LED倒装工艺流程分析
LED倒装制程介绍

LED倒装制程介绍LED倒装制程(Flip Chip Process)是一种将LED芯片倒装在基底上的制程技术,可用于生产高亮度、高可靠性和高性能的LED芯片。
这种制程技术最早是为了满足高可靠性和高亮度LED应用的需求而开发的,随着技术的不断进步,现在已广泛应用于各种LED芯片制造过程中。
在传统的LED封装制程中,芯片是面向基底发光的,而在LED倒装制程中,芯片被倒装到基底上,面向封装外部。
这种倒装的设计能够有效提高LED的性能和可靠性,主要有以下几个优点:1.热耦合效应:由于芯片底部直接与封装基底接触,LED倒装制程可以提供更好的热耦合效应。
芯片产生的热量能够更快、更有效地传导到基底上,避免了芯片因长时间高温工作而导致的性能下降和寿命缩短问题。
2.更高的亮度和更好的颜色一致性:倒装制程能够提供更均匀的电流分布,减小了电流密度差异对亮度和颜色一致性的影响。
此外,倒装制程还可以提供更大的电流承受能力,使得LED芯片在高亮度工作时能够保持较好的亮度和颜色一致性。
3.提高了封装的可靠性:倒装芯片直接与封装基底相连,不需要通过金线进行连线,减少了因金线断裂而导致的电连接故障。
同时,倒装制程还可以提供更大的焊接面积,提高焊接接触面的可靠性。
1.基底准备:首先需要准备好封装基底,通常使用金属或陶瓷作为基底材料。
基底上需要刻蚀出与LED芯片尺寸相对应的凹槽,用于倒装芯片。
2.倒装芯片:将LED芯片倒装到基底的凹槽中,并使用适量的导热胶进行固定。
芯片与基底之间需要使用导电胶进行电连接。
3.焊接:将倒装芯片和基底进行焊接,通常使用热压焊或电压焊的方式。
焊接过程中需要保持适当的温度和压力,确保焊接的可靠性和稳定性。
4.后续工艺:完成焊接后,需要进行一系列的后续工艺,如清洗、封装、测试等。
这些工艺步骤是为了确保LED倒装产品的质量和性能。
LED倒装制程是一种高度精密的制程技术,要求制程设备和工艺能够提供高度的精确性和可重复性。
LED倒装技术及工艺流程分析

LED倒装技术及工艺流程分析倒装技术的工艺流程主要包括以下几个步骤:1.准备工作:首先需要准备好所需的LED芯片、PCB板、胶水、连接线等材料和设备,搭建好倒装工作台,并确认好芯片的正负极。
2.倒装工艺:将LED芯片通过电镀方式倒装到PCB上,具体工艺步骤如下:a.选择合适的胶水:根据实际需求选择合适的胶水,一般选用导热胶水或者导热硅胶进行倒装。
b.PCB加工:将PCB板经过必要的加工,包括金手指加工、焊盘/焊针喷镀锡、背面铜箔除锡等。
c.胶水上料:将胶水注入到机械注胶机中,通过专用的胶嘴将胶水点涂在PCB的焊点位置上。
d.LED芯片贴附:将LED芯片按照正负极方向和间距要求贴附到胶水涂抹的位置上,保证LED芯片与焊盘对应。
可以通过自动定位系统或者手工进行贴附。
e.固化胶水:将贴附好的LED芯片的背面放到硅胶材料或者专用的固化设备中,进行胶水的固化。
f.焊接连接线:将连接线焊接到LED芯片的正负极,一般采用无铅焊接方式。
3.测试与包装:在完成倒装过程后,对LED芯片进行测试,检测其亮度、色彩等参数是否符合要求。
通过自动或者手动测试设备进行测试。
如果有不合格的芯片,需进行更换或修复。
最后,按照客户要求进行产品包装。
倒装技术相比传统的LED贴片技术有如下优势:1.提高亮度:倒装技术可以减少PCB与LED芯片之间的电阻,提高LED灯的亮度和显示屏的像素密度。
2.降低热阻:通过使用导热胶水或者导热硅胶,可以有效地将LED芯片的热量传导到PCB板上,降低LED芯片的工作温度,提高产品的可靠性和寿命。
3.减小尺寸:倒装技术可以使LED芯片直接贴附在PCB板上,减小了整体产品的体积和厚度。
4.提高可靠性:倒装技术可以减少LED与PCB之间的线路长度,减少线路电阻,提高了产品的抗电磁干扰能力和可靠性。
5.降低生产成本:倒装技术可以提高LED灯条和显示屏的制造效率,降低生产成本。
总之,LED倒装技术是一种先进的LED封装技术,通过倒装方法将LED芯片直接连接到PCB上,可以提高亮度、降低热阻、减小尺寸、提高可靠性等优势。
led APT倒装芯片的封装

倒装芯片的封装倒装芯片通常是功率芯片主要用来封装大功率LED(>1W),正装芯片通常是用来进行传统的小功率φ3~φ10的封装。
因此,功率不同导致二者在封装及应用的方式均有较大的差别,主要区别有如下几点:1. 封装用原材料差别:2.封装制程区别:(1).固晶:正装小芯片采取在直插式支架反射杯内点上绝缘导热胶来固定芯片,而倒装芯片多采用导热系数更高的银胶或共晶的工艺与支架基座相连,且本身支架基座通常为导热系数较高的铜材;(2).焊线:正装小芯片通常封装后驱动电流较小且发热量也相对较小,因此采用正负电极各自焊接一根φ0.8~φ0.9mil金线与支架正负极相连即可;而倒装功率芯片驱动电流一般在350mA以上,芯片尺寸较大,因此为了保证电流注入芯片过程中的均匀性及稳定性,通常在芯片正负级与支架正负极间各自焊接两根φ1.0~φ1.25mil的金线;(3).荧光粉选择:正装小芯片一般驱动电流在20mA左右,而倒装功率芯片一般在350mA左右,因此二者在使用过程中各自的发热量相差甚大,而现在市场通用的荧光粉主要为YAG, YAG自身耐高温为127℃左右,而芯片点亮后,结温(Tj)会远远高于此温度,因此在散热处理不好的情况下,荧光粉长时间老化衰减严重,因此在倒装芯片封装过程中建议使用耐高温性能更好的硅酸盐荧光粉;(4).胶体的选择:正装小芯片发热量较小,因此传统的环氧树脂就可以满足封装的需要;而倒装功率芯片发热量较大,需要采用硅胶来进行封装;硅胶的选择过程中为了匹配蓝宝石衬底的折射率,建议选择折射率较高的硅胶(>1.51),防止折射率较低导致全反射临界角增大而使大部分的光在封装胶体内部被全反射而损失掉;同时,硅胶弹性较大,与环氧树脂相比热应力比环氧树脂小很多,在使用过程中可以对芯片及金线起到良好的保护作用,有利于提高整个产品的可靠性;(5).点胶:正装小芯片的封装通常采用传统的点满整个反射杯覆盖芯片的方式来封装,而倒装功率芯片封装过程中,由于多采用平头支架,因此为了保证整个荧光粉涂敷的均匀性提高出光率而建议采用保型封装(Conformal-Coating)的工艺;示意图如下:(6).灌胶成型:正装芯片通常采用在模粒中先灌满环氧树脂然后将支架插入高温固化的方式;而倒装功率芯片则需要采用从透镜其中一个进气孔中慢慢灌入硅胶的方式来填充,填充的过程中应提高操作避免烘烤后出现气泡和裂纹、分层等现象影响成品率;(7).散热设计:正装小芯片通常无额外的散热设计;而倒装功率芯片通常需要在支架下加散热基板,特殊情况下在散热基板后添加风扇等方式来散热;在焊接支架到铝基板的过程中建议使用功率<30W的恒温电烙铁温度低于230℃,停留时间<3S来焊接;(8).封装后成品示意图:APT芯片使用说明一.18mil芯片:1.芯片(硅板)尺寸:826μm x826μm,芯片整体厚度:360±10μm2.芯片打线示意图:3.焊盘材料:Al 焊盘厚度:1μm4.使用金线:≥φ1.0mil,正负极各打一根金线即可;5.封装注意事项:(1).建议使用直插式支架(2).使用银胶,并用量稍微多一些,避免固晶不牢或接触不良影响导热;(3).白光封装建议提高YAG荧光粉与环氧树脂的配比(9~12%,正白光),点胶水成“微凸”即可,如不调整比例在封装过程极易出现溢胶现象;6.驱动电流:120mA二.24mil芯片:1.芯片(硅板)尺寸:1300μm x820μm,芯片整体厚度:360±10μm2.芯片打线示意图:3.焊盘材料:Al 焊盘厚度:1μm4.使用金线:≥φ1.25mil,正负极各打一根或两根金线即可;5.封装注意事项:(1).建议使用直插式支架或dome power支架(带铝基板)(2).使用银胶,银胶请在硅板下并列点两点,并用量稍微多一些,避免固晶不牢或接触不良影响导热;(3).白光封装建议提高YAG荧光粉与环氧树脂的配比(直插式:9~12%,正白光;domepower:7% 左右,正白光),点胶水成“微凸”即可,直插式如不调整比例在封装过程极易出现溢胶现象;6.驱动电流:150mA三.40mil芯片:1.芯片(硅板)尺寸:1910μm x820μm,芯片整体厚度:360±10μm2.芯片打线示意图:3.焊盘材料:Al 焊盘厚度:1μm4.使用金线:≥φ1.25mil,正负极各打两根金线即可;5.封装注意事项:(1).dome power支架(带铝基板)(2).使用银胶,银胶请在硅板下并列点两点,并用量稍微多一些,避免固晶不牢或接触不良影响导热;(3).白光封装建议使用硅胶,点荧光粉使用折射率1.53左右的硅胶如GE5332;填充透镜建议使用折射率约1.41左右的硅胶如9022;(4).白光封装建议提高YAG荧光粉与硅胶的配比(7% 左右,正白光),点胶水成“微凸”即可6.驱动电流:350mA。
LED倒装工艺流程分析

LED倒装工艺流程分析LED(Light Emitting Diode)倒装工艺是指在LED芯片的背面倒装贴合导热基板的一种制造工艺。
倒装工艺可以提高LED芯片的散热性能,使LED灯具具有更高的光效和寿命。
以下是LED倒装工艺的主要流程:1.材料准备:LED芯片、导热胶、导热基板等材料需要提前准备好。
2.芯片背面处理:LED芯片需要经过清洗、磨砂和去膜等处理,以确保背面的平整和清洁度,以利于倒装和导热。
3.倒装机操作:将预先涂有导热胶的导热基板置于倒装机的工作台上,并进行定位。
然后将处理过的LED芯片背面面朝上放置在基板的对应位置上。
4.压力和温度控制:倒装机会施加适当的压力将LED芯片和导热胶贴合到导热基板上,并通过加热使导热胶固化。
压力和温度的控制非常重要,过高的压力或温度都可能会导致芯片损坏或背面不平整。
5.质量检验:完成倒装后的LED芯片需要进行质量检验,主要包括外观检查、电性能测试和光性能测试等。
确保倒装后的LED芯片符合规定的质量要求。
6.终检包装:合格的倒装LED芯片会进行终检,并进行包装,以保护芯片不受损。
通常采用塑料垫片和防静电袋的包装方式。
以上是LED倒装工艺的主要流程。
根据实际情况,还可以根据需要添加或调整工艺步骤。
1.散热性能好:倒装后LED芯片可以直接与导热基板接触,通过导热胶的导热性能,有效地提高LED芯片的散热性能,延长LED灯具的使用寿命。
2.光效提升:通过倒装工艺,LED芯片的背面可以减少不被光线利用的误差,光效可以得到进一步提升。
3.安装方便:倒装工艺可以减少LED灯具的体积,使其更易于安装在各种灯具内。
4.可靠性高:倒装工艺可以增加LED灯具的可靠性,减少芯片与基板之间的电连接线路的损坏和断电等问题。
然而,LED倒装工艺也存在一定的缺点,比如制程复杂、成本较高等问题。
因此,在实际应用中,需要根据实际需求和预算进行选择。
总而言之,LED倒装工艺是一种具有良好散热性能和高光效的制造工艺。
LED倒装技术及工艺流程分析

LED倒装技术及工艺流程分析来源:光亚新世纪LED网时间:2015-02-06 【字体:大中小】1、引言发光二极管(LED)作为新型的绿色照明光源,具有节能、高效、低碳、体积小、反应快、抗震性强等优点,可以为用户提供环保、稳定、高效和安全的全新照明体验,已经逐步发展成为成熟的半导体照明产业。
近年来,全球各个国家纷纷开始禁用白炽灯泡,LED将会迎来一个黄金的增长期。
此外,近年来LED在电视机背光、手机、和平板电脑等方面的应用也迎来了爆发式的增长,LED具有广阔的应用发展前景。
2、倒装LED技术的发展及现状倒装技术在LED领域上还是一个比较新的技术概念,但在传统IC行业中已经被广泛应用且比较成熟,如各种球栅阵列封装(BGA)、芯片尺寸封装(CSP)、晶片级芯片尺寸封装(WLCSP)等技术,全部采用倒装芯片技术,其优点是生产效率高、器件成本低和可靠性高。
倒装芯片技术应用于LED器件,主要区别于IC在于,在LED芯片制造和封装过程中,除了要处理好稳定可靠的电连接以外,还需要处理光的问题,包括如何让更多的光引出来,提高出光效率,以及光空间的分布等。
针对传统正装LED存在的散热差、透明电极电流分布不均匀、表面电极焊盘和引线挡光以及金线导致的可靠性问题,1998年,J.J.Wierer等人制备出了1W倒装焊接结构的大功率AlGaInN-LED蓝光芯片,他们将金属化凸点的AIGalnN芯片倒装焊接在具有防静电保护二极管(ESD)的硅载体上。
图1是他们制备得到的LED芯片的图片和截面示意图。
他们的测试结果表明,在相同的芯片面积下,倒装LED芯片(FCLED)比正装芯片有着更大的发光面积和非常好的电学特性,在200-1000mA的电流范围,正向电压(VF)相对较低,从而导致了更高的功率转化效率。
图1 倒装结构的LED芯片图片和截面示意图2006年,O.B.Shchekin等人又报道了一种新的薄膜倒装焊接的多量子阱结构的LED(TFFC-LED)。
LED倒装制程介绍ppt课件

22
2 倒装焊固晶工艺
共晶焊的影响因素
固晶温度
选择Tg较固晶温度高10℃以上
E.g. Au-Sn(280 ℃ ),塑胶Tg>330 ℃
回流焊最高加热温度315 ℃ -320 ℃
E.g. Ag-Sn/Sn(232 ℃ ),塑胶Tg>290 ℃
回流焊最高加热温度270℃
23
2 倒装焊固晶工艺 共晶焊的影响因素
15
加热夹头
2 倒装焊固晶工艺
用吸头从晶圆上拾取晶片并放置在平台上 用加热的夹头从平台上拾取晶片 将晶片放置在预热的焊盘上 焊好的晶片置于在较低的温度下减小偏移
16
2 倒装焊固晶工艺
加热夹头可以显著减少孔洞 焊剂共晶在芯片中间有大的孔洞 加热夹头孔洞变得细小均匀
直接共晶 (加热焊盘)
LED倒装芯片与 倒装焊工艺
主讲人:
1
Contents
1
倒装结构LED芯片
2
倒装固晶工艺
3 Au-Sn共晶的制备方法
2
1 倒装结构LED芯片
• 正装/倒装芯片结构对比
器件功率 出光效率 热性能
3
1 倒装结构LED芯片
• 高可靠性 -机械强度
-散热性能
电性连接点 接触,瞬间 大电流冲击 易烧断
`
7
1 倒装结构LED芯片 Thin Film Flip Chip
8
1 倒装结构LED芯片
倒装芯片的制备方法
以蓝宝石基底制 作GaN外延片
ICP蚀刻/ RIE蚀刻
制作 透明导电层
制作 P-N电极
衬底上制备 反射散热层
芯片/衬底的划 片分割
Die bond 倒装焊接
正装结构与倒装结构封装工艺流程

LED芯片主要的两种流派结构介绍
正
LED 正装芯片是最早出现的芯片结构,也是小功率芯片中普遍使用的芯
装 片结构。正装结构,上面通常涂敷一层环氧树脂,下面采用蓝宝石为衬底,
结 构
电极在上方,从上至下材料为:P-GaN、发光层、N-GaN、衬底。
介
正装结构有源区发出的光经由P型GaN区和透明电极出射,采用的方法
色坐标唯一确定一个颜色,对应唯一的色温;但 色温不对应唯一色坐标。所以企业使用色坐标参 考led颜色,使用色温作为区分冷暖光。注:同一 色温下,仍有不同的颜色。
色坐标
LED两种芯片结构的封装工艺流程及技术
LED正装结构的封装介绍---填充胶
点完荧光粉需进烤箱烘烤1h,温度150℃。烤完LED的色温会 升高,xy色坐标会下降。
LED两种芯片结构的封装工艺流程及技术
LED正装结构的封装介绍
引 脚 式 封 装 工 艺 流 程
LED两种芯片结构的封装工艺流程及技术
LED正装结构的封装介绍 1W 大功率LED封装工艺流程
固晶站
焊线站
灌胶站
测试站
分光站
LED两种芯片结构的封装工艺流程及技术
LED正装结构的封装介绍 1W 大功率LED封装工艺流程
芯片发出的光颜色 荧光粉发光的颜色
LED最终颜色
影响光色的因素
芯片的波长与光强
荧光粉的特性(色坐标位置)
荧光粉与胶水的比例
搅拌条件,均匀度 添加剂的比例 (加强散射和吸收)
… 荧光粉胶的点胶量
荧光胶的粘度 点胶设备参数控制
LED芯片
LED两种芯片结构的封装工艺流程及技术
LED正装结构的封装介绍---点荧光粉
在制作工艺上,除了 要对LED芯片的两个电极 进行焊接,从而引出正极、 负极之外,同时还需要对 LED芯片和两个电极进行 保护。
倒装芯片介绍

Source: Philips
一、倒装芯片技术
定义:
倒装芯片组装就是通过芯片上的凸点直接将元器件朝下 互连到基板、载体或者电路板上,芯片直接通过凸点直 接连接基板和载体上,整个芯片称为倒装芯片(Flip Chip)。
普通激光切割后wafer侧面
劈裂后wafer侧面
隐形激光切割后wafer侧面
三、工艺流程简介
Wafer 扩张:
Wafer扩张是将已经分离开的晶粒之间的距离变大,利于后面测试和分级设备 工作。
三、工艺流程简介
自动外观检测:
自动外观检测是通过AOI设备 对芯片的外观缺陷判定,尽可能 避免分级过程中外观坏品混入好 品当中。 常见的外观不良有:电极污染、 电极缺损、电极划伤、ITO区域 污染、切割不良等
曝光(MPA & STEPPER)
图1:Coating设备
显影(Developer)
图3:显微镜
检查(Inspection) 图2:Develop设备
黄光工艺流程及常见缺陷
Epi Partical
Photo defect
Scratch
Mask defect
Under develop
三、工艺流程简介
蓝宝石特性
在低于熔点温度范围内, 仍具有良好的化学稳定性和机械、物理等性能; 光学透过范围宽, 特别在1 500~7500 nm, 透过率达85%; 有与纤锌矿III 族氮化物相同的对称性, 故用于GaN 的外延衬底材料。
三、工艺流程简介
图形化蓝宝石衬底技术:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LED倒装工艺流程分析
近年来LED在电视机背光、手机、和平板电脑等方面的应用也迎来了爆发式的增长,LED具有广阔的应用发展前景。
倒装LED技术的发展及现状
倒装技术在LED领域上还是一个比较新的技术概念,但在传统IC行业中已经被广泛应用且比较成熟,如各种球栅阵列封装(BGA)、芯片尺寸封装(CSP)、晶片级芯片尺寸封装(WLCSP)等技术,全部采用倒装芯片技术,其优点是生产效率高、器件成本低和可靠性高。
倒装芯片技术应用于LED器件,主要区别于IC在于,在led芯片制造和封装过程中,除了要处理好稳定可靠的电连接以外,还需要处理光的问题,包括如何让更多的光引出来,提高出光效率,以及光空间的分布等。
针对传统正装LED存在的散热差、透明电极电流分布不均匀、表面电极焊盘和引线挡光以及金线导致的可靠性问题,1998年,J.J.Wierer等人制备出了1W倒装焊接结构的大功率AlGaInN-LED蓝光芯片,他们将金属化凸点的AIGalnN芯片倒装焊接在具有防静电保护二极管(ESD)的硅载体上。
测试结果表明,在相同的芯片面积下,倒装led芯片(FCLED)比正装芯片有着更大的发光面积和非常好的电学特性,在200-1000mA的电流范围,正向电压(VF)相对较低,从而导致了更高的功率转化效率。
2006年,O.B.Shchekin等人又报道了一种新的薄膜倒装焊接的多量子阱结构的LED(TFFC-LED)。
所谓薄膜倒装LED,就是将薄膜LED与倒装LED的概念结合起来。
在将LED倒装在基板上后,采用激光剥离(Laser lift-off)技术将蓝宝石衬底剥离掉,然后在暴露的N型GaN层上用光刻技术做表面粗化。
随着硅基倒装芯片在市场上销售,逐渐发现这种倒装LED芯片在与正装芯片竞争时,其成本上处于明显的劣势。
由于LED发展初期,所有封装支架和形式都是根据其正装或垂直结构LED 芯片进行设计的,所以倒装LED芯片不得不先倒装在硅基板上,然后将芯片固定在传统的支架上,再用金线将硅基板上的电极与支架上的电极进行连接。
使得封装器件内还是有金线的存在,没有利用上倒装无金线封装的优势;而且还增加了基板的成本,使得价格较高,完全没有发挥出倒装LED芯片的优势。
为此,最早于2007年有公司推出了陶瓷基倒装led封装产品。
这一类型的产品,陶瓷既作为倒装芯片的支撑基板,也作为整体封装支架,实现整封装光源的小型化。
这一封装形式是先将倒装芯片焊接(Bonding)在陶瓷基板上,再进行荧光粉的涂覆,最后用铸模(Molding)的方法制作一次透镜,这一方法将LED芯片和封装工艺结合起来,降低了成本。
这种结构完全消除了金线,同时散热效果明显改善,典型热阻<10℃/W,明显低于传统的K2形式的封装(典型10-20℃/W)。
随着倒装技术的进一步应用和发展,2012年开始,出现了可直接贴装(Direct Attach,DA)倒装芯片;随后几年,各个公司都开始研发和推出这一类型的倒装芯片。
该芯片在结构上的变化是,将LED芯片表面的P、N两个金属焊盘几何尺寸做大,同时保证两个焊盘之间的间距足够,这样使得倒装的LED芯片能够在陶
瓷基板上甚至是PCB板上直接贴片了,使40mil左右的倒装芯片焊盘尺寸能够
到达贴片机的贴片精度要求,简化了芯片倒装焊接工艺,降低了整体成本。
至目前为止(2014年中)倒装DA芯片已基本成熟,市场销售量逐步增加,未来将会成为大功率led芯片的主流。
在直接贴装DA芯片基础上,2013年开始发展出了白光芯片(部分公司称
为免封装或无封装)产品。
它是在倒装DA芯片制造过程中同时完成了荧光粉的涂敷,应用时可在PCB上直接进行贴片,完全可以当作封装光源直接应用。
其优势是LED器件体积小,芯片直接贴片可以减少散热的界面,进一步降
低了热阻,散热性能进一步提高。
到目前为止,白光芯片仍然处于研发阶段,
市场的应用还不成熟,需要大家共同努力,推动白光芯片技术和应用的发展。
倒装LED芯片的制作工艺
倒装LED芯片的制作工艺流程,总体上可以分为LED芯片制作和基板制造
两条线,芯片和基板制造完成后,将LED芯片倒装焊接在基板表面上,形成倒
装LED芯片。
蓝宝石衬底和GaN外延工艺技术
对于倒装芯片来说,出光面在蓝宝石的一侧,因此在外延之前,制作图形
化的衬底(PSS),将有利于蓝光的出光,减少光在GaN和蓝宝石界面的反射。
因此PSS的图形尺寸大小、形状和深度等都对出光效率有直接的影响。
在实际
开发和生产中需要针对倒装芯片的特点,对衬底图形进行优化,使出光效率最高。
在GaN外延方面,由于倒装芯片出光在蓝宝石一侧,其各层的吸光情况与
正装芯片有差异,因此需要对外延的缓冲层(Buffer)、N-GaN层、多层量子
阱(MQW)和P型GaN层的厚度和掺杂浓度进行调整,使之适合倒装芯片的出光要求,提高出光效率,同时适合倒装芯片制造工艺的欧姆接触的需要。
倒装芯片与正装芯片的圆片制作过程大致相同,都需要在外延层上进行刻蚀,露出下层的N型GaN;然后在P和N极上分别制作出欧姆接触电极,再在
芯片表面制作钝化保护层,最后制作焊接用的金属焊盘。
与正装芯片相比,倒装芯片需要制作成电极朝下的结构。
这种特殊的结构,使得倒装芯片在一些工艺步骤上有特殊的需求,如欧姆接触层必须具有高反射率,使得射向芯片电极表面的光能够尽量多的反射回蓝宝石的一面,以保证良
好的出光效率。
倒装芯片的版图也需要根据电流的均匀分布,做最优化的设计。
由于圆片
制作工艺中,GaN刻蚀(Mesa刻蚀)、N型接触层制作、钝化层制作、焊接金
属PAD制作都与正装芯片基本相同,这里就不详细讲述了,下面重点针对倒装
芯片特殊工艺进行简单的说明。
在LED芯片的制作过程中,欧姆接触层的工艺是芯片生产的核心,对倒装
芯片来说尤为重要。
欧姆接触层既有传统的肩负起电性连接的功能,也作为反
光层的作用。
在P型欧姆接触层的制作工艺中,要选择合适的欧姆接触材料,既要保证
与P型GaN接触电阻要小,又要保证超高的反射率。
此外,金属层厚度和退火
工艺对欧姆接触特性和反射率的影响非常大,此工艺至关重要,其关系到整个LED的光效、电压等重要技术参数,是倒装LED芯片工艺中最重要的一环。
目前这层欧姆接触层一般都是用银(Ag)或者银的合金材料来制作,在合
适的工艺条件下,可以获得稳定的高性能的欧姆接触,同时能够保证欧姆接触
层的反射率超过95%。
倒装LED芯片后段制程
与正装LED芯片一样,圆片工艺制程后,还包括芯片后段的工艺制程,其
工艺流程如图7所示,主要包括研磨、抛光、切割、劈裂、测试和分类等工序。
这里工序中,唯一有不同的是测试工序,其它工序基本与正装芯片完全相同,
这里不再赘述。
倒装芯片由于出光面与电极面在不同方向,因此在切割后的芯片点测时,
探针在LED正面电极上扎针测量时,LED的光是从背面发出。
要测试LED的光
特性(波长、亮度、半波宽等),必须从探针台的下面收光。
因此倒装芯片的点测机台与正装点测机台不同,测光装置(探头或积分球)必须放在探针和芯片的下面,而且芯片的载台必须是透光的,才能对光特性进
行测试。
所以,倒装芯片的点测机台需要特殊制造或改造。
本文由中国标识网收集
整理,更多信息请访问标识商学院。