向量的概念及基本运算ppt

合集下载

向量的概念及线性运算+课件-2023届高三数学一轮复习

向量的概念及线性运算+课件-2023届高三数学一轮复习

(4)实数与向量的积(数乘).
①定义:实数 λ 与向量 a 的积是一个向量,记作 λa,λa 与 a 平行.规定: |λa|=__|λ_||_a|___,当 λ > 0 时,λa 的方向与 a 的方向 相同 ;当 λ < 0 时,λa 的方向与 a 的方向 相反 ;当 λ=0 时,λa=0.
②运算律:λ(μa)=_(λ_μ_)a__,(λ+μ)a=_λ_a+__μ_a __,λ(a+b)=_λ_a_+_λ_b___.
面内的任意一点,则O→A+O→B+O→C+O→D等于( D )
→ A.OM
B.2O→M
C.3O→M
D.4O→M
【解析】 因为 M 是平行四边形 ABCD 对角线 AC,BD 的交点,所以O→A+
O→C=2O→M,O→B+O→D=2O→M.所以O→A+O→B+O→C+O→D=4O→M.
故选 D.
(3)在△ABC 中,延长 BC 至点 M 使得 BC=2CM,连接 AM,点 N 为 AM 上
A.1A→B-1A→D 23
C.-1A→B+1A→D 23
B.1A→B-1A→D 32
D.-1A→B+1A→D 32
4.如图所示,设 O 是△ABC 内部一点,且O→A+O→C=-2O→B,则△ABC 与
△AOC 的面积之比为( )
A.4∶1
B.2∶1
C.3∶2
D.4∶3
5、如图所示,在△ABC 中,点 O 是 BC 的中点.过点 O 的直线分别交直线 AB,AC 于不同的两点 M,N,若A→B=mA→M,A→C=nA→N,则 m+n 的值为________
2、如图所示,在△ABC 中,A→N=1A→C,P 是 BN 上的一点,若A→P=mA→B+ 2 A→C,

人教课标版《空间向量及其运算》PPT课件1

人教课标版《空间向量及其运算》PPT课件1

2
2 22
又 NC 1 NC
CC
1
1 2
BC
AA 1
1 AD 2
AA
1
1c 2
a,
MP
NC
1
(1 2
a
1 2
b
c)
(a
1 c) 2
3 a 1 b 3 c. 222
探究提高 用已知向量来表示未知向量,一定要结 合图形,以图形为指导是解题的关键.要正确理解 向量加法、减法与数乘运算的几何意义.首尾相接 的若干向量之和,等于由起始向量的始点指向末 尾向量的终点的向量,我们可把这个法则称为向 量加法的多边形法则.在立体几何中要灵活应用三 角形法则,向量加法的平行四边形法则在空间仍 然成立.
共线
或重合 ,则称这些向量叫做共线向量或平行向量 ,
向量
a平行于b记作
a∥b
共面 向量
平行于同一 平面 的向量叫做共面向量
二、空间向量中的有关定理
定理
内容
定 理
对于空间任意两个向量a,b,a∥b的充
要条件是存在实数λ,使 a=λb (b≠0).
如图所示,点P在l上的充要条
共线 向量
件是:
①其中
定理 推 a叫做直线l的方向向量,t∈R,
三、向量的线性运算 1.空间向量的加法和减法 类似于平面向量,我们可以定义空间向量的加法和 减法运算(如图):
OAOC
D
CO AO
2.空间向量的数乘
实数λ与空间向量a的乘积 λa 仍然是一个向量,
称为
数乘 .
当λ>0时,λa与a方向 相同
;当λ<0时,
λa与a方向
相反 ;λa的长度是a的长度的|λ|

空间向量及其运算课件 课件

空间向量及其运算课件  课件
| AB | (x2 x1)2 ( y2 y1)2 , C(x, y)是AB的中点,则
x
y
x1 y1
2
x2 y2
2
空间向量
空间向量的坐标运算:
a (x1, y1, z1),b (x2 , y2 , z2 )
a b (x1 x2 , y1 y2 , z1 z2 );
a (x1, y1, z1), R;
空间向量
空间向量的夹角:
a (x1, y1, z1),b (x2 , y2 , z2 ) cos a,b a • b
| a || b |
x1x2 y1 y2 z1z2
x12 y12 z12 x22 y22 z22
垂直与平行:
a (x1, y1, z1),b (x2 , y2 , z2 ) a // b x1 y1 z1 (?)
(4)已知不共线的三点A、B、C,对平面 ABC外的任意一点O,若 OG 1 (OA OB OC) 则G是三角形ABC的重心 3
以上命题中,正确的是__________
已知三棱锥O—ABC中,G为△ABC的重心,OA=a,OB=b, OC=c,试用a , b , c 来表示OG.
(1)若AD是△ABC的中线,则有
平面的向量参数方程:
A, B,C是不共线的三点,P 平面ABC
存在唯一的实数对x, y,使 AP x
AB yAC
存在唯一的实数对x, y,使
OP (1 x y) OA yOC
存在唯一的实数对x, y, z
(x y z 1),使 OP x OA
yOB zOC
空间向量及其运算
• 空间向量的概念、表示、相等关系。 • 空间向量的加法、减法、数乘向量 • 加法交换律 • 加法结合律 • 数乘分配律

《向量代数》课件

《向量代数》课件
详细描述
向量的向量积定义为两个向量$mathbf{A}$和$mathbf{B}$的模长之积与它们夹角的正弦值的乘积,记作$mathbf{A} times mathbf{B}$。其几何意义是向量$mathbf{A}$和$mathbf{B}$所围成的平行四边形的面积。
总结词:向量的混合积是三个向量之间的混合乘积,其结果是一个标量。
VS
矩阵是实现向量线性变换的一种常用工具,它可以表示和操作向量的变换。
详细描述
矩阵是实现向量线性变换的一种常用工具,它可以表示和操作向量的变换。设有一组向量$mathbf{v}_1, mathbf{v}_2, ldots, mathbf{v}_n$经过线性变换得到一组新的向量$mathbf{w}_1, mathbf{w}_2, ldots, mathbf{w}_n$,这个变换可以用一个矩阵表示,即$[mathbf{w}] = [mathbf{v}]A$,其中$A$是一个矩阵。
向量的模是描述向量大小的量,掌握向量的模的计算方法是学习向量代数的重要内容。
总结词
向量的模是指从原点到该向量的有向线段的长度。在二维空间中,向量的模可以用勾股定理计算;在三维空间中,向量的模则可以用勾股定理的推广计算。向量的模具有一些基本性质,如非负性、齐次性、三角不等式等。
详细描述
总结词
向量的加法与数乘是向量代数中的基本运算,掌握这些运算法则是理解向量代数的重要基础。
《向量代数》ppt课件
Contents
目录
向量代数概述向量的数量积与向量积向量的线性变换向量的空间几何意义向量代数在实际问题中的应用
向量代数概述
总结词
向量的定义与表示是学习向量代数的基础,需要掌握向量的基本概念和表示方法。
详细描述

空间向量与立体几何复习课ppt课件

空间向量与立体几何复习课ppt课件

一、空间向量及其运算
(一)基本概念 1. 空间向量:空间中具有大小和方向的量 叫做向量. 2. 空间向量也用有向线段表示,并且同向且 等长的有向线段表示同一向量或相等的向量.
3. 向量的模:向量的大小叫向量的长度或 模。即表示向量的有向线段的长度。 4. 单位向量:模是 1 的向量。
5. 零向量:模是 0 的向量。零向量的方向 是任意的。有向线段的起点与终点重合。
a b
2.共面向量定理:如果两个向量 a 、b 不共线,则向 量 p 与向量 a 、b 共面的充要条件是存在唯一的有 序实数对 ( x, y) 使 p xa yb .
3.空间向量基本定理:如果两个向量 a 、b、c 不共面, 则对空间中的任意向量 p ,存在唯一的有序实数对 (x, y , z) 使 p xa yb zc .
(二)、空间角的向量方法:
设直线 l, m 的方向向量分别为 a, b ,平面 ,
的法பைடு நூலகம்量分别为 u, v ,则
两直线 l , m 所成的角为 ( 0 ≤ ≤ ), cos cosa b ;
2
直线 l 与平面 所成角 ( 0 ≤ ≤ ), sin cosa u ;
2
二面角 ─l ─ 的为 ( 0≤ ≤ ), cos cosu v.
中国历史上吸烟的历史和现状、所采 取的措 施以及 由此带 来的痛 苦和灾 难,可 以进一 步了解 吸烟对 人民健 康的危 害,提 高师生 的控烟 意识
理论知识点
一、空间向量及其运算
1、基本概念;
2、空间向量的运算;
3、三个定理;
4、坐标表示。
二、立体几何中的向量方法
1、判断直线、平面间的位置关系; 2、求解空间中的角度; 3、求解空间中的距离。

空间向量及其运算(共22张PPT)

空间向量及其运算(共22张PPT)
向量场的点乘
两个向量场进行点乘运算,得到一个标量场,其 每个标量是原来两个向量场的对应向量的点乘结 果。
向量场的几何意义
向量场表示了空间中某一点受到的力或速度等物理量的分布情况,可以通 过图形表示出来。
向量场的方向表示了该点受到的力的方向或速度的方向,向量的大小表示 了力的大小或速度的大小。
通过观察图形可以直观地了解向量场的分布情况,从而更好地理解物理现 象和问题。
向量的模
向量的模定义为从起点到终点距离的 长度,记作|a|。
向量的模具有以下性质:|a + b| ≤ |a| + |b|,|a - b| ≤ |a| + |b|,|λa| = |λ||a| (λ为实数)。
向量的加法
向量的加法定义为同起点同终点的向量相加,即a + b = b + a(交换律),(λ + μ)a = λa + μa(结合律)。
向量场具有方向性和大小,表 示了空间中某一点受到的力或 速度等物理量的分布情况。
向量场的运算律
1 2 3
向量场的加法
将两个向量场叠加,得到一个新的向量场,其每 个向量是原来两个向量场的对应向量的和。
向量场的数乘
将一个标量与一个向量场中的每个向量相乘,得 到一个新的向量场,其每个向量是原来向量场的 对应向量与该标量的乘积。
向量在其他领域的应用
经济学
在经济学中,例如在市场分析和供需关系中,可以使用向量来表示不同因素之间的关系,通过向量的运算来分析 这些因素之间的关系。
生物学
在生物学中,例如在生态学和生物力学中,可以使用向量来描述生物体的运动、方向和力的作用,通过向量的运 算来分析这些力的作用和影响。
THANKS

2024版中职数学平面向量的概念ppt课件

2024版中职数学平面向量的概念ppt课件

01向量的定义向量是既有大小又有方向的量,通常用有向线段表示。

02向量的表示方法向量可以用小写字母或大写字母加箭头表示,如$vec{a}$或$overset{longrightarrow}{AB}$。

03向量的模向量的大小称为向量的模,记作$|vec{a}|$,模长是一个非负实数。

向量定义及表示方法03向量的模长等于有向线段的长度,可以通过勾股定理或三角函数计算。

向量的模长向量与正方向(通常是x 轴正方向)的夹角称为向量的方向角,记作$theta$,取值范围是$[0, pi]$或$[0, 180^circ]$。

方向角向量与坐标轴正方向的夹角的余弦值称为向量的方向余弦,可以通过方向角计算得到。

方向余弦向量模长与方向角模长为0的向量称为零向量,记作$vec{0}$,零向量没有方向。

零向量单位向量相反向量模长为1的向量称为单位向量,单位向量具有确定的方向。

与给定向量大小相等、方向相反的向量称为相反向量,记作$-vec{a}$。

030201零向量、单位向量和相反向量向量共线与平行关系向量共线如果两个向量在同一直线上或者平行于同一直线,则称这两个向量共线。

共线向量满足$vec{a} = kvec{b}$($k$为实数)。

向量平行如果两个向量的方向相同或相反,则称这两个向量平行。

平行向量满足$vec{a} parallel vec{b}$。

共线与平行的关系在平面内,共线的向量一定平行,但平行的向量不一定共线。

加法定义两个向量相加,即将它们的对应分量相加得到新的向量。

几何意义向量的加法满足平行四边形法则或三角形法则,即两个向量相加的结果可以表示为以这两个向量为邻边的平行四边形的对角线,或者可以表示为将其中一个向量的终点连接到另一个向量的起点的向量。

01减法定义02几何意义两个向量相减,即将被减数的各分量减去减数的对应分量得到新的向量。

向量的减法可以表示为将减数向量的终点连接到被减数向量的起点的向量,这个向量与减数向量方向相反,大小相等。

平面向量的概念PPT课件

平面向量的概念PPT课件

04
平面向量数量积概念及性 质
数量积定义及几何意义
数量积定义
两个向量的数量积是一个标量,等于它们模长的乘积与它们夹 角余弦的乘积。
几何意义
数量积反映了两个向量的相对位置和角度关系,正值表示同向, 负值表示反向,零表示垂直。
数量积性质及运算规律
性质
满足交换律、分配律、结合律,与标量乘法相容等。
运算规律
向量坐标与点坐标关系
向量坐标
向量坐标是由起点指向终点的有 向线段,在直角坐标系中可以用
两个坐标值表示。
点坐标
点坐标是直角坐标系中点的位置表 示,同样可以用两个坐标值表示。
关系
向量坐标与点坐标密切相关,向量 的起点和终点坐标可以决定向量的 坐标,而点的坐标可以用来表示向 量的起点或终点。
向量运算坐标表示法
坐标法求解向量问题
求解向量坐标
通过已知点的坐标和向量的关系,可以 求解向量的坐标。
求解向量模长
通过向量的坐标可以计算向量的模长, 进而求解与模长相关的问题。
求解向量夹角
通过向量的坐标可以计算向量的夹角, 进而求解与夹角相关的问题。
求解向量运算结果
通过向量的坐标表示法可以求解向量的 加法、减法和数乘运算结果。
向量运算满足基本定律
加法结合律
(a + b) + c = a + (b + c)
数乘结合律
(kl)a = k(la)
加法交换律
a+b=b+a
数乘分配律
k(a + b) = ka + kb
向量共线定理,使得b = λa
03
平面向量坐标表示法
直角坐标系中向量表示方法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行时它们是同向还是反向?
2020/5/21
-
13
ur uur
例3.已知向量 e 1、e 2 不共线,
①若uAuBur eur1euur2 ,u BuC ur2eur18euur2 ,
uuur ur uur
CD3e13e2;
求证:A、B、D三点共线;
ur uur ur uur
②若向量e1 e2与 e1 e2 共线,求实数 的值.
四点共线.
(╳)
rrr r
rr
(6)如果 a ∥,b b ,∥则c . a ∥ c ( ╳ )
2020/5/21
-
5
2.向量的基本运算
(1)向量的加法
几何运算: 三角形法则
C
平行四边形法则
B
C
u Auu r uuu r uu Bu r Ouuu r uuu r Auuu r
代数运A 算B :+设 B rC a r r( A x 1 C ,y 1 ),
向量,那么对于这一平面内的任一向量 a,
r ur ur
有且只有一对实数1,使2, a1e1 e 2 2
ur ur 不共线的向量 e 1 , e 2
求证:A、B、D三点共线; ur uur ur uur
②若向量e1 e2与 e1 e2 共线,求实数
提示u:uur AB(1,1) uuur BC(2,8) uuur CD(3,3)
的值.
2020/5/21
-
16
4.平面向量基本定理 平面向量的基本定理
ur ur
如果 e 1 是, e同2 一平面内的两个不共线
①若uAuBur eur1euur2 ,u BuC ur2eur18euur2 ,C uuD ur3eur13euur2;
求证:A、B、D三点共线;
ur uur ur uur
②若向量e1 e2与 e1 e2 共线,求实数 的值.
提示:② 若向量
ur uur ur uur
e1
e2与
u er1 u re2
共线
u r
u u r
∴存在实数k 使 e1e2( ke 1-e 2 )
根据向量相等的条件
k
1
k
2020/5/21
-
15
ur uur 例3.已知向量 e 1、e 2 分别是直角坐标系内与
x轴、y轴方向相同的两个单位向量,
uuur ur uur ①若ABe1e2 ,
uBuC ur2eur18euur2 ,C uuD ur3eur13euur2;
r
r
坐标表示:若 a (x ,y ), 则 a (x,y)
2020/5/21
-
8
2.向量的基本运算
(4)两个非零向量的数量积
r r rr
a gb a b cos
几何意义:
rr r
r
a 与 b 在 a 的方向上的投影 b co s 的乘积
r
r
坐标表示:设 r a r (x 1 ,y 1 ), b (x 2 ,y 2 )
rr
rr
(1)若 a 与 同b 向, 且 a b ,
rr 则a b
(╳)
rr r r
(2)对于任意向量
rr
a
b
,

且a与
方b 向相同,
则a b (√)
(3)所有的单位向量都相等. ( ╳ )
2020/5/21
-
4
(4)零向量与任意向量都平行. ( √ )
(5)向量 uA与uBur 是CuuDur共线向量,则A、B、C、D
r
r
②若 a (x 1 ,y 1 ), b (x 2 ,y 2 )
rr
则 a ⊥b x1x2 y1y2 0
2020/5/21
-
12
例题分析 r
r
例2.已知 a=(1,2), =b (-3,2),
①当k为何值时,k
r a
r 与b
rr a垂 3直b ?
rr r r ②当k为何值时,k a 与b a平 3行b ?
r O AO BO C
b (x 2 ,y 2 )
则ab( x 1 x 2 , y 1 y 2 )
2020/5/21
-
6
2.向量的基本运算
(2)向量的减法
几何运算: 三角形法则
B
uu u r uuu r uuu r
B AO AO B
O
A
r
r
代数运算:设 ra r(x 1 ,y 1 ), b (x 2 ,y 2 )
r (2)零向量: 长度为0的向量,记作0 .
(3)单位向量: 长度等于1个单位长度的向量.
(4)平行向量: 方向相同或相反的非零向量.
(5)相等向量: 长度相等且方向相同的向量.
(6)相反向量: 长度相等且方向相反的向量.
2020/5/21
-
3
例题分析
例1.判断下列命题是否正确,不正确的说明理由
a b x1x2 y1y2
2020/5/21
-
9
3.平面向量之间的关系
(1)两个向量相等的两种形式
r r r r rr ①abab且 a 与 b 方 向 相 同
r
r
②若 a (x 1 ,y 1 ), b (x 2 ,y 2 )
则arbrx1x2,且 y1y2
2020/5/21
-
10
3.平面向量之间的关系
向量的基本 概念与运算
2020/5/21
-
1
平面向量复习
向量及相关概念

三角形法则

向量加法与减法

平行四边形法则

实数与向量的积
运算
共线向量定理 平行的充要条件
向量的数量积
垂直的充要条件
平面向量的基本定理
1.向量及相关概念
向量定义:既有大小又有方向的量叫向量。
(1)向量的模: 向量的大小也就是向量的长度称 为向量的模.
则ab( x 1 x 2 , y 1 y 2 )
2020/5/21
-
7
2.向量的基本运算
r
(3 )实 数 与 a 的 乘 积

a r是 一 个 向 量 , 且ar
r a

rr
0时,a与a同向;
0 时 , a r与 a r反 向 ;
rr
0时 , a 0
几何意义: 实质就是向量的伸长与缩短
(2)向量平行(共线)充要条件
r rr r ① a ∥ b(b 0)
rr
有且只有一个实数 使得 a b
r
r
②若 a (x 1 ,y 1 ), b (x 2 ,y 2 )
rr 则 a ∥b
x1y2 x2y1 0
2020/5/21
-
11
3.平面向量之间的关系
(3)两个非零向量垂直的充要条件
r r rr ① a ⊥b ab0
提示: u u u r u u u r u u u r ur ur uuur
① B uuD ur B uC uur C D 5(e1 e2) 5AB
AB ∥B
u u ur
D
u
u
ur
又 A 与B B有D公共点B
∴A、B、D三点共
线 2020/5/21
-
14
ur uur 例3.已知向量 e 1、e 2 不共线,
相关文档
最新文档