 2t>-2t2+ k.即对全部 t∈R有 3t2- 2t- k>0.进而鉴别式= 4+12k<0,1解得 k<-3.。
2024-2025学年高三一轮复习联考(三)_全国卷理数(含答案)

2024届高三一轮复习联考(三)全国卷理科数学试题一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{12}A xx =<<∣,{||1}B x x =≤∣,则A B ⋃=()A.[)12-,B.()2-∞,C.[)13-, D.[]12-,2.已知复数()i i 1z =+,则z =()A.1B.C.D.23.已知命题p :x ∀∈R ,220x x m -+>,则满足命题p 为真命题的一个充分条件是()A.m>2B.0m <C.1m < D.m 1≥4.若函数()2220log 0x x x f x x x ⎧-=⎨>⎩,,,,则()2f f -=⎡⎤⎣⎦()A.2- B.2C.3- D.35.已知{}n a 是各项不全为零的等差数列,前n 项和是n S ,且2024S S =,若()2626m S S m =≠,则正整数m =()A.20B.19C.18D.176.已知平面向量a ,b满足a =,(b =,2a b -= ,则a 在b上的投影为()A.B.1C.2D.7.函数()2e e 1x xf x x --=+在[]3,3-上的大致图象为()A.B.C.D.8.已知角α的顶点与直角坐标系的原点重重合,始边与x 轴的非负半轴重合,终边经过点(2,)M m ,且sin 3α=-,则tan 2α=()A.55-B.C.55-D.55或9.已知等比数列{}n a 满足21q ≠,24m n a a a =,(其中m ,*n ∈N ),则91m n+的最小值为()A .6B.16C.32D.210.已知函数()cos 3f x x π⎛⎫=+ ⎪⎝⎭,若()f x 在[]0a ,上的值域是112⎡⎤-⎢⎥⎣⎦,,则实数a 的取值范围为()A .403π⎛⎤ ⎥⎝⎦, B.2433ππ⎡⎤⎢⎥⎣⎦, C.23π∞⎡⎫+⎪⎢⎣⎭, D.2533ππ⎡⎤⎢⎥⎣⎦,11.设4sin1a =,3sin2b =,2sin3c =,则()A.a b c<< B.c b a<< C.c a b<< D.a c b<<12.已知函数14sin π,01()2,1x x x f x x x -<≤⎧=⎨+>⎩,若关于x 的方程2[()](2)()10f x m f x m --+-=恰有5个不同的实数解,则实数m 的取值集合为()A.()35,B.[]35,C.()31--,D.[]31--,二、填空题:本题共4小题,每小题5分,共20分.13.已知1sin 62πα⎛⎫-= ⎪⎝⎭,则2cos 23πα⎛⎫+= ⎪⎝⎭___________.14.设m ,n 为不重合的直线,α,β,γ为不重合的平面,下列是αβ∥成立的充分条件的有___________(只填序号).①m α⊂,//m β②m α⊂,n β⊥,n m ⊥③αγ⊥,βγ⊥④m α⊥,m β⊥15.已知数列{}n a 为递减数列,其前n 项和22n S n n m =-++,则实数m 的取值范围是___________.16.已知点A ,B ,C 均在球O 的球面上运动,且满足3AOB π∠=,若三棱锥O ABC -体积的最大值为6,则球O 的体积为___________.三、解答题:共70分.解答应㝍出文字说明、证明过程或演算政骤.第17-21题为必考题,每个试题考生者必须作答.第22,23题为选考题,考生根据要求作答.17.已知函数()2cos 2cos 1f x x x x =-+,将函数()f x 的图象向左平移π3个单位长度,得到函数()g x 的图象.记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,4a =,12bc =,12A g ⎛⎫= ⎪⎝⎭(1)求角A ;(2)若角A 的平分线AD 交BC 于D ,求AD 的长.18.已知数列{}n a 满足()21112122222326n n n n n a a a a n -+-++++=-⋅+ .(1)求{}n a 的通项公式;(2)若2n an n b a =+,求数列{}n b 的前n 项和n T .19.已知ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,π4C =,cos cos 2cos a A c C b B +=.(1)求tan A .(2)若c =,求ABC 的面积.20.如图,在四棱锥P ABCD -中,底面ABCD 是矩形,O 是BC 的中点,PB PC ==,22PD BC AB ===.(1)求证:平面PBC ⊥平面ABCD ;(2)求直线AD 与平面PCD 所成角的正弦值.21.已知函数()1ln 1f x x x=-+.(1)求曲线()y f x =在点(1,(1))f 处的切线方程;(2)证明,对()0x ∀∈+∞,,均有()()11e 2ln 1f x x -+<++.22.在平面直角坐标系xOy 中,直线l 的参数方程为32212x a t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为22413sin ρθ=+.(1)求直线l 和曲线C 的直角坐标方程;(2)若曲线C 经过伸缩变换2x x y y⎧=⎪⎨⎪='⎩'得到曲线C ',若直线l 与与曲线C '有公共点,试求a的取值范围.23.已知函数()22f x x x t =++-(0t >),若函数()f x 的最小值为5.(1)求t 的值;(2)若a b c ,,均为正实数,且2a b c t ++=,求1412a b c++的最小值.2024届高三一轮复习联考(三)全国卷理科数学试题一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】A【2题答案】【答案】B【3题答案】【答案】A【4题答案】【答案】D【5题答案】【答案】C【6题答案】【答案】B【7题答案】【答案】A【8题答案】【答案】A【9题答案】【答案】D【10题答案】【答案】B【11题答案】【答案】B【12题答案】【答案】C二、填空题:本题共4小题,每小题5分,共20分.【13题答案】【答案】12 ##-0.5【14题答案】【答案】④【15题答案】【答案】()2,-+∞【16题答案】【答案】三、解答题:共70分.解答应㝍出文字说明、证明过程或演算政骤.第17-21题为必考题,每个试题考生者必须作答.第22,23题为选考题,考生根据要求作答.【17题答案】【答案】(1)π3(2)13【18题答案】【答案】(1)21n a n =-;(2)2122323n n n T ++-=【19题答案】【答案】(1)tan 3A =(2)12【20题答案】【答案】(1)证明见解析(2)63【21题答案】【答案】(1)240x y +-=(2)证明见解析【22题答案】【答案】(1):20l x a -=,2214x y +=(2)[]1,1-【23题答案】【答案】(1)3t =(2)16 3。
高考理科数学一轮复习专题训练:数列(含详细答案解析)

B . 3 2.在正项等比数列{a }中,已知 a 4 = 2 , a = ,则 a 5 的值为( 8= 2 , a = ,可得 8 q 4 = 8 = ,又因为 q > 0 ,所以 q = 1 2 2127B .35063C .28051D . 3502第 7 单元 数列(基础篇)第Ⅰ卷一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知等差数列{a n }的前 n 项和为 S n ,若 a 1=12,S 5=90,则等差数列{a n }公差 d =()A .2【答案】C2 C .3D .4【解析】∵a =12,S =90,∴ 5 ⨯12 + 1 5 5 ⨯ 4 2d = 90 ,解得 d=3,故选 C .n 8 1 )1 1 A . B . - C . -1 D .14 4【答案】D【解析】由题意,正项等比数列{a }中,且 a n 48 1 a 1 a 16 41,则 a = a ⋅ q = 2 ⨯ = 1 ,故选 D .5 43.在等差数列{a n}中, a 5+ a = 40 ,则 a + a + a = ( ) 13 8 9 10A .72B .60C .48D .36【答案】B【解析】根据等差数列的性质可知: a 5 + a 13 = 40 ⇒ 2a 9 = 40 ⇒ a 9 = 20 ,a + a + a = 2a + a = 3a = 60 ,故本题选 B .8 9109994.中国古代数学名著《张丘建算经》中记载:“今有马行转迟,次日减半,疾七日,行七百里”.其大意:现有一匹马行走的速度逐渐变慢,每天走的里程数是前一天的一半,连续走了7 天,共走了 700 里,则这匹马第 7 天所走的路程等于()A .700里里 里【答案】A127里【解析】设马每天所走的路程是 a 1, a 2 ,.....a 7 ,是公比为1的等比数列,a 1 - ( )7 ⎪a = a q 6= 7005.已知等差数列{a n } 的前 n 项和 S n 有最大值,且 a=10(a +a )2= 5(a + a ) = 5(a + a ) > 0 , S =2 = 11a < 0 , (a + 2d - 1)2 = (a + d - 1)(a + 4d - 1) ⎩ d = 2这些项的和为 700, S = 7 ⎛ 1 ⎫ 1 ⎝ 2 ⎭1 - 12 = 700 ⇒ a =1 64 ⨯ 700 127 ,7 1 127 ,故答案为 A .a 5< -1 ,则满足 S 6n> 0 的最大正整数 n 的值为()A .6B .7C .10D .12【答案】C【解析】设等差数列{a n } 的公差为 d ,因为等差数列{a n } 的前 n 项和 S n 有最大值,所以 d < 0 ,a又 a 5 < -1 ,所以 a 5 > 0 , a 6 < 0 ,且 a 5 + a 6 > 0 ,6 所以 S1 101 10 5 6 11 所以满足 S n > 0 的最大正整数 n 的值为 10.11(a + a )1 1166.已知等差数列{a n}的公差不为零, Sn为其前 n 项和, S 3 = 9 ,且 a 2 - 1 , a 3 - 1, a 5 - 1构成等比数列,则 S 5 = ( )A .15B . -15C .30D .25【答案】D【解析】设等差数列{a n}的公差为 d (d ≠ 0),⎧⎪3a + 3d = 9⎧a = 1 由题意 ⎨ 1 ,解得 ⎨ 1 ⎪⎩ 1 1 1.∴ S = 5 ⨯1 +5 5 ⨯ 4 ⨯ 22 = 25 .故选 D .7.在等差数列{a n } 中, a 3 , a 9 是方程 x 2 + 24 x + 12 = 0 的两根,则数列{a n } 的前 11 项和等于(A .66B .132C . -66D . -132【答案】D)S = 11⨯ (a + a ) 2 2 2 = 15 ,解得 n = 5 ,( )nC . a = 3n -1D . a =3n【解析】因为 a 3 , a 9 是方程 x 2 + 24 x + 12 = 0 的两根,所以 a 3 + a 9 = -24 ,又 a 3 + a 9 = -24 = 2a 6 ,所以 a 6 = -12 ,11⨯ 2a1 11 = 6 = -132 ,故选 D . 118.我国南宋数学家杨辉 1261 年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就,在“杨辉三角”中,第n 行的所有数字之和为 2n -1 ,若去除所有为 1 的项,依次构成数列 2,3,3,4,6,4,5,10,10,5,…,则此数列的前 15 项和为()A .110B .114C .124D .125【答案】B【解析】由题意, n 次二项式系数对应的杨辉三角形的第 n +1行, 令 x = 1 ,可得二项展开式的二项式系数的和 2n ,其中第 1 行为 2 0 ,第 2 行为 21 ,第 3 行为 22 ,L L 以此类推,即每一行的数字之和构成首项为 1,公比为 2 的对边数列,则杨辉三角形中前 n 行的数字之和为 S = n 1- 2n1- 2 = 2n - 1,若除去所有为 1 的项,则剩下的每一行的数字的个数为1,2,3, 4,L ,可以看成构成一个首项为 1,公差为 2 的等差数列,则T =n n (n + 1)2 ,令 n (n + 1)所以前 15 项的和表示前 7 行的数列之和,减去所有的 1,即 27 - 1 - 13 = 114 ,即前 15 项的数字之和为 114,故选 B .9.已知数列{a }的前 n 项和为 S nn,满足 2S n =3a n -1 ,则通项公式 a n 等于()A . a = 2n- 1n【答案】CB . a= 2nn n: , + , + + , + + + , ,那么数列 {b }= ⎧⎨ 1 ⎩ a an n +1 ⎭n + 1 ⎭C . 4 ⨯ ⎝ 2 n + 1 ⎭D .⎝ 1 + 2 + ⋅⋅⋅ + n n2 a an (n + 1) ⎝ n n + 1 ⎭ = = = 4 ⨯ - ⎪ , ∴ S = 4 ⨯ 1 - + - + - + ⋅⋅⋅ + - = 4 ⨯ 1 - ⎪ 2 2 3 3 4 n n + 1 ⎭ ⎝ ⎝⎪ , 1 1 ⎫【解析】当 n = 1 时, 2S 1 = 3a 1 -1 ,∴ a 1 = 1 ,当 n ≥ 2 且 n ∈ N * 时, 2S n -1 = 3a n -1 - 1 ,则 2S n - 2Sn -1 = 2a n = 3a n - 1 - 3a n -1 + 1 = 3a n - 3a n -1 ,即 a n = 3an -1,∴ 数列 {a }是以1 为首项, 3 为公比的等比数列∴ a nn= 3n -1 ,本题正确选项 C . 10.已知数列 满足,且 ,则( )A .B .C .D .【答案】B【解析】利用排除法,因为,当当当当时,时,时,时, ,排除 A ;,B 符合题意;,排除 C ;,排除 D ,故选 B .11.已知数列为()1 12 1 23 1 2 34 2 3 3 4 4 45 5 5 5⋯ n ⎫ ⎬ 前 项和A .1 - 1 ⎛ n + 1B . 4 ⨯ 1 - 1 ⎫ ⎛ 1 ⎪ - 1 ⎫⎪1 1-2 n + 1【答案】B【解析】由题意可知: a =nn (n + 1)= = , n + 1 n + 1 2∴ b = 1n n n +11 4 ⎛ 1 1 ⎫ n n + 1 ⋅2 2⎛ 1 1 1 1 1 ⎛ n本题正确选项 B .1 ⎫n + 1 ⎭12.已知数列{a }满足递推关系: a , a = ,则 a 2017= (12016B . 12018D . 1=a 2 -= 1 . ⎩ a∴ 1=1}满足 a 2 q ,可设三数为 , a , aq ,可得 ⎪⎨ a⎪ q 求出 ⎨ ,公比 q 的值为 1.=3an n +1 = a 1 n a + 12 n)A .12017C .12019【答案】C【解析】∵ ana + 1 n1, a = ,∴ 1 1 1 a a n +1 n⎧ 1 ⎫∴数列 ⎨ ⎬ 是等差数列,首项为 2,公差为 1.n ⎭a2017= 2 + 2016 = 2018 ,则 a2018 .故选 C .第Ⅱ卷二、填空题:本大题共4 小题,每小题5 分.13.已知等比数列{a n 1 = 12 ,且 a 2a 4 = 4(a3 - 1) ,则 a 5 = _______.【答案】8【解析】∵ a 2a 4 = 4(a 3 - 1) ,∴ a 3 = 4(a 3 -1) ,则 a 3 = 2 ,∴ a = 5 a 2 3 = a122 1 2= 8 ,故答案为 8.14.若三数成等比数列,其积为 8,首末两数之和为 4,则公比 q 的值为_______.【答案】1【解析】三数成等比数列,设公比为⎧a = 2⎩ q = 1⎧ a3 = 8 a q + aq =4 ⎩,15.在数列 {an}中,a 1= 1 , an 3 + a n(n ∈ N *)猜想数列的通项公式为________.=3a4 3 + a 53 + a 6 3a 3a 32 数列的通项公式为 a = 3n + 2 n + 2+ = (m + n) + ⎪ = 10 + + ⎪ ≥ 10 + 2 ⋅ ⎪⎪ = 2 , n m ⎭ 8 ⎝ n m ⎭【答案】3n + 2【解析】由 an 3 + a n, a = 1 ,可得 a = 1 2 3a 1 3 + a 13 3 3= , a = = , a == ,……,∴ 猜想 3 4 2 33,本题正确结果 .n16.已知正项等比数列{a n } 满足 2a 5 + a 4 = a 3 ,若存在两项 a m , a n ,使得 8 a m a n = a 1 ,则9 1+ 的最小值 mn为__________.【答案】2【解析】Q 正项等比数列{a n } 满足 2a 5 + a 4 = a 3 ,∴ 2a 1q 4 +a 1q 3 =a 1q 2 ,整理得 2q 2 +q - 1 = 0 ,又 q > 0 ,解得 q = 12,Q 存在两项 a , a 使得 8 a ⋅ a = a ,∴ 64a 2 q m +n -2 = a 2 ,整理得 m + n = 8 ,m nmn111∴则 9 1 1 ⎛ 9 1 ⎫ 1 ⎛ m 9n ⎫ 1 ⎛ m 9n ⎫ m n 8 ⎝ m n ⎭ 8 ⎝9 1 m 9n+ 的最小值为 2,当且仅当 = 取等号,但此时 m , n ∉ N * .m n n m又 m + n = 8 ,所以只有当 m = 6 , n = 2 时,取得最小值是 2.故答案为 2.三、解答题:本大题共6 个大题,共 70 分,解答应写出文字说明、证明过程或演算步骤.17.(10 分)已知等差数列{a n(1)求 {a}的通项公式;n}的公差不为 0, a 1= 3 ,且 a , a , a 成等比数列.2 4 7(2)求 a 2 + a 4 + a 6 + L + a 2n .【答案】(1) a n = n + 2 ;(2) n 2 + 3n .【解析】(1)Q a 2 , a 4 , a 7成等比数列,∴a42= a a ,2 7即 (a 1 + 3d )2 = (a 1 + d )(a 1 + 6d ) ,化简得 (a 1 - 3d )d = 0 ,∵公差 d ≠ 0 ,∴ a 1 = 3d ,6=n (a +a ) (2)若b= 4 { ⎪ 12 由题意得 ⎨,则 ⎨ , ⎩ 7 ⎪(a + 6d )2 = (a + d )(a + 21d )⎩ 1化简得 ⎨⎧a + 2d = 7(2)证明: b = 42n (2n + 4) n (n + 2) 2 ⎝ n n + 2 ⎭ - + - + - + L +⎪1 + - - = - ⎪ < . ⎪Q a = 3 ,∴ d = 1,∴ a = a + (n - 1)d = n + 2 .1 n1(2)由(1)知 a 2n = 2n + 2 ,故{a 2n } 是首项为 4、公差为 2 的等差数列,所以 a + a + a + L + a2 4 6 n (4 + 2n + 2)2 2n = = n 2 + 3n . 2 218.(12 分)已知公差不为零的等差数列{a n } 满足 S 5 = 35 ,且 a 2 , a 7 , a 22 成等比数列.(1)求数列{a n } 的通项公式;n nn(a - 1)(a + 3) ,且数列 b n }的前 n 项和为 T n ,求证: T < 3n 4.【答案】(1) a n = 2n + 1;(2)见详解.【解析】(1)设等差数列{a n } 的公差为 d ( d ≠ 0 ),⎧ 5 ⨯ 4⎧S = 355a + d = 35 5a 2 = a a2 221 11 ⎩2a 1 = 3d ⎧a = 3 ,解得 ⎨ 1⎩d = 2,所以 a = 3 + 2 (n -1) = 2n +1. nn nn(a -1)(a + 3) =4 11⎛1 1 ⎫ = = - ⎪ ,所以 T = n 1 ⎛ 1 1 1 1 1 1 1 1 1 1 ⎫- + - 2 ⎝ 1 3 2 4 3 5 n - 1 n + 1 n n + 2 ⎭= 1 ⎛ 1 1 1 ⎫ 3 1 ⎛ 1 1 ⎫ 3 + 2 ⎝ 2 n + 1 n + 2 ⎭ 4 2 ⎝ n + 1 n + 2 ⎭ 419.(12 分)已知数列{a n}的前 n 项和为 Sn且 S = 2a - 1 (n ∈ N * ) .n n(1)求数列{a n}的通项公式;(2)求数列{na n}的前 n 项和 T n.【答案】(1) a = 2n- 1 ;(2) T = n ⋅ 2n - 2n + 1 .nn【解析】(1)因为 S = 2a - 1 ,当 n ≥ 2 时, S = 2a - 1 ,7= 2a + 1 , n ∈ N * .+1),数列 ⎨ 15 ≤ T n < ; 即 a ∴ 数列 {a }的通项公式为 a = 2n - 1 n ∈ N * .(2n + 1)(2n + 3) 2⎝ 2n + 1 2n + 3⎪⎭ , - ⎪ + - ⎪ +⋅⋅⋅+⎪⎥ 2 ⎢⎣⎝ 3 5 ⎭ ⎝ 5 7 ⎭ ⎝ 2n + 2n + 3 ⎭⎦ 6 4n + 6整理可得 a n = 2a n -1 ,Q a = S = 2a - 1 ,解得 a = 1 ,1 111所以数列 {a n}为首项为1 ,公比为 2 的等比数列,∴a = 2n -1 .n(2)由题意可得:T = 1⨯ 20 + 2 ⨯ 21 + ⋅⋅⋅ + n ⋅ 2n ,n所以 2T = 1⨯ 21 + 2 ⨯ 22 + ⋅⋅⋅ + (n - 1)2n -1 + n ⋅ 2n ,n两式相减可得 -T = 1 + 21 + 22 + ⋅⋅⋅+ 2n -1 - n ⋅ 2n = n∴ T = n ⋅ 2n - 2n + 1 .n1 - 2n 1 - 2- n ⋅ 2n = 2n - 1 - n ⋅ 2n ,20.(12 分)已知数列{a n}满足 a 1= 1 , an +1n(1)求证数列{a n +1}是等比数列,并求数列{a n } 的通项公式;(2)设 b = log (a n 2 2n +1 ⎧ 1 ⎫ 1 1b b ⎬ 的前 n 项和 T n ,求证:6 ⎩ n n +1 ⎭.【答案】(1)证明见解析, a = 2n - 1(n ∈ N * )(2)见解析. n【解析】(1)由 an +1 = 2a n + 1 ,得 a n +1 + 1 = 2 (a + 1),n+ 1n +1 a + 1n= 2 ,且 a + 1 = 2 ,1∴ 数列 {a +1}是以 2 为首项, 2 为公比的等比数列,n∴ a + 1 = 2 ⨯ 2n -1 = 2n ,n( )nn(2)由(1)得: b = logn2(a2n +1+ 1) = log (22n +1- 1 + 1)= 2n + 1 ,2∴1b bn n +11 1 ⎛ 1 1 ⎫ = = -∴T = n1 ⎡⎛ 1 1 ⎫ ⎛ 1 1 ⎫ ⎛ 1 1 ⎫⎤ 1 1 - = - (n ∈ N * ),8又 0 < 1即 1n (2)设数列满足 b = a sin a π2的前 项和 .⎪⎩n,2 3 L 2 3 L 2 (a + 4) = S + S 2a = d + 4 d = 2 ⎪ ⎩= asin n π + ⎪ = a cos (n π ) , 2 ⎭ ⎝n +1,2n -1,⎪⎩n, 2 3 L 2 3 L a ⋅ a1 1 1 1 1 1 1≤ ,∴- ≤- < 0 ,∴ ≤ - < ,4n + 6 10 10 4n + 6 15 6 4n + 6 61≤ T < .15 621.(12 分)已知等差数列的前 项和为 ,且 是 与 的等差中项.(1)求的通项公式;n ,求n n【答案】(1)⎧⎪- (n + 2), ;(2) T = ⎨n n = 2k - 1(k = 1,,, ) n = 2k (k = 1,,, ) .⎧a = 7⎧a + 2d = 7 ⎧a = 3 【解析】(1)由条件,得 ⎨ 3 ,即 ⎨ 1 , ⎨ 1⎪715⎩1⎩,所以{a n }的通项公式是(2)由(1)知, b = a sinnn.(2n + 1)π 2n n⎛ π ⎫(1)当 n = 2k -1 (k =1,2,3,…)即 n 为奇数时, b = -a , b nnn +1= aT = -a + a - a + L + a n 1 2 3 n -1 - a = -a + (-2) n - 1= -n - 2 ;n 1(2)当 n = 2k (k =1,2,3,…):即 n 为偶数时, b = a , bnnn -1= -aT = -a + a - a +⋯- a n 1 2 3 n -1+ a = 2 ⋅ n n 2= n ,⎧⎪- (n + 2), 综上所述, T = ⎨n22.(12 分)设正项数列n = 2k - 1(k = 1,,, ) n = 2k (k = 1,,, ) .的前 n 项和为 ,已知 .(1)求证:数列 是等差数列,并求其通项公式;(2)设数列的前 n 项和为 ,且 b = 4n nn +1,若对任意 都成立,求实数 的取值范围.9(2)由(1)可得 b = 1 n (n + 1) n n + 1∴ T = 1 - ⎪ + - ⎪ + L + - ⎛ 1 ⎫ ⎛ 1 1 ⎫ ⎛ 1 1 ⎫1 n = 1 -= , ⎪ 2 ⎭ ⎝ 2 3 ⎭⎝ n n + 1 ⎭n + 1 n + 1⎝,即 nλ < n + (-1)n ⋅ 2 对任意⎢⎣ ⎥⎦n 恒成立,令 f (n ) = (n + 2)(n + 1)Q f (n + 1)- f (n ) = n (n + 1)- 2②当 为奇数时, λ < (n - 2)(n + 1)又 (n - 2)(n + 1)= n - - 1 ,易知:f (n ) = n - 在【答案】(1)见证明,【解析】(1)证明:∵;(2),且.,当当即时,时,有,解得 .,即.,于是,即.∵ ,∴为常数,∴数列是 为首项, 为公差的等差数列,∴.1 1= - ,nnn + 1都成立⎡ n (n + 1)+ (-1)n ⋅ 2 (n + 1)⎤⇔ λ <⎢⎥ nmin(n ∈ N *),①当 为偶数时, λ < (n + 2)(n + 1) = n + 2+ 3 ,n nn (n + 1) > 0 ,在 上为增函数,;n 恒成立,2 2 n n n为增函数,,102⨯ 4 ⨯ 3 = 0 ⎧a = -3 ⎪S 4 = 4a 1 + ⎪⎩a = a + 4d = 516 4⎩q3 (a + a + a ) = 120 ∴由①②可知:,综上所述 的取值范围为.第 7 单元 数列(提高篇)第Ⅰ卷一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.记 S 为等差数列{a } 的前 n 项和.已知 S = 0 , a = 5 ,则()n n45A . a n = 2n - 5B . a n = 3n - 10C . S = 2n 2 - 8nD . S = 1n nn 2 - 2n【答案】A2.已知等比数列{a }中, a n 3 ⋅ a = 20 , a = 4 ,则 a 的值是( )13 6 10A .16B .14C .6D .5【答案】D【解析】由等比数列性质可知 a ⋅ a = a 2 = 20 ,3138由 a 6 = 4 ,得 q 4= a 2 8 = a 2620 5= ,∴ a = a q 4 = 5 ,本题正确选项 D .10 63.等比数列{a } 中, a + a + a = 30 , a + a + a = 120 ,则 a + a + a = ( )n123456789A .240B .±240C .480D .±480【答案】C【解析】设等比数列{a } 中的公比为 q ,由 a + a + a = 30 , a + a + a = 120 ,n 1 2 3 4 5 6⎧ 得 ⎨a + a + a = 301 2 31 2 3,解得 q 3 = 4 ,∴ a + a + a = q 3 (a + a + a ) = 480.7 8 9 4 5 6112 , N = 4.我国古代的《洛书》中记载着世界上最古老的一个幻方:如图,将1,2,…,9 填入3 ⨯ 3 的方格内,使三行,三列和两条对角线上的三个数字之和都等于 15.一般地,将连续的正整数1,2,3,L , n 2 填入 n ⨯ n 个方格中,使得每行,每列和两条对角线上的数字之和都相等,这个正方形叫做n 阶幻方.记 n 阶幻方的对角线上的数字之和为 N n ,如图三阶幻方的 N 3 = 15 ,那么 N 9 的值为()A .369B .321C .45D .41【答案】A【解析】根据题意可知,幻方对角线上的数成等差数列,根据等差数列的性质可知对角线的两个数相加正好等于1 + n 2,根据等差数列的求和公式 S = n (1+ n 2 ) 9 9 ⨯ (1+ 92 ) 2 = 369 ,故选 A .5.已知 1, a 1 , a 2 ,9 四个实数成等差数列,1, b 1 , b 2 , b 3 ,9 五个数成等比数列,则b 2 (a 2 - a 1 ) = ( A .8 B .-8 C .±8 D .98【答案】A)【解析】由 1, a 1 , a 2 ,9 成等差数列,得公差 d = a 2 - a 1 = 9 - 1 84 - 1 = 3 ,由 1, b , b , b ,9 成等比数列,得 b 2 = 1⨯ 9 ,∴ b = ±3 ,12322当 b = -3 时,1, b , -3 成等比数列,此时 b 2 = 1⨯ (-3) 无解,2 11所以 b = 3 ,∴ b (a - a 2 2 2 1 ) = 3 ⨯ 8= 8 .故选 A .36.已知数列{a n }是公比不为 1 的等比数列, S n为其前 n 项和,满足 a = 2 ,且16a , 9a , 2a2 1 4 7成等差数列,则 S = ()3A . 5B .6C .7D .9【答案】C【解析】数列{a n } 是公比 q 不为 l 的等比数列,满足 a 2 = 2 ,即 a 1q = 2 ,122 ⨯ 2 + 3)⨯ 2 ; 2 ⨯ 2 + 4 )⨯3 ;22- 5 =,且 A n =7n + 45a7= (10B .172C . 143A . 93【解析】因为 7 = 7 = a + a a 2a A = 13 = 7 ⨯13 + 45 = 17 1 13 2 且16a , 9a , 2a 成等差数列,得18a = 16a + 2a ,即 9a q 3 = 8a + a q 6 ,1 47417111解得 q = 2,a = 1 ,则 S = 1 3 1 - 23 1 - 2= 7 .故选 C .7.将石子摆成如图的梯形形状,称数列 5,9,14,20,L ,为“梯形数”.根据图形的构成,此数列的第 2016 项与 5 的差,即 a 2016- 5 = ()A . 2018⨯ 2014B . 2018⨯ 201C .1011⨯ 2015D .1010⨯ 2012【答案】C【解析】由已知的图形我们可以得出图形的编号与图中石子的个数之间的关系为:n =1 时, a = 2 + 3 = 11(n =2 时, a = 2 + 3 + 4 = 2…,由此我们可以推断:1 (a = 2 + 3 + L + (n + 2 ) = 1n⎡⎣2 + (n + 2)⎤⎦ ⨯ (n + 1),∴ a 1⨯ ⎡⎣2 + (2016 + 2)⎤⎦ ⨯ (2016 + 1)- 5 = 1011⨯ 2015 .故选 C .20168.已知两个等差数列{a }和 {b }的前 n 项和分别为 A 和 BnnnnB n + 3 b n 7)17D .15【答案】B771131313(a + a )1 131 13= 2 b 2b b + b 13(b + b ) B 13 + 3 2,故答案选 B .9.已知数列{ }的前 n 项和为 , , ( ),则 ( )A.32B.64C.128D.25613,∴ S B .C . 1a - 1 a - 1,n⎧B . 2019 ) =+ = + = + =2 ,1 1 + 1 + a 2a 2【答案】B【解析】由,得,又,∴- 1 n +1 S - 1n= 2 ,即数列{则∴10.数列1}是以 1 为首项,以 2 为公比的等比数列,,则 ..故选 B .满足: ,若数列 是等比数列,则 的值是()A .1 【答案】B2 D .【解析】数列为等比数列 ⇒ a- 1λa - 2上式恒成立,可知 ⎨λ =q⎩-2 = -q⇒ λ = 2 ,本题正确选项 B .11.已知函数 f (x ) =2( 1 + x 2x ∈ R ),若等比数列满足 a a1 2019= 1 ,则A .2019【答案】A ( )2 C .2D . 1 2【解析】∴ f (a )+ f (a12019,1 + a2 1 + a 2 1 + a 2 1 + a 21 2019 1 1 1为等比数列,则,14b b3B . 16 C . 115D . 2b b= = - ⎭ 数列 的前 项和 T = - + - ⎪ ⎪ , 2 ⎝ 3 5 5 72n + 1 2n + 3 ⎭ 2 ⎝ 3 2n + 3 ⎭可得 λ ≤ 12,即12.已知是公比不为 1 的等比数列,数列.满足: , , 成等比数列,c =1n2n 2n +2,若数列的前 项和对任意的恒成立,则 的最大值为( )A .115【答案】C【解析】由 , ,成等比数列得 a 2 =a a ,2 2nb n又是公比不为 1 的等比数列,设公比为 q ,则 a 2 q2b n-2 = a 2 q 2n ,整理得 b = n + 1,c =111n n2n 2n +21 1 ⎛ 1 1 ⎫ (2n + 1)(2n + 3)2 ⎝ 2n + 1 2n +3 ⎪ ,1 ⎛ 1 1 1 11 1 ⎫ 1 ⎛ 1 1 ⎫+ ⋅⋅⋅ +- = - n数列 是单调递增数列,则当 n =1 时取到最小值为1151 ,即 的最大值为,故选 C .1515,第Ⅱ卷二、填空题:本大题共4 小题,每小题5 分.13.已知{a n } 是等差数列, a 2 + a 4 + a 6 + a 8 = 16 ,则 S 9 = _________.【答案】36【解析】{a n } 是等差数列, a 2 + a 4 + a 6 + a 8 = 16 , a 2 + a 8 = a 4 + a 6 = 2a 5 ,得出 a 5 = 4 ,又由 S = 9 ⋅ (a 1 + a 9 )9 = 9a = 36 .514.在数列 {a }中, a n 1= 1,an +1- a = 2n + 1 ,则数列的通项 a = ________.n n15x【答案】 n 2【解析】当 n ≥ 2 时,a = (a - a ) + (ann n -1n -1- a n -2) + (an -2- a n -3) + L + (a - a ) + (a - a ) + a ,3 2 2 1 1⇒ a = (2n - 1) + (2n - 3) + (2 n - 5) + L + 5 + 3 + 1 = n当 n = 1 , a 也适用,所以 a = n 2 .1nn (2n - 1 + 1) 2= n 2 ,15.设数列{a n } 的前 n 项和为 S n ,且 ∀n ∈ N *, a n +1a = ________.n【答案】 n - 6(n ∈ N * ) (答案不唯一)> a , S ≥ S .请写出一个满足条件的数列{a } 的通项公式n n 6 n【解析】 ∀n ∈ N * , a n +1> a ,则数列{a } 是递增的, ∀n ∈ N * , S ≥ S ,即 S 最小,n n n 6 6只要前 6 项均为负数,或前 5 项为负数,第 6 项为 0,即可,所以,满足条件的数列{a n } 的一个通项公式 a n = n - 6(n ∈ N * ) (答案不唯一).16.已知函数 f ( x ) = x 2 cosπx2,数列 {a }中, a = f (n )+ f (n + 1)(n ∈ N * ) ,则数列{a }的n n n前 40 项之和 S 40 = __________.【答案】1680【解析】函数 f (x ) = x 2 cos π 2且数列 {a }中, a = f (n )+ f (n +1),n n可得 a = f (1)+ f (2) = 0 - 4 = -4 ; a = f (2)+ f (3) = -4 + 0 = -4 ;12a = f (3)+ f (4) = 0 +16 = 16 ; a = f (4)+ f (5) = 16 ;3 4a = f (5)+ f (6) = 0 - 36 = -36 ; a = f (6)+ f (7) = -36 ;…,5 6可得数列 {a n 即有数列 {a n}为 -4 , -4 , 16 ,16 , -36 , -36 , 64 , 64 , -100 , -100 ,…, }的前 40 项之和:S = (-4 - 4 +16 +16)+ (-36 - 36 + 64 + 64)+ (-100 -100 +144 +144)+ 40⋅⋅⋅+ (-1444 -1444 +1600 +1600) = 24 + 56 + 88 +⋅⋅⋅+ 31216= ⨯10 ⨯ (24 + 312 ) = 1680 , ( a b a 1 - 22n 2 + n (n ∈ N * ).2 2 222212本题正确结果1680 .三、解答题:本大题共6 个大题,共 70 分,解答应写出文字说明、证明过程或演算步骤.17.10 分)已知数列{a n}是等比数列,数列 {b }是等差数列,且满足: n 1= b = 1 , + b = 4a , - 3b = -5 .1 2 3 2 3 2(1)求数列{a n }和 {b }的通项公式;n(2)设 c n = a n + b n ,求数列 {c n}的前 n 项和 S n .【答案】(1) a = 2n -1 , n ∈ N * , b = 2n - 1,n ∈ N * ;(2) S = 2n + n 2 - 1 .nn n【解析】(1)设 {an}的公比为 q , {b }的公差为 d ,由题意 q > 0 ,n⎧(1+ d ) + (1+ 2d ) = 4q ⎧-4q + 3d = -2由已知,有 ⎨ ,即 ⎨⎩q 2 - 3(1+ d ) = -5 ⎩ q 2 - 3d = -2⇒ q 2 - 4q + 4 = 0 ⇒ d = q = 2 ,所以 {a n }的通项公式为 an= 2n -1 , n ∈ N * , {b }的通项公式为 b = 2n - 1,n ∈ N * .n n(2) c = a + b = 2n -1 + 2n - 1 ,分组求和,分别根据等比数列求和公式与等差数列求和公式得到nnn1 - 2nn (1+ 2n - 1)S =+= 2n + n 2 - 1 .n18.(12 分)己知数列{a }的前 n 项和为 S n(1)求 {a}的通项公式;nn且 S = n 1 12 2(2)设 b n =1a an n +1,求数列 {b n}的前 100 项和.【答案】(1) a n = n ;(2) T100 =100 101.【解析】(1)当 n ≥ 2 时, S =n两式相减得 a n = S n - S n -1 = n , n 2 + n , S = (n - 1)2 + (n - 1)= n 2 + n- n ,17当 n =1时, a = S = + = 1,满足 a = n ,\ a = n . 2 2骣 1 骣 1 骣1 1 1 1 1001 - + - +L + - +2 = - , n +1 =2 n∈ N * ). ⎧⎬(2)若数列{b }满足: ba + 1 3n4 4 == 3 +n⎩ a n +1⎭a + 1 = 3n ,所以 a =1 - 1 . 3n ( )⇒ S = 2n - 144(2)令 b = 2n + 1,求数列 {b }的前 n 项和 T 及 T 的最小值.a + 2 nn1 11 1 n n(2)由(1)可知 b n =1 1 1= - ,n (n + 1) n n + 1所以数列 {b n}的前 100 项和 T100= b +b +?1 2b100= 琪 琪 琪 琪 - = 1 - = .桫 2桫 3 ? 99 100100 101 101 10119.(12 分)已知数列{a }满足: a n 1 3a -2a n - 3 ( 3a + 4 n(1)证明数列 ⎨ 1 ⎫ 为等差数列,并求数列{a n }的通项公式;⎩ a n + 1⎭nn =3n (n ∈ N * ),求 {b }的前 n 项和 S . nn n【答案】(1)证明见解析, a = n1 2n - 1 9- 1;(2) S = ⨯ 3n +2 + .n【解析】(1)因为 an +1+ 1 = -2a - 3 a + 1 1 3a + 4 1 n + 1 = n ,所以 , 3a + 4 3a + 4 a + 1 a a + 1 n n n +1 n +1 n⎧ 1 ⎫所以 ⎨ ⎬ 是首项为 3,公差为 3 的等差数列,所以n1 n(2)由(1)可知: a =n 1 3n- 1,所以由 b = n 3n a + 1 nn ∈ N * ⇒ b = n ⋅ 3n +1 , nS = 1 ⨯ 32 + 2 ⨯ 33 + L + (n - 1) ⨯ 3n + n ⨯ 3n +1 ①;n3S = 1 ⨯ 33 + 2 ⨯ 34 + L + (n - 1) ⨯ 3n +1 + n ⨯ 3n +2 ②,n①-②得 -2S = 32 + 33 + L + 3n +1 - n ⨯ 3n +2 = n 32 (3n - 1)3 - 1 - n ⨯ 3n +2n9⨯ 3n +2+ .20.(12 分)已知数列{a n}的前 n 项和为 Sn,且 S n = 2a n - 2n -1 .(1)求数列{a n}的通项公式;n nn185 ⨯ 2n -1 (2)Q b = 2n + 1 1 1 1 ⎛ 3 5 7 2n + 1 ⎫ ,则 T n = ⎪ , a + 2 52n -1 5 ⎝ 20 21 22 2n -1 ⎭ T = ⎪ 两式作差得 1 - T = ⨯ ⎢3 + ⎛ 1 ⎫ 1 ⎡ ⎛ 2 2 2 ⎫ 2n + 1⎤ 2n + 5 + +⋅⋅⋅+ - = 1 -2n ⎥⎦ ⎝ 2 ⎭ n 5 ⎣21 22 2n -1 ⎭ 5 ⨯ 2n 5 ⨯ 2n -1 5 ⨯ 2n 5 ⨯ 2n -1 5 ⨯ 2n 5 ⎧( ⎧ n - 1)2n + , n 是奇数 3 - 3n ⎪b n = 2 2 , n 是奇数2 , b = ⎨ ;(2) T = ⎨ .3n ⎪(n - 1)2n + 1 + , n 是偶数 n -2 ⎪b = 2 2 , n 是偶数n n【答案】(1)a = 5 ⨯ 2n -1- 2 (n ∈ N *);(2) T = 2 - 2n +5 3,最小值 . 5【解析】(1)当 n =1 时, a 1 = S 1 = 2a 1 - 2 - 1 ,解得 a 1 = 3 ,当 n ≥ 2 时, a n = S n - S n -1 = 2a n - 2a n -1 - 2 ,解得 a n = 2 a n -1 + 2 .则 a + 2 = 2 (an n -1+ 2),故 {a n + 2}是首项为 a 1 + 2 = 5 ,公比为 2 的等比数列,∴ a = 5 ⨯ 2n -1 - 2 (n ∈ N * ). n = ⨯ (2n + 1)⨯ + + + ⋅⋅⋅ +nn1 1 ⎛2 n 5 ⎝3 5 7 2n - 1 2n + 1 ⎫+ + + ⋅⋅⋅ + +21 22 23 2n -1 2n ⎭⎪ ⎪⎝,所以 T = 2 - n 2n + 5 5 ⨯ 2n -1,2n + 5 2n + 7 2n + 5 -2n - 3令 c = ,有 c - c =- = < 0 ,对 n ∈ N * 恒成立, n n +1 n则数列{c n }是递减数列,故{T n } 为递增数列,则 (T n )min 3= T = . 121.(12 分)已知正项数列且.的前 项和为 ,且 , ,数列 满足 ,(1)求数列(2)令【答案】(1), 的通项公式;,求数列 的前 项和 .n +1 ⎪⎪ n n⎩ n ⎪⎩ 2【解析】(1)当时, ,即 ,,19⎧⎪S + S = a 2 由 ⎨ ,可得= a 2 (n ≥ 2) ,⎪⎩ n由 ⎨ 两式相除,得 n +1 = 2 (n ≥ 2 ),⎧b b = 2n b⎪⎩b n -1b n = 2n -1 (n ≥ 2)综上:b = ⎨ n ⎪b = 2 n -22 , n 是偶数 ⎩ ⎧ 3n ⎪⎪ 2 , 的前 项和为 B ,∴ B = ⎨ , -3n + 1 ⎪ , n 是奇数 ⎧(n - 1)2n + , n 是奇数 ⎪⎪ 2综上: T = ⎨ .3n ⎪(n - 1)2n + 1 + , n 是偶数n +1 n n +1 S + S n -1 n即,又是公差为 ,首项为 的等差数列,,由题意得:,n n +1 b n -1是奇数时,是公比是 ,首项 的等比数列,∴ b = 2nn +1 2 ,同理 是偶数时是公比是 ,首项的等比数列,∴ b = 2nn -2 2 ,n ⎧ n +1⎪b = 2 2 , n 是奇数n.(2)令,即 ,⎧⎪ A = 1⋅ 20 + 2 ⋅ 21 + 3 ⋅ 22 + ⋅⋅⋅ + n ⋅ 2n -1的前 项和为 ,则 ⎨ n⎪⎩2 A n = 1⋅ 21 + 2 ⋅ 22 + 3 ⋅ 23 + ⋅⋅⋅ + n ⋅ 2n,两式相减得 - A = 20 + 21 + 22 + 2n -1 - n ⋅ 2n = n,1 - 2n 1 - 2- n ⋅ 2n ,令n n⎪⎩ 2n 是偶数3 - 3nn⎪⎩ 220ln 22 ln 32 ln n 2 (n - 1)(2n + 1) (当 x ≥ a 时, f '( x ) = 1 - = ,此时要考虑 a 与 1 的大小.(2)由(1)可知当 a = 1 , x > 1 时, x -1 - ln x > 0 ,即 ln x > 1 - x ,所以 ln x = n - 1 - = n - 1 - - ⎪ < n - 1 - + + L + ⎝ 2 n 2 ⎭ ⎝ 2 ⨯ 3 3 ⨯ 4 n(n + 1) ⎭ 1 ⎫ n - 1 = (n - 1) - n + 1 ⎭ 2(n + 1) ⎛ 122.(12 分)已知函数 f ( x ) =| x - a | - ln x(a > 0) .(1)讨论 f ( x ) 的单调性;(2)比较 + +⋯+ 与 的大小 n ∈ N * 且 n > 2) ,并证明你的结论.22 32 n 2 2(n + 1)【答案】(1)见解析;(2)见解析.⎧ x - ln x - a, 【解析】(1)函数 f ( x ) 可化为 f ( x ) = ⎨⎩a - x - ln x,x ≥ a0 < x < a ,当 0 < x < a 时, f '( x ) = -1 - 1 x< 0 ,从而 f ( x ) 在 (0, a) 上总是递减的,1 x - 1x x①若 a ≥ 1 ,则 f '( x ) ≥ 0 ,故 f ( x ) 在 [a, +∞ ) 上递增;②若 0 < a < 1 ,则当 a ≤ x < 1 时, f '( x ) < 0 ;当 x > 1 时, f '( x ) > 0 ,故 f ( x ) 在 [a,1) 上递减,在 (1, +∞) 上递增,而 f ( x ) 在 x = a 处连续,所以当 a ≥ 1 时, f ( x ) 在 (0, a) 上递减,在[a, +∞ ) 上递增;当 0 < a < 1 时, f ( x ) 在 (0,1) 上递减,在[1, +∞ ) 上递增.1< 1 - .x x所以 ln 22 ln 32 ln n 2 1 1 1+ + L + < 1 - + 1 - + L 1 -22 32 n 2 22 32 n 2⎛ 1 1 + ⎝ 22 32 + L + 1 ⎫ 1 1 ⎫ ⎛ 1 ⎪ ⎪2n 2 - 2 - n + 1 (n - 1)(2n + 1) = = .2(n + 1) 2(n + 1)21。
人教A版高三数学理科一轮复习综合检测试卷(一)含答案

高三单元滚动检测卷·数学考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间120分钟,满分150分. 4.请在密封线内作答,保持试卷清洁完整.综合检测(一)第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果复数z =2-1+i ,则( )A .|z |=2B .z 的实部为1C .z 的虚部为-1D .z 的共轭复数为1+i2.等比数列{a n }中,a 1=1,q =2,则T n =1a 1a 2+1a 2a 3+…+1a n a n +1的结果为( )A .1-14nB .1-12nC.23⎝⎛⎭⎫1-14n D.23⎝⎛⎭⎫1-12n 3.已知研究x 与y 之间关系的一组数据如下表所示,则y 对x 的回归直线方程y ^=b ^x +a ^必过点( )X 0 1 2 3 Y1357A.(1,2)B.⎝⎛⎭⎫32,0 C .(2,2)D.⎝⎛⎭⎫32,44.设M 是△ABC 边BC 上任意一点,且2AN →=NM →,若AN →=λAB →+μAC →,则λ+μ的值为( ) A.14 B.13 C.12D .15.下面图(1)是某学习小组学生数学考试成绩的茎叶图,1号到16号同学的成绩依次为A 1、A 2、…、A 16,图(2)是统计茎叶图中成绩在一定范围内的学生人数的程序框图,那么该程序框图输出的结果是( )图(1)图(2)A .6B .10C .91D .926.某同学在纸上画出如下若干个三角形:△▲△△▲△△△▲△△△△▲△△△△△▲……,若依此规律,得到一系列的三角形,则在前2 015个三角形中共有▲的个数是( ) A .64 B .63 C .62D .617.已知集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧ 2x +y -4≤0x +y ≥0x -y ≥0表示的平面区域为Ω,若在区域Ω内任取一点P (x ,y ),则点P 的坐标满足不等式x 2+y 2≤2的概率为( )A.π32B.3π16C.π16D.3π328.已知函数f (x )=e x +x ,对于曲线y =f (x )上横坐标成等差数列的三个点A ,B ,C ,给出以下判断:①△ABC 一定是钝角三角形; ②△ABC 可能是直角三角形; ③△ABC 可能是等腰三角形; ④△ABC 不可能是等腰三角形. 其中,正确的判断是( ) A .①③ B .①④ C .②③D .②④9.(·洛阳统考)设实轴长为2的等轴双曲线的焦点为F 1,F 2,以F 1F 2为直径的圆交双曲线于A 、B 、C 、D 四点,则|F 1A |+|F 1B |+|F 1C |+|F 1D |等于( ) A .4 3 B .23 C. 3D.3210.某班有60名学生,一次考试后数学成绩ξ~N (110,102),若P (100≤ξ≤110)=0.35,则估计该班学生数学成绩在120分以上的人数为( ) A .10 B .9 C .8D .711.设n =ʃπ204sin x d x ,则二项式(x -1x )n 的展开式的常数项是( )A .12B .6C .4D .112.(·济源模拟)已知F 1,F 2是椭圆的左,右焦点,若椭圆上存在点P ,使得PF 1⊥PF 2,则椭圆的离心率的取值范围是( ) A.⎣⎡⎭⎫55,1B.⎣⎡⎭⎫22,1C.⎝⎛⎦⎤0,55 D.⎝⎛⎦⎤0,22 第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的左,右焦点分别为F 1,F 2,点P 在双曲线的右支上,且|PF 1|=2 016|PF 2|,则此双曲线的离心率e 的最大值为________.14.给出定义:设f ′(x )是函数y =f (x )的导数,f ″(x )是函数f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.经探究发现:任何一个三次函数f (x )=ax 3+bx 2+cx +d (a ≠0)都有“拐点”,且该“拐点”也为该函数的对称中心. 若f (x )=x 3-32x 2+12x +1,则f ⎝⎛⎭⎫12 016+f ⎝⎛⎭⎫22 016+…+f ⎝⎛⎭⎫2 0152 016=________. 15.已知集合M =N ={0,1,2,3},定义函数f :M →N ,且点A (0,f (0)),B (i ,f (i )),C (i +1,f (i +1))(其中i =1,2).若△ABC 的内切圆圆心为I ,且IA →+IC →=λIB →(λ∈R ),则满足条件的△ABC 有________个.16.以下给出的是计算12+14+16+…+120的值的一个程序框图,其中判断框内应填入的条件是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)(·北京西城区二模)已知函数f (x )=sin(ωx +φ)+3cos(ωx +φ)的部分图象如图所示,其中ω>0,φ∈⎝⎛⎭⎫-π2,π2(1)求ω与φ的值;(2)若f ⎝⎛⎭⎫α4=455,求2sin α-sin 2α2sin α+sin 2α的值.18.(12分)已知函数f (x )=ax -ln(1+x 2). (1)当a =45时,求函数f (x )在(0,+∞)上的极值;(2)证明:当x >0时,ln(1+x 2)<x ;(3)证明:⎝⎛⎭⎫1+124⎝⎛⎭⎫1+134…⎝⎛⎭⎫1+1n 4<e (n ∈N *,n ≥2,e 为自然对数的底数).19.(12分)(·咸阳模拟)如图,四边形PCBM 是直角梯形,∠PCB =90°,PM ∥BC ,PM =1,BC =2.又AC =1,∠ACB =120°,AB ⊥PC ,直线AM 与直线PC 所成的角为60°.(1)求证:PC ⊥AC ;(2)求二面角M —AC —B 的余弦值; (3)求点B 到平面MAC 的距离.20.(12分)某产品按行业生产标准分成6个等级,等级系数ξ依次为1,2,3,4,5,6,按行业规定产品的等级系数ξ≥5的为一等品,3≤ξ<5的为二等品,ξ<3的为三等品.若某工厂生产的产品均符合行业标准,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下: 1 3 1 1 6 3 3 4 1 2 4 1 2 5 3 1 2 6 3 1 6 1 2 1 2 2 5 3 4 5(1)以此30件产品的样本来估计该厂产品的总体情况,试分别求出该厂生产的产品为一等品、二等品和三等品的概率;(2)已知该厂生产一件产品的利润y (单位:元)与产品的等级系数ξ的关系式为y =⎩⎪⎨⎪⎧1,ξ<3,2,3≤ξ<5,4,ξ≥5若从该厂大量产品中任取两件,其利润记为Z ,求Z 的分布列和均值.21.(12分)已知数列{a n },其前n 项和是S n 且S n +12a n =1 (n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =log 3(1-S n +1) (n ∈N *),求使方程1b 1b 2+1b 2b 3+…+1b n b n +1=2551成立的正整数n 的值.22.(12分)(·合肥质检)焦点分别为F 1,F 2的椭圆C :x 2a 2+y 2b 2=1 (a >b >0)过点M (2,1),且△MF 2F 1的面积为 3. (1)求椭圆C 的方程;(2)过点(0,3)作直线l ,直线l 交椭圆C 于不同的两点A ,B ,求直线l 倾斜角θ的取值范围; (3)在(2)的条件下,使得|MA |=|MB |成立的直线l 是否存在?若存在,求直线l 的方程;若不存在,请说明理由.综合检测(一)1.C2.C [依题意,知a n =2n -1,1a n a n +1=12n -1·2n =122n -1=12×14n -1,所以T n =12⎣⎡⎦⎤1-⎝⎛⎭⎫14n 1-14=23⎣⎡⎦⎤1-⎝⎛⎭⎫14n ,选C.] 3.D [由题可知,y 对x 的回归直线方程y ^=b ^x +a ^必过定点(x ,y ),由表格可知,x =1+2+34=32,y =1+3+5+74=4,所以y ^ =b ^ x +a ^ 必过点⎝⎛⎭⎫32,4.] 4.B [因为M 是△ABC 边BC 上任意一点,设AM →=mAB →+nAC →,且m +n =1,又AN →=13AM→=13(mAB →+nAC →)=λAB →+μAC →,所以λ+μ=13(m +n )=13.] 5.B [由程序框图可知,其统计的是数学成绩大于等于90的人数,所以由茎叶图知:数学成绩大于等于90的人数为10,因此输出结果为10.故选B.]6.C [前n 个▲中所包含的所有三角形的个数是1+2+3+…+n +n =n (n +3)2,由n (n +3)2=2 015,解得n =62.]7.D [满足不等式组的区域如图△ABO 内部(含边界),由于直线y =x 与y =-x 垂直,△ABO 与圆x 2+y 2=2的公共部分如图阴影部分是14圆,则点P 落在圆x 2+y 2≤2内的概率为P =S 扇形S △ABO=14×2π12×2×⎝⎛⎭⎫43+4=3π32.]8.B [由于函数f (x )=e x +x ,对于曲线y =f (x )上横坐标成等差数列的三个点A ,B ,C ,且横坐标依次增大.由于此函数是一个单调递增的函数,故由A 到B 的变化率要小于由B 到C 的变化率.可得出角∠ABC 一定是钝角,故①对,②错.由于由A 到B 的变化率要小于由B 到C 的变化率,由两点间距离公式可以得出AB <BC ,故三角形不可能是等腰三角形,由此得出③错,④对.]9.A [依题意,设题中的双曲线方程是x 2-y 2=1,不妨设点A 、B 、C 、D 依次位于第一、二、三、四象限,则有⎩⎪⎨⎪⎧|AF 1|-|AF 2|=2,|AF 1|2+|AF 2|2=|F 1F 2|2=8,由此解得|AF 1|=3+1,|AF 2|=3-1,同理|DF 1|=|AF 1|=3+1,|CF 1|=|BF 1|=|AF 2|=3-1,|AF 1|+|BF 1|+|CF 1|+|DF 1|=43,选A.]10.B [∵考试的成绩ξ服从正态分布N (110,102). ∴考试的成绩ξ关于ξ=110对称, ∵P (100≤ξ≤110)=0.35,∴P (ξ≥120)=P (ξ≤100)=12(1-0.35×2)=0.15,∴该班数学成绩在120分以上的人数为0.15×60=9.] 11.B [由定积分得n =-4cos x |π20=4,二项式的通项公式为T r +1=C r 4x 4-r (-1x)r =C r 4(-1)r x4-2r,由4-2r =0,得r =2,所以常数项为T 3=C 24(-1)2=6,故选B.]12.B [设P (x ,y ),PF 1→=(-c -x ,-y ),PF 2→=(c -x ,-y ),由PF 1⊥PF 2,得PF 1→⊥PF 2→=0,即(-c -x ,-y )·(c -x ,-y )=x 2+y 2-c 2=x 2+b 2⎝⎛⎭⎫1-x 2a 2-c 2=c 2x 2a 2+b 2-c 2=0,∴x 2=a 2(c 2-b 2)c 2≥0,∴c 2-b 2≥0,∴2c 2≥a 2,∴e ≥22.又∵e <1,∴椭圆的离心率e 的取值范围是⎣⎡⎭⎫22,1.]13.2 0172 015解析 由题意得|PF 1|+|PF 2|≥2c ,|PF 1|-|PF 2|=2a , e ≤|PF 1|+|PF 2||PF 1|-|PF 2|=2 017|PF 2|2 015|PF 2|=2 0172 015. 14.2 015解析 由f (x )=x 3-32x 2+12x +1,得f ′(x )=3x 2-3x +12,∴f ″(x )=6x -3,由f ″(x )=6x -3=0,得x =12,又f ⎝⎛⎭⎫12=1,∴f (x )的对称中心为⎝⎛⎭⎫12,1, ∴f (1-x )+f (x )=2,∴f ⎝⎛⎭⎫12 016+f ⎝⎛⎭⎫2 0152 016=f ⎝⎛⎭⎫22 016+f ⎝⎛⎭⎫2 0142 016=…=f ⎝⎛⎭⎫1 0072 016+f ⎝⎛⎭⎫1 0092 016=f ⎝⎛⎭⎫1 0082 016+f ⎝⎛⎭⎫1 0082 016=2 ∴f ⎝⎛⎭⎫12 016+f ⎝⎛⎭⎫22 016+…+f ⎝⎛⎭⎫2 0152 016 =2×1 007+1=2 015. 15.18 解析由IA →+IC →=λIB →(λ∈R )知△ABC 是以B 为顶点的等腰三角形,A 点是4×4的格点中第一列的点.当i =1时,B 点是第二列格点中的点,C 点是第三列格点中的点,此时腰长为2,5,10的△ABC 分别有6个、4个、2个,当i =2时,B 点是第三列格点中的点,C 点是第四列格点中的点,此时腰长为5的△ABC 有6个,如图,△ABC 为其中的一个.综上,满足条件的△ABC 共有18个. 16.i ≤10?解析 这是一个循环结构,s =0,n =2,i =1,其中变量i 是计数变量,它应使循环体执行10次,因此条件应是i ≤10?. 17.解 (1)f (x )=2sin(ωx +φ+π3).设f (x )的最小正周期为T .由图象可得T 2=π4-⎝⎛⎭⎫-π4=π2,所以T =π,ω=2. 由f (0)=2,得sin ⎝⎛⎭⎫φ+π3=1, 因为φ∈⎝⎛⎭⎫-π2,π2,所以φ=π6. (2)f (x )=2sin ⎝⎛⎭⎫2x +π2=2cos 2x . 由f ⎝⎛⎭⎫α4=2cos α2=455,得cos α2=255, 所以cos α=2cos 2α2-1=35.所以2sin α-sin 2α2sin α+sin 2α=2sin α(1-cos α)2sin α(1+cos α)=1-cos α1+cos α=14.18.(1)解 当a =45时,f (x )=45x -ln(1+x 2),∴f ′(x )=45-2x1+x 2=4x 2-10x +45(1+x 2).x ,f ′(x ),f (x )变化如下表:x(0,12)12(12,2) 2(2,+∞)f ′(x ) + 0 - 0 +f (x )极大值极小值∴f (x )极大值=f ⎝⎛⎭⎫12=25-ln 54, f (x )极小值=f (2)=85-ln 5.(2)证明 令g (x )=x -ln(1+x 2), 则g ′(x )=1-2x1+x 2=(x -1)21+x 2≥0.∴g (x )在(0,+∞)上为增函数,∴g (x )>g (0)=0, ∴ln(1+x 2)<x .(3)证明 由(2)知ln(1+x 2)<x ,令x =1n 2,得ln ⎝⎛⎭⎫1+1n 4<1n 2<1n (n -1)=1n -1-1n , ∴ln ⎝⎛⎭⎫1+124+ln ⎝⎛⎭⎫1+134+…+ln ⎝⎛⎭⎫1+1n 4 <1-12+12-13+13-14+…+1n -1-1n=1-1n<1,∴⎝⎛⎭⎫1+124⎝⎛⎭⎫1+134…⎝⎛⎭⎫1+1n 4<e. 19.(1)证明 ∵PC ⊥BC ,PC ⊥AB ,∴PC ⊥平面ABC ,又AC ⊂平面ABC ,∴PC ⊥AC .(2)解 在平面ABC 内,过点C 作BC 的垂线,并建立空间直角坐标系如图所示.设P (0,0,z ),则C (0,0,0),A ⎝⎛⎭⎫32,-12,0,M (0,1,z ),B (0,2,0),∴CP →=(0,0,z ),AM →=(0,1,z )-⎝⎛⎭⎫32,-12,0=⎝⎛⎭⎫-32,32,z .∵cos 60°=|cos 〈AM →,CP →〉|=⎪⎪⎪⎪⎪⎪AM →·CP →|AM →||CP →|=z 23+z 2·|z |,且z >0,∴zz 2+3=12,得z =1, ∴AM →=⎝⎛⎭⎫-32,32,1.设平面MAC 的一个法向量为n =(x ,y,1), 则由⎩⎪⎨⎪⎧ n ·AM →=0,n ·CA →=0,得⎩⎨⎧-32x +32y +1=0,32x -12y =0,得⎩⎪⎨⎪⎧x =-33,y =-1,∴n =⎝⎛⎭⎫-33,-1,1. ∵平面ABC 的一个法向量为CP →=(0,0,1). ∴cos 〈n ,CP →〉=n ·CP →|n ||CP →|=217.显然,二面角M —AC —B 为锐二面角, ∴二面角M —AC —B 的余弦值为217. (3)解 点B 到平面MAC 的距离d =⎪⎪⎪⎪⎪⎪CB→·n |n |=2217.20.解 (1)由题意在抽取的30件产品中一等品有6件,二等品有9件,三等品有15件, 故该厂生产一等品概率为P 1=630=15,二等品概率为P 2=930=310,三等品概率为P 3=1530=12.(2)由题意得:Z 的可能取值为2,3,4,5,6,8,而从该厂大量产品中任取两件取得一等品、二等品、三等品是相互的,故:P (Z =2)=12×12=14,P (Z =3)=2×12×310=310,P (Z =4)=310×310=9100,P (Z =5)=2×12×15=15,P (Z =6)=2×310×15=325,P (Z =8)=15×15=125.∴Z 的分布列为Z 2 3 4 5 6 8 P14310910015325125∴E (Z )=2×14+3×310+4×9100+5×15+6×325+8×125=3.8.21.解 (1)当n =1时,a 1=S 1, 由S 1+12a 1=1,得a 1=23.当n ≥2时,因为S n =1-12a n ,S n -1=1-12a n -1,所以S n -S n -1=12(a n -1-a n ),即a n =12(a n -1-a n ),所以a n =13a n -1 (n ≥2),所以{a n }是以23为首项,13为公比的等比数列.故a n =23·⎝⎛⎭⎫13n -1=2·⎝⎛⎭⎫13n (n ∈N *). (2)由于1-S n =12a n =⎝⎛⎭⎫13n , 故b n =log 3(1-S n +1)=log 3⎝⎛⎭⎫13n +1=-n -1, 1b n b n +1=1(n +1)(n +2)=1n +1-1n +2, 则1b 1b 2+1b 2b 3+…+1b n b n +1=⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝ ⎛⎭⎪⎫1n +1-1n +2=12-1n +2. 由12-1n +2=2551,解得n =100.22.解 (1)设F 1(-c,0),F 2(c,0),由M (2,1), △MF 2F 1的面积为3,得12·2c ·1=3⇒c =3,故椭圆C 的方程为x 2a 2+y 2a 2-3=1,又椭圆C 过点M (2,1), ∴4a 2+1a 2-3=1且a 2>3, 于是(a 2)2-8a 2+12=0且a 2>3,∴a 2=6, 故椭圆C 的方程为x 26+y 23=1.(2)易知θ=π2时,符合题意;当θ≠π2时,可设直线l 方程为y =kx +3,联立方程⎩⎪⎨⎪⎧y =kx +3,x 26+y 23=1得(1+2k 2)x 2+12kx +12=0,由Δ=144k 2-4×12×(1+2k 2)>0, 解得k ∈(-∞,-1)∪(1,+∞),∴θ∈⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π2,3π4,综上知θ∈⎝⎛⎭⎫π4,3π4. (3)易知,当直线l 与x 轴垂直时,不合题意. 假设存在直线l 满足条件,记A (x 1,y 1),B (x 2,y 2).若M ,A ,B 三点共线,注意到|MA |=|MB |,故A ,B 两点重合于点M ,这与A ,B 是椭圆C 上不同的两点矛盾. 故M ,A ,B 三点不共线,取AB 的中点D ,连接MD ,知MD ⊥AB . 由方程(1+2k 2)x 2+12kx +12=0知x 1+x 2=-12k1+2k 2,则y 1+y 2=k (x 1+x 2)+6=-12k 21+2k 2+6=61+2k 2.于是,点D 坐标为⎝ ⎛⎭⎪⎫-6k 1+2k 2,31+2k 2, 由MD ⊥AB 得31+2k 2-1-6k1+2k 2-2=-1k (k >1或k <-1),得k 2+k +1=0,此方程无实数解,所以满足条件的直线不存在.。
人教A版高三数学理科一轮复习滚动检测试卷(五)含答案

高三单元滚动检测卷·数学考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间120分钟,满分150分.4.请在密封线内作答,保持试卷清洁完整.滚动检测五第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U=R,集合A={x|x(x-2)<0},B={x|x<a},若A与B的关系如图所示,则实数a的取值范围是()A.[0,+∞)B.(0,+∞)C.[2,+∞)D.(2,+∞)2.两个函数的图象经过平移后能够重合,称这两个函数为“同根函数”,给出四个函数:f1(x)=2log2(x+1),f2(x)=log2(x+2),f3(x)=log2x2,f4(x)=log2(2x),则“同根函数”是() A.f2(x)与f4(x) B.f1(x)与f3(x)C.f1(x)与f4(x) D.f3(x)与f4(x)3.若命题p:函数y=lg(1-x)的值域为R;命题q:函数y=2cos x是偶函数,且是R上的周期函数,则下列命题中为真命题的是()A.p∧q B.(綈p)∨(綈q)C.(綈p)∧q D.p∧(綈q)4.(·河南名校联考)在△ABC中,a、b、c分别为角A、B、C的对边,若a2+b2=2 016c2,则2tan A·tan Btan C(tan A+tan B)的值为()A .0B .2 014C .2 015D .2 0165.《张邱建算经》有一道题:今有女子不善织布,逐日所织的布同数递减,初日织五尺,末一日织一尺,计织三十日,问共织布( ) A .110尺 B .90尺 C .60尺D .30尺6.(·渭南模拟)已知椭圆x 24+y 23=1上有n 个不同的点P 1,P 2,…,P n ,且椭圆的右焦点为F ,数列{|P n F |}是公差大于11 000的等差数列,则n 的最大值为( ) A .2 001 B .2 000 C .1 999D .1 9987.(·河北衡水中学第二次调研考试)已知f (x ),g (x )都是定义在R 上的函数,g (x )≠0,f ′(x )g (x )>f (x )g ′(x ),且f (x )=a x g (x )(a >0,且a ≠1),f (1)g (1)+f (-1)g (-1)=52.若数列{f (n )g (n )}的前n 项和大于62,则n 的最小值为( ) A .6 B .7 C .8D .98.在三棱锥P -ABC 中,P A ⊥平面ABC ,AC ⊥BC ,D 为侧棱PC 上的一点,它的正视图和侧视图如图所示,则下列命题正确的是( )A .AD ⊥平面PBC 且三棱锥D -ABC 的体积为83B .BD ⊥平面P AC 且三棱锥D -ABC 的体积为83C .AD ⊥平面PBC 且三棱锥D -ABC 的体积为163D .BD ⊥平面P AC 且三棱锥D -ABC 的体积为1639.若tt 2+9≤a ≤t +2t 2在t ∈(0,2]上恒成立,则a 的取值范围是( )A .[16,1]B .[16,2 2 ]C .[16,413]D .[213,1]10.已知点G 为△ABC 的重心,∠A =120°,A B →·A C →=-2,则|A G →|的最小值是( ) A.33B.22C.23D.3411.若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或712.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤3x -2,x -2y +1≤0,2x +y ≤8,则lg(y +1)-lg x 的取值范围为( )A .[0,1-2lg 2]B .[1,52]C .[12,lg 2]D .[-lg 2,1-2lg 2]第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,P ,Q 是面对角线A 1C 1上的两个不同动点,给出以下判断:①存在P ,Q 两点,使BP ⊥DQ ; ②存在P ,Q 两点,使BP ∥DQ ;③若|PQ |=1,则四面体BDPQ 的体积一定是定值; ④若|PQ |=1,则四面体BDPQ 的表面积是定值;⑤若|PQ |=1,则四面体BDPQ 在该正方体六个面上的正投影的面积的和为定值. 其中真命题是________.(将正确命题的序号全填上)14.已知矩形ABCD 中,AB =3,BC =a ,若P A ⊥平面AC ,在BC 边上取点E ,使PE ⊥DE ,则满足条件的E 点有两个时,a 的取值范围是________.15.设a >1,若曲线y =1x 与直线y =0,x =1,x =a 所围成封闭图形的面积为2,则a =________.16.已知M 是△ABC 内的一点(不含边界),且A B →·A C →=23,∠BAC =30°,若△MBC ,△BMA 和△MAC 的面积分别为x ,y ,z ,记f (x ,y ,z )=1x +4y +9z ,则f (x ,y ,z )的最小值是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)函数f (x )=A sin(ωx +φ)(A >0,ω>0,-π2<φ<π2,x ∈R )的部分图象如图所示.(1)求函数y =f (x )的解析式;(2)当x ∈[-π,-π6]时,求f (x )的取值范围.18.(12分)(·咸阳模拟)数列{a n }的前n 项和为S n ,且a n 是S n 和1的等差中项,等差数列{b n }满足b 1=a 1,b 4=S 3.(1)求数列{a n },{b n }的通项公式;(2)设c n =1b n b n +1,数列{c n }的前n 项和为T n ,证明:13≤T n <12.19.(12分)如图,已知点P在圆柱OO1的底面圆O上,AB、A1B1分别为圆O、圆O1的直径且AA1⊥平面P AB.(1)求证:BP⊥A1P;(2)若圆柱OO1的体积V=12π,OA=2,∠AOP=120°,求三棱锥A1-APB的体积.20.(12分)(·保定调研)已知函数f(x)=ln x+ax-a2x2(a≥0).(1) 若x=1是函数y=f(x)的极植点,求a的值;(2)若f(x)<0在定义域内恒成立,求实数a的取值范围.21.(12分)如图,P -AD -C 是直二面角,四边形ABCD 是∠BAD =120°的菱形,AB =2,P A ⊥AD ,E 是CD 的中点,设PC 与平面ABCD 所成的角为45°.(1)求证:平面P AE ⊥平面PCD ;(2)试问在线段AB (不包括端点)上是否存在一点F ,使得二面角A -PF -D 的大小为45°?若存在,请求出AF 的长,若不存在,请说明理由.22.(12分)(·合肥第二次质检)已知△ABC 的三边长|AB |=13,|BC |=4,|AC |=1,动点M 满足CM →=λCA →+μCB →,且λμ=14.(1)求|CM →|最小值,并指出此时CM →与C A →,C B →的夹角;(2)是否存在两定点F 1,F 2,使||MF 1→|-|MF 2→||恒为常数k ?,若存在,指出常数k 的值,若不存在,说明理由.答案解析1.C 2.A 3.A 4.C 5.B 6.B 7.A 8.C 9.D [t t 2+9=1t +9t,而u =t +9t 在(0,2]上单调递减,故t +9t ≥2+92=132,t t 2+9=1t +9t ≤213(当且仅当t =2时,等号成立),t +2t 2=1t +2t 2=2(1t +14)2-18, 因为1t ≥12,所以t +2t 2=1t +2t 2=2(1t +14)2-18≥1(当且仅当t =2时等号成立),故a 的取值范围是[213,1].]10.C [设BC 的中点为M ,则A G →=23AM →.又M 为BC 的中点,∴AM →=12(A B →+A C →),∴A G →=23AM →=13(A B →+A C →),∴|A G →|=13A B →2+A C →2+2A B →·A C →=13A B →2+A C →2-4.又∵A B →·A C →=-2,∠A =120°, ∴|A B →||A C →|=4.∵|A G →|=13AB →2+AC →2-4≥132|A B →||A C →|-4=23,当且仅当|A B →|=|A C →|=2时取“=”,∴|A G →|的最小值为23,故选C.]11.A [因为y =x 3,所以y ′=3x 2, 设过(1,0)的直线与y =x 3相切于点(x 0,x 30),则在该点处的切线斜率为k =3x 20,所以切线方程为y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30.又(1,0)在切线上,则x 0=0或x 0=32.当x 0=0时,由y =0与y =ax 2+154x -9相切,可得a =-2564,当x 0=32时,由y =274x -274与y =ax 2+154x -9相切,可得a =-1.]12.A [如图所示,作出不等式组⎩⎪⎨⎪⎧y ≤3x -2,x -2y +1≤0,2x +y ≤8确定的可行域.因为lg(y +1)-lg x =lg y +1x ,设t =y +1x,显然,t 的几何意义是可行域内的点P (x ,y )与定点E (0,-1)连线的斜率. 由图可知,点P 在点B 处时,t 取得最小值; 点P 在点C 处时,t 取得最大值.由⎩⎪⎨⎪⎧ x -2y +1=0,2x +y =8,解得⎩⎪⎨⎪⎧x =3,y =2,即B (3,2),由⎩⎪⎨⎪⎧ y =3x -2,2x +y =8,解得⎩⎪⎨⎪⎧x =2,y =4,即C (2,4).故t 的最小值为k BE =2-(-1)3=1,t 的最大值为k CE =4-(-1)2=52,所以t ∈[1,52].又函数y =lg x 为(0,+∞)上的增函数, 所以lg t ∈[0,lg 52],即lg(y +1)-lg x 的取值范围为[0,lg 52].而lg 52=lg 5-lg 2=1-2lg 2,所以lg(y +1)-lg x 的取值范围为[0,1-2lg 2]. 故选A.] 13.①③⑤解析 当P 与A 1点重合,Q 与C 1点重合时,BP ⊥DQ , 故①正确;BP 与DQ 异面,故②错误;设平面A 1B 1C 1D 1两条对角线交点为O ,则易得PQ ⊥平面OBD ,平面OBD 可将四面体BDPQ 分成两个底面均为平面OBD ,高之和为PQ 的棱锥,故四面体BDPQ 的体积一定是定值, 故③正确;若|PQ |=1,则四面体BDPQ 的表面积不是定值, 故④错误;四面体BDPQ 在上下两个底面上的投影是对角线互相垂直且对角线长度分别为1和2的四边形,其面积为定值,四面体BDPQ 在四个侧面上的投影, 均为上底为22,下底和高均为1的梯形,其面积为定值, 故四面体BDPQ 在该正方体六个面上的正投影的面积的和为定值, 故⑤正确.14.a >6解析 以A 点为原点,AB ,AD ,AP 所在直线分别为x ,y ,z 轴,如图所示. 则D (0,a,0),设P (0,0,b ),E (3,x,0),PE →=(3,x ,-b ),DE →=(3,x -a,0), ∵PE ⊥DE ,∴PE →·DE →=0, ∴9+x (x -a )=0, 即x 2-ax +9=0,由题意可知方程有两个不同根, ∴Δ>0,即a 2-4×9>0,又a >0,∴a >6. 15.e 2解析 ∵a >1,曲线y =1x 与直线y =0,x =1,x =a 所围成封闭图形的面积为2,∴ʃa 11x d x =2,∴ |ln x a 1=2,ln a =2,∴a =e 2. 16.36解析 由题意得A B →·A C →=|A B →|·|A C →|cos ∠BAC =23,则|A B →|·|A C →|=4,∴△ABC 的面积为12|A B →|·|A C →|·sin ∠BAC =1,x +y +z =1,∴f (x ,y ,z )=1x +4y +9z =x +y +z x +4(x +y +z )y +9(x +y +z )z =14+(y x +4x y )+(9x z +z x )+(4zy +9y z )≥14+4+6+12=36(当且仅当x =16,y =13,z =12时,等号成立). 17.解 (1)由图象得A =1,T 4=2π3-π6=π2,所以T =2π,则ω=1, 将(π6,1)代入得1=sin(π6+φ),而-π2<φ<π2,所以φ=π3, 因此函数f (x )=sin(x +π3). (2)由于x ∈[-π,-π6],-2π3≤x +π3≤π6, 所以-1≤sin(x +π3)≤12, 所以f (x )的取值范围是[-1,12]. 18.(1)解 ∵a n 是S n 和1的等差中项,∴S n =2a n -1.当n =1时,a 1=S 1=2a 1-1,∴a 1=1;当n ≥2时,a n =S n -S n -1=(2a n -1)-(2a n -1-1)=2a n -2a n -1.∴a n =2a n -1,即a n a n -1=2, ∴数列{a n }是以a 1=1为首项,2为公比的等比数列,∴a n =2n -1,S n =2n -1.设{b n }的公差为d ,b 1=a 1=1,b 4=1+3d =7,∴d =2,∴b n =1+(n -1)×2=2n -1.(2)证明 c n =1b n b n +1=1(2n -1)(2n +1)=12(12n -1-12n +1). ∴T n =12(1-13+13-15+…+12n -1-12n +1) =12(1-12n +1)=n 2n +1, ∵n ∈N *,∴T n =12(1-12n +1)<12, T n -T n -1=n 2n +1-n -12n -1=1(2n +1)(2n -1)>0, ∴数列{T n }是一个递增数列,∴T n ≥T 1=13, 综上所述,13≤T n <12. 19.(1)证明 易知AP ⊥BP ,由AA 1⊥平面P AB ,得AA 1⊥BP ,且AP ∩AA 1=A ,所以BP ⊥平面P AA 1,又A 1P ⊂平面P AA 1,故BP ⊥A 1P .(2)解 由题意得V =π·OA 2·AA 1=4π·AA 1=12π,解得AA 1=3.由OA =2,∠AOP =120°,得∠BAP =30°,BP =2,AP =23,∴S △P AB =12×2×23=23, ∴三棱锥A 1-APB 的体积V =13S △P AB ·AA 1=13×23×3=2 3. 20.解 (1)函数的定义域为(0,+∞),f ′(x )=-2a 2x 2+ax +1x. 因为x =1是函数y =f (x )的极值点,所以f ′(1)=1+a -2a 2=0,解得a =-12(舍去)或a =1, 经检验,当a =1时,x =1是函数y =f (x )的极值点,所以a =1.(2)当a =0时,f (x )=ln x ,显然在定义域内不满足f (x )<0恒成立;当a >0时,令f ′(x )=(2ax +1)(-ax +1)x=0 得,x 1=-12a (舍去),x 2=1a,所以当x 变化时,f ′(x ),f (x )的变化情况如下表: x (0,1a ) 1a (1a ,+∞) f ′(x )+ 0 -f (x )极大值所以f (x )max =f (1a )=ln 1a<0,所以a >1. 综上可得a 的取值范围是(1,+∞).21.(1)证明 因为P A ⊥AD ,二面角P -AD -C 是直二面角,所以P A ⊥平面ABCD ,因为DC ⊂平面ABCD ,所以P A ⊥CD ,连接AC ,因为ABCD 为菱形,∠BAD =120°,所以∠CAD =60°,∠ADC =60°,所以△ADC 是等边三角形.因为E 是CD 的中点,所以AE ⊥CD ,因为P A ∩AE =A ,所以CD ⊥平面P AE ,而CD ⊂平面PCD ,所以平面P AE ⊥平面PCD .(2)解 以A 为坐标原点,AB ,AE ,AP 所在直线分别为x ,y ,z 轴,建立空间直角坐标系.因为P A ⊥平面ABCD ,所以∠PCA 是PC 与平面ABCD 所成角,所以∠PCA =45°,所以P A =AC =AB =2,于是P (0,0,2),D (-1,3,0),PD →=(-1,3,-2).设AF =λ,则0<λ<2,F (λ,0,0),所以PF →=(λ,0,-2).设平面PFD 的法向量为n 1=(x ,y ,z ),则有n 1·PD →=0,n 1·PF →=0,所以⎩⎪⎨⎪⎧ -x +3y -2z =0,λx -2z =0, 令x =1,则z =λ2,y =λ+13, 所以平面PFD 的法向量为n 1=(1,λ+13,λ2). 而平面APF 的法向量为n 2=(0,1,0).所以|cos 〈n 1,n 2〉|=2|λ+1|7λ2+8λ+16=22, 整理得λ2+8λ-8=0,解得λ=26-4(或λ=-26-4舍去),因为0<26-4<2,所以在AB 上存在一点F ,使得二面角A -PF -D 的大小为45°,此时AF =26-4.22.解 (1)由余弦定理知cos ∠ACB =12+42-132×1×4=12⇒∠ACB =π3, 因为|CM →|2=CM →2=(λC A →+μC B →)2=λ2+16μ2+2λμC A →·C B →=λ2+1λ2+1≥3, 所以|CM →|≥3, 当且仅当λ=±1时,“=”成立,故|CM →|的最小值是3,此时〈CM →,C A →〉=〈CM →,C B →〉=π6或5π6. (2)以C 为坐标原点,∠ACB 的平分线所在直线为x 轴,建立平面直角坐标系(如图),所以A (32,12),B (23,-2),设动点M (x ,y ), 因为CM →=λC A →+μC B →, 所以⎩⎨⎧ x =32λ+23μ,y =12λ-2μ⇒⎩⎨⎧ x 23=(λ2+2μ)2,y 2=(λ2-2μ)2,再由λμ=14知x 23-y 2=1, 所以动点M 的轨迹是以F 1(-2,0),F 2(2,0)为焦点,实轴长为23的双曲线,即||MF 1→|-|MF 2→||恒为常数23,即存在k =2 3.。
2022高考数学(理)一轮复习单元测试(配最新高考+重点)第一章集合与常用逻辑用

2022高考数学(理)一轮复习单元测试(配最新高考+重点)第一章集合与常用逻辑用第一章集合与常用逻辑用语单元能力测试一、选择题(本大题共12小题,每小题5分,共60分)1、(2020山东理)已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则()UC A B 为( ) A .{}1,2,4B .{}2,3,4C .{}0,2,4 D .{}0,2,3,42 .(2020浙江理)设集合A ={x |1<x <4},B ={x |x 2-2x -3≤0},则A ∩(C R B )=( )A .(1,4)B .(3,4)C .(1,3)D .(1,2)3、【2020韶关第一次调研理】若集合M 是函数lg y x =的定义域,N 是函数y =的定义域,则M ∩N 等于( )A .(0,1]B .(0,)+∞C .φD .[1,)+∞ 4、【2020厦门期末质检理2】“φ=2π”是“函数y=sin(x +φ)为偶函数的”A .充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件5.(2020湖南理)命题“若α=4π,则tanα=1”的逆否命题是( )A .若α≠4π,则tanα≠1B .若α=4π,则tan α≠1C .若tanα≠1,则α≠4πD .若tanα≠1,则α=4π6、【2020泉州四校二次联考理】命题:R p x ∀∈,函数2()2cos 23f x x x =+≤,则( )A .p 是假命题;:R p x ⌝∃∈,2()2cos 23f x x x =+≤B .p 是假命题;:R p x ⌝∃∈,2()2cos 23f x x x =+> C .p 是真命题;:R p x ⌝∃∈,2()2cos 23f x x x =+≤ D .p 是真命题;:R p x ⌝∃∈,2()2cos 23f x x x =+> 7、(2020湖北理)命题“0x ∃∈R Q ,30x ∈Q ”的否定是( )A .0x ∃∉R Q ,30x ∈QB .0x ∃∈R Q ,30x ∉QC .x ∀∉RQ ,3x ∈Q D .x ∀∈RQ ,3x ∉Q8、【2020深圳中学期末理】设集合A={-1, 0, 1},集合B={0, 1, 2, 3},定义A *B={(x, y)| x ∈A ∩B, y ∈A ∪B},则A *B 中元素个数是()A.7B.10C.25D.529、【2020粤西北九校联考理3】下列命题错误..的是( ) A. 2"2""320"x x x >-+>是的充分不必要条件;B. 命题“2320,1x x x -+==若则”的逆否命题为“21,320若则x x x =-+≠”;C.对命题:“对0,k >方程20x x k +-=有实根”的否定是:“ ∃k >0,方程20x x k +-=无实根”;D. 若命题:,p x A B p ∈⋃⌝则是x A x B ∉∉且;10、【江西省新钢中学2020届高三第一次考试】在△ABC 中,设命题,sin sin sin :Ac C b B a p ==命题q:△ABC 是等边三角形,那么命题p 是命题q 的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件11、(2020浙江宁波市期末)已知()f x 是定义在实数集R 上的增函数,且(1)0f =,函数()g x 在(,1]-∞上为增函数,在[1,)+∞上为减函数,且(4)(0)0g g ==,则集合{|()()0}x f x g x ≥= ( )(A ) {|014}x x x ≤≤≤或(B ){|04}x x ≤≤(C ){|4}x x ≤ (D ) {|014}x x x ≤≤≥或 12.定义:设A 是非空实数集,若∃a ∈A ,使得关于∀x ∈A ,都有x ≤a (x ≥a ),则称a 是A 的最大(小)值 .若B 是一个不含零的非空实数集,且a 0是B 的最大值,则( )A .当a 0>0时,a -10是集合{x -1|x ∈B }的最小值B .当a 0>0时,a -10是集合{x -1|x ∈B }的最大值C .当a 0<0时,-a -10是集合{-x -1|x ∈B }的最小值D .当a 0<0时,-a -10是集合{-x -1|x ∈B }的最大值二、填空题(本大题共4小题,每小题5分,共20分,把正确答案填在题中横线上) 13、(2020上海理)若集合}012|{>+=x x A ,}21|{<-=x x B ,则A ∩B=_________ .14、【2020江西师大附中高三下学期开学考卷】若自然数n 使得作加法(1)(2)n n n ++++运算均不产生进位现象,则称n 为“给力数”,例如:32是“给力数”,因323334++不产生进位现象;23不是“给力数”,因232425++产生进位现象.设小于1000的所有“给力数”的各个数位上的数字组成集合A ,则集合A 中的数字和为__________ 15、【2020三明市一般高中高三上学期联考】下列选项叙述:①.命题“若1x ≠,则2320x x -+≠”的逆否命题是“若2320x x -+=,则1x =” ②.若命题p :2,10x R x x ∀∈++≠,则p ⌝:2,10x R x x ∃∈++= ③.若p q ∨为真命题,则p ,q 均为真命题④.“2x >”是“2320x x -+>”的充分不必要条件 其中正确命题的序号有_______ 16、【2020泉州四校二次联考理】已知集合22{(,)||||1|1},{(,)|(1)(1)1}A x y x a y B x y x y =-+-≤=-+-≤,若A B φ⋂≠,则实数a 的取值范畴为 .三、解答题(本大题共6小题,共70分,解承诺写出文字说明、证明过程或演算步骤)17.(本小题满分12分) (2011年朝阳区高三上学期期中)设关于x 的不等式(1)0()x x a a --<∈R 的解集为M ,不等式2230x x --≤的解集为N .(Ⅰ)当1a =时,求集合M ;(Ⅱ)若M N ⊆,求实数a 的取值范畴.18、(本小题满分12分) 【山东省潍坊一中2020届高三时期测试理】已知集合{}}0)1(2|{,0)13(2)1(3|22<+--=<+++-=a x a x x B a x a x x A ,(Ⅰ)当a=2时,求B A ⋂;(Ⅱ)求使A B ⊆的实数a 的取值范畴19.(本小题满分10分) 【2020北京海淀区期末】若集合A 具有以下性质: ①A ∈0,A ∈1;②若A y x ∈,,则A y x ∈-,且0≠x 时,Ax∈1.则称集合A 是“好集”. (Ⅰ)分别判定集合{1,0,1}B,有理数集Q 是否是“好集”,并说明理由; (Ⅱ)设集合A 是“好集”,求证:若A y x ∈,,则A y x ∈+; (Ⅲ)对任意的一个“好集”A ,分别判定下面命题的真假,并说明理由. 命题p :若A y x ∈,,则必有A xy ∈; 命题q :若A y x ∈,,且0≠x ,则必有Axy∈;20、(本小题满分12分)(山东省潍坊市2020届高三上学期期中四县一校联考) 已知集合{}{}R x x B x x x R x A x x ∈<=++≥+∈=-,42|,)23(log )126(log |32222.求⋂A (C R B ).21.(本小题满分12分)已知c >0,设命题p :函数y =c x为减函数,命题q :当x ∈[12,2]时,函数f (x )=x +1x >1c 恒成立.假如p 或q 为真命题,p 且q 为假命题,求c 的取值范畴.22.(本小题满分12分) 【山东省微山一中2020届高三10月月考理】设集合A 为函数y =ln(-x 2-2x +8)的定义域,集合B 为函数y =x +1x +1的值域,集合C 为不等式(ax -1a )(x +4)≤0的解集. (1)求A ∩B ; (2)若C ⊆∁R A ,求a 的取值范畴.祥细答案 一、选择题 1、【答案】C【解析】}4,0{=A C U,因此{0,24}U C A B =() ,,选C.2. 【答案】B【解析】A =(1,4),B =(-1,3),则A ∩(C R B )=(3,4).【答案】B 3、【答案】A【解析】因为集合M 是函数lg y x =的定义域,;0>x N 是函数y = 因此01≥-x ,(](](0,),,1,0,1M N M N =+∞=-∞⋂=4、【答案】A【解析】φ=2π时,y=sin(x +φ)=x cos 为偶函数;若y=sin(x +φ)为偶函数,则k=ϕZk ∈+,2ππ;选A;5、【答案】C【解析】因为“若p ,则q ”的逆否命题为“若p ⌝,则q ⌝”,因此 “若α=4π,则tanα=1”的逆否命题是 “若tanα≠1,则α≠4π”.6、【答案】D【解析】3)62sin(212sin 32cos 12sin 3cos 2)(2≤++=++=+=πx x x x x x f ;P 是真命题;:R p x ⌝∃∈,2()2cos 23f x x x =+>;7、【答案】D解析:依照对命题的否定知,是把谓词取否定,然后把结论否定.因此选D 8、【答案】B【解析】解:A ∩B ={ 0, 1},A ∪B {-1, 0, 1, 2, 3},x 有2种取法, y 有5种取法由乘法原理得2×5=10,故选B 。
人教A版高三数学理科一轮复习综合检测试卷(二)含答案

高三单元滚动检测卷·数学考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间120分钟,满分150分. 4.请在密封线内作答,保持试卷清洁完整.综合检测(二)第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知1-b i1+2i =a +i (a ,b ∈R ),其中i 为虚数单位,则a +b 等于( )A .-4B .4C .-10D .102.(·宜昌调研)下列说法中,正确的是( ) A .命题“若am 2<bm 2,则a <b ”的逆命题是真命题B .命题“存在x 0∈R ,x 20-x 0>0”的否定是“对任意的x ∈R ,x 2-x ≤0”C .命题“p 或q ”为真命题,则命题p 和命题q 均为真命题D .已知x ∈R ,则“x >1”是“x >2”的充分不必要条件3.已知数列{a n }满足:a 1=1,a n +1=a n a n +2 (n ∈N *),则数列{a n }的通项公式为( )A .a n =2n -1B .a n =12n -1C .a n =12n -1D .a n =13n-14.已知f (x )=⎩⎪⎨⎪⎧|lg x |,x >0,2|x |,x ≤0,则函数y =2[f (x )]2-3f (x )+1的零点个数是( )A .3B .5C .7D .85.现有2门不同的考试要安排在连续的5天之内进行,每天最多考一门,且不能连续两天有考试,则不同的安排方案有( ) A .6种 B .8种 C .12种D .16种6.欧阳修《卖油翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿,可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3 cm 的圆,中间有边长为1 cm 的正方形孔,若你随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率是( ) A.9π4 B.94π C.4π9D.49π7.如果执行下面的程序框图,输入正整数N (N ≥2)和实数a 1,a 2,…,a n ,输出A ,B ,则( )A .A +B 为a 1,a 2,…,a n 的和 B.A +B 2为a 1,a 2,…,a n 的算术平均数C .A 和B 分别是a 1,a 2,…,a n 中最大的数和最小的数D .A 和B 分别是a 1,a 2,…,a n 中最小的数和最大的数8.学习合情推理后,甲、乙两位同学各举了一个例子,甲:由“若三角形周长为l ,面积为S ,则其内切圆半径r =2Sl ”类比可得“若三棱锥表面积为S ,体积为V ,则其内切球半径r=3VS ”;乙:由“若直角三角形两直角边长分别为a ,b ,则其外接圆半径r =a 2+b 22”;类比可得“若三棱锥三条侧棱两两垂直,侧棱长分别为a 、b 、c ,则其外接球半径r =a 2+b 2+c 23”,这两位同学类比得出的结论( ) A .两人都对 B .甲错、乙对 C .甲对、乙错D .两人都错9.设x 1、x 2∈R ,常数a >0,定义运算“*”:x 1]x *a ))的轨迹是( ) A .圆B .椭圆的一部分C .双曲线的一部分D .抛物线的一部分10.在实数集R 中定义一种运算“*”,对任意a ,b ∈R ,a *b 为唯一确定的实数,且具有性质:(1)对任意a ∈R ,a *0=a ;(2)对任意a ,b ∈R ,a *b =ab +(a *0)+(b *0).关于函数f (x )=(e x )*1e x 的性质,有如下说法:①函数f (x )的最小值为3;②函数f (x )为偶函数;③函数f (x )的单调递增区间为(-∞,0]. 其中所有正确说法的个数为( ) A .0 B .1 C .2D .311.已知f (x )=|x +2|+|x -4|的最小值为n ,则二项式⎝⎛⎭⎫x -1x n 展开式中x 2项的系数为( ) A .11 B .20 C .15D .1612.(·模拟)已知椭圆C :x 2a 2+y 2b 2=1 (a >b >0)的左,右焦点分别为F 1,F 2,若椭圆C 上恰好有6个不同的点P ,使得△F 1F 2P 为等腰三角形,则椭圆C 的离心率的取值范围是( ) A.⎝⎛⎭⎫13,23 B.⎝⎛⎭⎫12,1 C.⎝⎛⎭⎫23,1D.⎝⎛⎭⎫13,12∪⎝⎛⎭⎫12,1第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.用黑白两种颜色的正方形地砖依照图中的规律拼成若干图形,则按此规律第100个图形中有白色地砖________块;现将一粒豆子随机撒在第100个图中,则豆子落在白色地砖上的概率是________.14.若m =ʃ20(2x -e x )d x ,则“a =m +e 2-214”是“函数f (x )=ax 2-x -1只有一个零点”的________条件(从“充要”“充分不必要”“必要不充分”“既不充分也不必要”中选填). 15.如图,在△OAB 中,C 为OA 上的一点,且OC →=23OA →,D 是BC 的中点,过点A 的直线l ∥OD ,P 是直线l 上的动点,若OP →=λ1OB →+λ2OC →,则λ1-λ2=______.16.已知双曲线E :x 2a 2-y 2b 2=1 (a >0,b >0)的离心率为1+52,圆C 是以坐标原点O 为圆心,实轴为直径的圆.过双曲线第一象限内的任一点P (x 0,y 0)作圆C 的两条切线,其切点分别为A ,B .若直线AB 与x 轴、y 轴分别相交于M ,N 两点,则b 22|OM |2-a 22|ON |2的值为______.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)(·福州质检)如图,函数f (x )=3sin x 2·cos x 2+cos 2x2+m 的图象过点⎝⎛⎭⎫5π6,0.(1)求实数m 的值及f (x )的单调递增区间;(2)设y =f (x )的图象与x 轴、y 轴及直线x =t ⎝⎛⎭⎫0<t <2π3所围成的曲边四边形的面积为S ,求S关于t 的函数S (t )的解析式.18.(12分)(·淄博模考)中国男子篮球职业联赛总决赛采用七场四胜制(即先胜四场者获胜).进入总决赛的甲、乙两队中,若每一场比赛甲队获胜的概率为23,乙队获胜的概率为13,假设每场比赛的结果互相.现已赛完两场,乙队以2∶0暂时领先. (1)求甲队获得这次比赛胜利的概率;(2)设比赛结束时两队比赛的场数为随机变量X ,求随机变量X 的分布列和均值E (X ).19.(12分)(·珠海摸底)在边长为4 cm 的正方形ABCD 中,E ,F 分别为BC ,CD 的中点,M ,N 分别为AB ,CF 的中点,现沿AE ,AF ,EF 折叠,使B ,C ,D 三点重合,构成一个三棱锥.(1)请判断MN 与平面AEF 的位置关系,并给出证明; (2)证明:AB ⊥平面BEF ; (3)求二面角M —EF —B 的余弦值.20.(12分) 已知公比为q 的等比数列{a n }是递减数列,且满足a 1+a 2+a 3=139,a 1a 2a 3=127.(1)求数列{a n }的通项公式;(2)求数列{(2n -1)·a n }的前n 项和T n ;(3)若b n =n 3n -1·a n +32 (n ∈N *),证明:1b 1b 2+1b 2b 3+…+1b n b n +1≥435.21.(12分)若函数f (x )=ln x ,g (x )=x -2x .(1)求函数φ(x )=g (x )-kf (x )(k >0)的单调区间;(2)若对所有的x ∈[e ,+∞),都有xf (x )≥ax -a 成立,求实数a 的取值范围.22.(12分)(·广州普通高中毕业班综合测试)已知椭圆C 1的中心在坐标原点,两焦点分别为双曲线C 2:x 22-y 2=1的顶点,直线x +2y =0与椭圆C 1交于A ,B 两点,且点A 的坐标为(-2,1),点P 是椭圆C 1上异于点A ,B 的任意一点,点Q 满足AQ →·AP →=0,BQ →·BP →=0,且A ,B ,Q 三点不共线. (1)求椭圆C 1的方程; (2)求点Q 的轨迹方程;(3)求△ABQ 面积的最大值及此时点Q 的坐标.综合检测(二)1.A 2.B 3.C 4.B 5.C 6.D 7.C 8.C 9.D [∵x 1]x *a )=(x +a )2-(x -a )2=2ax ,则P (x,2ax ). 设P (x 1,y 1),即⎩⎪⎨⎪⎧x 1=x ,y 1=2ax ,消去x 得y 21=4ax 1(x 1≥0,y 1≥0). 故点P 的轨迹为抛物线的一部分.]10.C [由定义的运算知,f (x )=(e x )*1e x =e x ·1e x +e x *0+1e x *0=1+e x +1e x ,①f (x )=1+e x +1e x ≥1+2e x ·1e x =3,当且仅当e x =1ex ,即x =0时取等号,∴f (x )的最小值为3,故①正确;②∵f (-x )=1+e -x +1e -x =1+1e x +e x =f (x ),∴f (x )为偶函数,故②正确;③f ′(x )=e x -1e x =e 2x -1e x ,当x ≤0时,f ′(x )=e 2x -1e x ≤0,∴f (x )在(-∞,0]上单调递减,故③错误.故正确说法的个数是2.]11.C [因为函数f (x )=|x +2|+|x -4|表示数轴上的点到-2和4之间的距离, 易知其最小值为4-(-2)=6,即n =6, 此时展开式的通项公式为T r +1=C r 6x 6-r (-1x)r =C r 6x 6-2r (-1)r , 由6-2r =2,得r =2,所以T 3=C 26x 2(-1)2=15x 2,即x 2项的系数为15.]12.D [6个不同的点有两个为短轴的两个端点,另外4个分别在第一、二、三、四象限,且上下对称左右对称.不妨设P 在第一象限,|PF 1|>|PF 2|,当|PF 1|=|F 1F 2|=2c 时,|PF 2|=2a -|PF 1|=2a -2c ,即2c >2a -2c ,解得e =c a >12.因为e <1,所以12<e <1.当|PF 2|=|F 1F 2|=2c 时,|PF 1|=2a -|PF 2|=2a -2c ,即2a -2c >2c ,且2c +2c >2a -2c ,解得13<e <12.综上可得13<e <12或12<e <1,故选D.] 13.503 503603 14.充分不必要 15.-3216.5+14解析 由题知P 、A 、O 、B 四点共圆,其方程为⎝⎛⎭⎫x -x 022+⎝⎛⎭⎫y -y 022=14(x 20+y 20),又圆C 的方程为x 2+y 2=a 2,两式作差,得公共弦AB 的方程为x 0x +y 0y =a 2,分别令x =0,y =0,得|ON |=a 2y 0,|OM |=a 2x 0.又点P (x 0,y 0)在双曲线上,故x 20a 2-y 20b 2=1,即b 2x 20-a 2y 20=a 2b 2.又e 2=c 2a 2=a 2+b 2a 2=⎝ ⎛⎭⎪⎫1+522,所以b 2a 2=1+52.故b 22|OM |2-a 22|ON |2=b 22a 4x 20-a 22a 4y 20=b 2x 20-a 2y 202a 4=b 22a 2=1+54. 17.解 (1)f (x )=3sin x 2cos x 2+cos 2x2+m=32sin x +12cos x +12+m =sin ⎝⎛⎭⎫x +π6+12+m . 因为f (x )的图象过点⎝⎛⎭⎫5π6,0,所以sin ⎝⎛⎭⎫5π6+π6+12+m =0,解得m =-12. 所以f (x )=sin ⎝⎛⎭⎫x +π6, 由-π2+2k π≤x +π6≤π2+2k π,k ∈Z ,得-2π3+2k π≤x ≤π3+2k π,k ∈Z .故f (x )的单调递增区间是⎣⎡⎦⎤-2π3+2k π,π3+2k π,k ∈Z . (2)由(1)得f (x )=32sin x +12cos x .所以S =ʃt 0⎝⎛⎭⎫32sin x +12cos x d x=⎪⎪⎝⎛⎭⎫-32cos x +12sin x t 0=⎝⎛⎭⎫-32cos t +12sin t -⎝⎛⎭⎫-32cos 0+12sin 0=sin ⎝⎛⎭⎫t -π3+32. 所以S (t )=sin ⎝⎛⎭⎫t -π3+32 ⎝⎛⎭⎫0<t <2π3. 18.解 (1)设甲队获胜为事件A ,则甲队获胜包括甲队以4∶2获胜和甲队以4∶3获胜两种情况.设甲队以4∶2获胜为事件A 1, 则P (A 1)=⎝⎛⎭⎫234=1681;设甲队以4∶3获胜为事件A 2, 则P (A 2)=C 14×13×⎝⎛⎭⎫233×23=64243, 则P (A )=P (A 1)+P (A 2)=1681+64243=112243.(2)随机变量X 可能的取值为4,5,6,7. P (X =4)=⎝⎛⎭⎫132=19.P (X =5)=C 12×13×23×13=427. P (X =6)=C 13×13×⎝⎛⎭⎫232×13+⎝⎛⎭⎫234=2881. P (X =7)=C 14×13×⎝⎛⎭⎫233=3281, 则X 的分布列为X 4 5 6 7 P1942728813281E (X )=4×19+5×427+6×2881+7×3281=48881.19.(1)解 MN ∥平面AEF .证明:由题意可知点M ,N 在折叠前后都分别是AB ,CF 的中点(折叠后B ,C 两点重合), 所以MN ∥AF . 因为⎩⎪⎨⎪⎧MN ⊄平面AEF ,AF ⊂平面AEF ,MN ∥AF ,所以MN ∥平面AEF .(2)证明 由题意可知AB ⊥BE 的关系在折叠前后都没有改变.因为在折叠前AD ⊥DF ,由于折叠后AD 与AB 重合,点D 与B 重合,所以AB ⊥BF .因为⎩⎪⎨⎪⎧AB ⊥BE ,AB ⊥BF ,BE ⊂平面BEF ,BF ⊂平面BEF ,BE ∩BF =B ,所以AB ⊥平面BEF .(3)解 记EF 的中点为G ,连接ME ,MF ,BG ,MG . 因为BE =BF ,ME =MF ,所以BG ⊥EF 且MG ⊥EF , 所以∠MGB 是二面角M —EF —B 的平面角. 因为AB ⊥平面BEF , 所以∠MBG =90°. 在△BEF 中,BG =2, 由于MB =2,所以MG =MB 2+BG 2=6,于是cos ∠MGB =BG MG =26=33.所以二面角M —EF —B 的余弦值为33. 20.(1)解 由a 1a 2a 3=127及等比数列性质得a 32=127,即a 2=13,由a 1+a 2+a 3=139,得a 1+a 3=109, 由⎩⎨⎧ a 2=13,a 1+a 3=109得⎩⎨⎧ a 1q =13,a 1+a 1q 2=109,∴1+q 2q =103,即3q 2-10q +3=0, 解得q =3,或q =13. ∵{a n }是递减数列,故q =3舍去,∴q =13,由a 2=13,得a 1=1. 故数列{a n }的通项公式为a n =13n -1 (n ∈N *).(2)解 由(1)知(2n -1)·a n =2n -13n -1, ∴T n =1+33+532+…+2n -13n -1,① 13T n =13+332+533+…+2n -33n -1+2n -13n ,② ①-②得:23T n =1+23+232+233+…+23n -1-2n -13n =1+2⎝ ⎛⎭⎪⎫13+132+133+…+13n -1-2n -13n =1+2·13⎝ ⎛⎭⎪⎫1-13n -11-13-2n -13n =2-13n -1-2n -13n ,∴T n =3-n +13n -1. (3)证明 ∵b n =n 3n -1·a n +32(n ∈N *) =n +32=2n +32, ∴1b 1b 2+1b 2b 3+…+1b n b n +1=25·27+27·29+…+22n +3·22n +5=2⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫15-17+⎝⎛⎭⎫17-19+…+⎝ ⎛⎭⎪⎫12n +3-12n +5 =2⎝ ⎛⎭⎪⎫15-12n +5. ∵n ≥1,15-12n +5≥15-17=235, ∴1b 1b 2+1b 2b 3+…+1b n b n +1≥435. 21.解 (1)函数φ(x )=x -2x-k ln x 的定义域为(0,+∞). φ′(x )=1+2x 2-k x =x 2-kx +2x 2, 记函数h (x )=x 2-kx +2,其判别式Δ=k 2-8.①当Δ=k 2-8≤0,即0<k ≤22时,h (x )≥0恒成立,∴φ′(x )≥0在(0,+∞)恒成立,φ(x )在区间(0,+∞)上递增,②当Δ=k 2-8>0即k >22时,方程h (x )=0有两个不等的实根x 1=k -k 2-82>0,x 2=k +k 2-82>0. 若x 1<x <x 2,则h (x )<0,∴φ′(x )<0,∴φ(x )在区间(x 1,x 2)上递减;若x >x 2或0<x <x 1,则h (x )>0,∴φ′(x )>0,∴φ(x )在区间(0,x 1)和(x 2,+∞)上递增. 综上可知:当0<k ≤22时,φ(x )的递增区间为(0,+∞);当k >22时,φ(x )的递增区间为(0,k -k 2-82)和(k +k 2-82,+∞),递减区间为(k -k 2-82,k +k 2-82). (2)∵x ≥e ,∴x ln x ≥ax -a ⇔a ≤x ln x x -1. 令p (x )=x ln x x -1,x ∈[e ,+∞),则p ′(x )=x -ln x -1(x -1)2. ∵当x ≥e 时,(x -ln x -1)′=1-1x>0, ∴函数y =x -ln x -1在[e ,+∞)上是增函数,∴x -ln x -1≥e -ln e -1=e -2>0,p ′(x )>0,∴p (x )在[e ,+∞)上是增函数,∴p (x )的最小值为p (e)=e e -1,∴a ≤e e -1. 22.解 (1)∵双曲线C 2:x 22-y 2=1的顶点为F 1(-2,0),F 2(2,0), ∴椭圆C 1的两焦点分别为F 1(-2,0),F 2(2,0).设椭圆C 1的方程为x 2a 2+y 2b2=1 (a >b >0), ∵椭圆C 1过点A (-2,1),∴2a =|AF 1|+|AF 2|=4,得a =2.∴b 2=a 2-(2)2=2.∴椭圆C 1的方程为x 24+y 22=1. (2)设点Q (x ,y ),点P (x 1,y 1),由A (-2,1)及椭圆C 1关于原点对称可得B (2,-1), ∴AQ →=(x +2,y -1),AP →=(x 1+2,y 1-1),BQ →=(x -2,y +1),BP →=(x 1-2,y 1+1).由AQ →·AP →=0,得(x +2)(x 1+2)+(y -1)(y 1-1)=0,即(x +2)(x 1+2)=-(y -1)(y 1-1).①同理,由BQ →·BP →=0,得(x -2)(x 1-2)=-(y +1)(y 1+1).②①×②,得(x 2-2)(x 21-2)=(y 2-1)(y 21-1).③由于点P 在椭圆C 1上,则x 214+y 212=1,得x 21=4-2y 21, 代入③式,得-2(y 21-1)(x 2-2)=(y 2-1)(y 21-1).当y 21-1≠0时,有2x 2+y 2=5,当y 21-1=0时,点P (-2,-1)或P (2,1),此时点Q 对应的坐标分别为(2,1)或(-2,-1),其坐标也满足方程2x 2+y 2=5.当点P 与点A 重合时,即点P (-2,1),由②得y =2x -3.解方程组⎩⎪⎨⎪⎧2x 2+y 2=5,y =2x -3, 得点Q 的坐标为(2,-1)或⎝⎛⎭⎫22,-2. 同理,当点P 与点B 重合时,可得点Q 的坐标为(-2,1)或⎝⎛⎭⎫-22,2. ∴点Q 的轨迹方程为2x 2+y 2=5,除去四个点(2,-1),⎝⎛⎭⎫22,-2,(-2,1),⎝⎛⎭⎫-22,2. (3)点Q 到直线AB :x +2y =0的距离为|x +2y |3. △ABQ 的面积为S =12(2+2)2+(-1-1)2·|x +2y |3 =|x +2y |=x 2+2y 2+22xy .而22xy =2×(2x )×⎝⎛⎭⎫y 2≤4x 2+y 22(当且仅当2x =y 2时等号成立), ∴S =x 2+2y 2+22xy ≤ x 2+2y 2+4x 2+y 22 = 5x 2+52y 2=522(当且仅当2x =y 2时,等号成立). 由⎩⎪⎨⎪⎧ 2x =y 2,2x 2+y 2=5,解得⎩⎪⎨⎪⎧ x =22,y =2,或⎩⎪⎨⎪⎧ x =-22,y =-2. ∴△ABQ 的面积的最大值为522,此时,点Q 的坐标为⎝⎛⎭⎫22,2或⎝⎛⎭⎫-22,-2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16.设p:方程x2+2mx+1=0有两个不相等的正根;q:方程x2+2(m-2)x-3m+10=0无实根,则使p∨q为真,p∧q为假的实数m的取值范围是.
第二章
(
一、选择题(本大题共12小题,每小题5分,共60分)
1.设集合M={x|2x-1<1,x∈R},N={x|lo x<1,x∈R},则M∩N等于()
A.[2,+∞)B.(2,+∞)
C.[1,+∞)D.(-∞,-1)
7.已知集合A= ,B={y|y= },则A∩(∁RB)=()
A.[-3,5]B.(-3,1)
C.(-3,1]D.(-3,+∞)
8.不等式x2-2x+m>0在R上恒成立的必要不充分条件是()
A.m>2B.0<m<1
C.m>0D.m>1
A.p:∃x0∈A,2x0∈B
B.p:∃x0∉A,2x0∈B
C.p:∃x0∈A,2x0∉B
D.p:∀x∉A,2x∉B
5.“p∨q是真命题”是“p为假命题”的()
A.必要不充分条件
B.充分不必要条件
C.充分必要条件
D.既不充分也不必要条件
6.已知p:x≥k,q: <1,若p是q的充分不必要条件,则实数k的取值范围是()
A.若α≠ ,则sinα≠
B.若α= ,则sinα≠
C.若sinα≠ ,则α≠
D.若sinα≠ ,则α=
3.已知集合A={-2,-1,0,1,2,3},B={x|x2-2x-3<0},则A∩B=()
A.{-1,0}B.{0,1,2}
C.{-1,0,1}D.{-2,-1,0}
4.设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:∀x∈A,2x∈B,则()
9.(2017北京,理6)设m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n<0”的()
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
10.已知不等式x2-2x-3<0的解集为A,不等式x2+x-6<0的解集为B,不等式x2+ax+b<0的解集为A∩B,则a+b=()
p3:∀x∈(0,+∞), <lo x;
p4:∀x∈ <lo x.
其中的真命题是()
A.p1,p3B.p1,p4
C.p2,p3D.p2,p4
二、填空题(本大题共4小题,每小题7分,共28分)
13.已知全集U= ,集合A={-1,1},B={1,4},则A∩(∁UB)=.
14.(2017北京,理13)能够说明“设a,b,c是任意实数,若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为.
二、填空题(本大题共4小题,每小题5分,共20分)
13.已知p:函数f(x)=|x+a|在区间(-∞,-1)内是单调函数,q:函数g(x)=loga(x+1)(a>0,且a≠1)在区间(-1,+∞)内是增函数,则p是q的.(填“充分不必要条件”“必要不充分条件”“充要条件”或“既不充分也不必要条件”)
9.当a>0时,函数f(x)=(x2-ax)ex的图象大致是()
10.已知g(x)是R上的奇函数,当x<0时,g(x)=-ln(1-x),函数f(x)= 若f(2-x2)>f(x),则实数x的取值范围是()
A.(-∞,1)∪(2,+∞)
B.(-∞,-2)∪(1,+∞)
C.(1,2)
D.(-2,1)
11.某公司租地建仓库,已知仓库每月占用费y1与仓库到车站的距离成反比,而每月车载货物的运费y2与仓库到车站的距离成正比.据测算,如果在距离车站10 km处建仓库,这两项费用y1,y2分别是2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站()
A.-3B.1
C.-1D.3
11.已知命题p:∃x0∈R,x0-2>lgx0,命题q:∀x∈R,ex>1,则()
A.命题p∨q是假命题
B.命题p∧q是真命题
C.命题p∧(q)是真命题
D.命题p∨(q)是假命题
12.对于下列四个命题:
p1:∃x0∈(0,+∞), ;
p2:∃x0∈(0,1),lo x0>lo x0;
A. B.(0,1)
C. D.(-∞,1)
2.已知函数f(x)= 则f(f(1))=()
A.2B.0C.-4D.-6
3.下列函数中,既是偶函数又在区间(0,+∞)内单调递增的是()
A.y=- B.y=-x2
C.y=e-x数f(x)的定义域为R.当x<0时,f(x)=x3-1;当-1≤x≤1时,f(-x)=-f(x);当x> 时,f =f ,则f(6)=()
A.-2B.-1C.0D.2
5.定义在R上的偶函数f(x)满足f(x+1)=f(x-1),若f(x)在区间[0,1]上单调递增,则f ,f(1),f 的大小关系为()
A.f <f(1)<f
B.f(1)<f <f
C.f <f <f(1)
D.f <f(1)<f
6.(2017广东七校联考)已知函数f(x)= -log3x,若实数x0是方程f(x)=0的解,且x0<x1,则f(x1)的值()
最新人教版高中理科数学一轮复习全套单元测试题
第一章
(
一、选择题(本大题共12小题,每小题6分,共72分)
1.(2017浙江,1)已知集合P={x|-1<x<1},Q={x|0<x<2},那么P∪Q=()
A.(-1,2)B.(0,1)
C.(-1,0)D.(1,2)
2.命题“若α= ,则sinα= ”的逆否命题是()
14.已知奇函数f(x)满足对任意x∈R都有f(x+6)=f(x)成立,且f(1)=1,则f(2 015)+f(2 017)=.
A.恒为负B.等于零
C.恒为正D.不大于零
7.若方程lo (a-2x)=2+x有解,则a的最小值为()
A.2B.1C. D.
8.已知定义在R上的函数f(x)满足f(-x)=-f(x),f(x+1)=f(1-x),且当x∈[0,1]时,f(x)=log2(x+1),则f(31)=()
A.0B.1C.-1D.2
A.5 km处B.4 km处C.3 km处D.2 km处
12.(2017山东,理10)已知当x∈[0,1]时,函数y=(mx-1)2的图象与y= +m的图象有且只有一个交点,则正实数m的取值范围是()
A.(0,1]∪[2 ,+∞)
B.(0,1]∪[3,+∞)
C.(0, ]∪[2 ,+∞)
D.(0, ]∪[3,+∞)