集成电路封装工艺
集成电路电子芯片封装工艺

集成电路电子芯片封装工艺摘要:集成电路电子芯片封装,不同的处理设备就有不同的处理芯片,芯片是电子设备的核心,其设计、制造、封装、测试等过程对芯片有很大影响。
本文从芯片的封装工艺,以及这些封装技术的特点入手,对集成电路电子芯片的发展形势和封装工艺作相关探讨。
关键词:集成电路芯片封装CSP工艺集成电路是电子产品的主要构件,对电子产品质量和性能有很大影响,集成电路的产业包括集成电路设计、晶圆制造、晶圆测试、封装制造及成品测试,产品应用、开发及信息服务等。
集成电路封装主要体现在计算机领域。
集成电路的封装是指安装半导体集成电路芯片时用的外壳,不仅可以固定、安放、密封、保护芯片,还可以链接外部电路沟通芯片。
芯片封装技术的发展,从DIP、QFP和PFP、PGA、BGA、CSP到MCM等,越来越先进,适用频率也越来越高,耐温性能更是越来越好。
引脚数量越来越多,引脚间距也越来越小,质量也是越来越轻,可靠性更是越来越高。
1.芯片封装技术概况自从1948年晶体管的发明以及1958年半导体集成电路的出现,半导体封装在结构上经历了TO-DlP-LCC-QFP-BGA的发展历程。
到了20世纪90年代,随着半导体工业的飞速发展,芯片的功能越来越强,需要的外引脚数也不断增加,封装体积也不断增大,在这种背景下,日本富士通公司提出了一种超薄型封装形式,其封装外壳的尺寸不超过裸芯片尺寸的1.2倍,它主要由IC裸芯片和布线垫片所组成,取名叫芯片级封装(CSP:Chip Scale Package)。
随着民用便携式电子装备以及军用整机系统在小型化和轻量化方面的要求越来越高,像CSP这样的小型封装的需求显得十分迫切。
芯片级封装(Chip Scale Package)或者叫芯片尺寸封装(Chip Size Package)实现了封装面积接近于芯片面积的程度。
它的概念是基于1992年日本富士通公司所提出的,即封装的尺寸不超过裸芯片尺寸的1.2倍的封装。
集成电路封装工艺.doc

集成电路封装工艺摘要集成电路封装的目的,在于保护芯片不受或少受外界环境的影响,并为之提供一个发挥集成电路芯片功能的良好环境,以使之稳定,可靠,正常的完成电路功能.但是集成电路芯片封装只能限制而不能提高芯片的功能.关键词:电子封装封装类型封装技术器件失效Integrated Circuit Packaging ProcessAbstractThe purpose of IC package, is to protect the chip from the outside or less environmental impa ct, and provide a functional integrated circuit chip to play a good environment to make it stable an d reliable, the completion of the normal circuit functions. However, IC chip package and not only restricted to enhance the function of the chip.引言电子封装是一个富于挑战、引人入胜的领域。
它是集成电路芯片生产完成后不可缺少的一道工序,是器件到系统的桥梁。
封装这一生产环节对微电子产品的质量和竞争力都有极大的影响。
按目前国际上流行的看法认为,在微电子器件的总体成本中,设计占了三分之一,芯片生产占了三分之一,而封装和测试也占了三分之一,真可谓三分天下有其一。
封装研究在全球范围的发展是如此迅猛,而它所面临的挑战和机遇也是自电子产品问世以来所从未遇到过的;封装所涉及的问题之多之广,也是其它许多领域中少见的,它需要从材料到工艺、从无机到聚合物、从大型生产设备到计算力学等等许许多多似乎毫不关连的专家的协同努力,是一门综合性非常强的新型高科技学科。
1.电子封装什么是电子封装(electronic packaging)? 封装最初的定义是:保护电路芯片免受周围环境的影响(包括物理、化学的影响)。
集成电路的封装工艺与技术.pptx

THANKS
For your time and attention
第22页/共23页
感谢您的观看。
第14页/共23页
注塑、激光打字
EOL工艺流程
注塑 激光打字 高温固化 电镀、退火 成型、光检
第15页/共23页
Байду номын сангаас
高温固化
固化的作用为在注塑后保护IC内部结构,消除内部应力。
固化温度:175+/-5°C;固化时间:8小时
EOL工艺流程
注塑 激光打字 高温固化 电镀、退火 成型、光检
第16页/共23页
• 缺点:热膨胀系数和介电常数比硅高,且 热导率较低,限制其在高频、高功率封装 领域的应用
• SiC
• 优点:热导率很高,热膨胀系数较低,电 绝缘性能好,强度高。
• 缺点:介电常数太高,只能用于低频封装
• AlN
• 优点:电性能和热性能优良,可用于高功 率、大尺寸封装
• 缺点:制备工艺复杂,成本高昂
电镀、退火
EOL工艺流程
注塑 激光打字 高温固化 电镀、退火 成型、光检
第17页/共23页
成型、光检
将一条片的引脚框架切割成单独的单元。
封装技术
• TSOP • BGA • CSP
第18页/共23页
TSOP 封装技术
衡量芯片封装技术先进与否的重 要指标是芯片面积与封装面积之比, 这个比值越接近1越好。
光检
电镀退火
注塑
集成电路封装工艺(毕业学术论文设计)

集成电路封装工艺(毕业学术论文设计)摘要本文对集成电路封装工艺进行了研究和设计,旨在提出一种能够满足高性能、小尺寸和低功耗要求的封装工艺方案。
首先,对集成电路封装的发展历程进行了简要回顾,并分析了目前常见的几种封装工艺类型。
然后,针对目标封装工艺的要求,提出了一种新型封装工艺方案,并详细介绍了该方案的工艺流程和关键步骤。
最后,通过实验和性能评估,验证了该封装工艺方案的可行性和效果。
1. 引言集成电路是现代电子技术的核心,随着技术的进步,集成电路的封装工艺也在不断发展和改进。
封装工艺的优劣直接影响到集成电路的性能、尺寸和功耗等方面,因此,设计一种高性能、小尺寸和低功耗的封装工艺方案成为当前的研究热点。
本文旨在提出一种新型封装工艺方案,以满足目标集成电路的需求。
具体来说,本文的研究目标包括以下几个方面: - 提高集成电路的性能指标,如工作频率、时序特性等; - 减小集成电路的尺寸,提高空间利用率; - 降低集成电路的功耗,延长电池寿命。
2. 集成电路封装工艺的发展历程封装工艺是将集成电路芯片与引线、封装材料等相结合,形成成品电路的过程。
在集成电路的发展过程中,封装工艺经历了多个阶段的演进。
在早期,集成电路的封装工艺主要采用插针式DIP(Dual In-line Package)封装,这种封装形式简单、容易实现,但存在尺寸大、布线难、散热困难等问题。
随着技术的进步,表面贴装封装(Surface Mount Technology,SMT)逐渐成为主流。
SMT封装工艺避免了插针式封装的缺点,大大提高了集成电路的密度和性能。
近年来,随着集成电路的尺寸不断缩小,新型封装工艺如无封装封装(Wafer Level Package,WLP)、芯片级封装(Chip Scale Package,CSP)、三维封装等逐渐崭露头角。
这些封装工艺以其小尺寸、高性能和低功耗的特点,成为了当前研究的热点。
3. 目标封装工艺方案设计根据上述研究目标,本文提出了一种基于芯片级封装和三维封装技术的新型封装工艺方案。
常见的集成电路工艺

常见的集成电路工艺常见的集成电路工艺集成电路技术是现代电子技术和信息技术的重要支柱,是电子信息产业的基础和核心。
作为集成电路技术中的一个重要领域,集成电路工艺直接决定了集成电路的质量和性能。
在当前的电子行业中,常见的集成电路工艺主要有以下几种。
一、晶体管工艺晶体管工艺是最常见的一种集成电路工艺,用于生产流行的数字电路、微控制器和存储器等各种芯片。
这种工艺的主要特点是生产成本相对较低,性能稳定,被广泛应用于工业、民用和军事领域。
二、互补金属氧化物半导体(CMOS)工艺互补金属氧化物半导体(CMOS)工艺是现代集成电路工艺的主流技术之一。
相比较于传统的晶体管工艺,CMOS工艺在功耗、集成度、速度和可靠性上都有显著提高。
此外,CMOS工艺也是大规模集成电路(VLSI)制造的主要工艺之一。
三、硅片上封装(SOP)工艺硅片上封装(SOP)工艺是一种先进的微电子封装技术。
它通过使用多种先进的制程技术将芯片直接封装在硅片内部,实现更高的可靠性和更小的尺寸。
此外,SOP工艺还可以降低封装成本,提高生产效率和产品质量。
四、多晶硅薄膜晶体管(TFT)工艺多晶硅薄膜晶体管(TFT)工艺是一种针对液晶显示器(LCD)和有机光电显示器(OLED)等特殊领域的集成电路工艺。
TFT工艺以其高分辨率、高色彩准确度和低功耗的特点,是目前最为成熟的LCD面板制造技术之一。
五、混合集成电路工艺混合集成电路工艺依托各种传统的集成电路工艺,将各种芯片组合在一起,形成新的功能强大的混合集成电路。
这种工艺是制造各种复杂芯片的主要方式之一,被广泛应用于通信、无线、声音、视频、网络处理、雷达等领域。
总而言之,现在各种集成电路工艺层出不穷,每一种工艺都有其特殊的优势和应用场景。
对于电子产品制造企业来说,选择正确的集成电路工艺将直接影响到产品的性能和质量,因此,必须在选型时考虑到产品的实际需要和预算等因素。
集成电路封装技术封装工艺流程介绍

集成电路封装技术封装工艺流程介绍集成电路封装技术是指将芯片封装在塑料或陶瓷封装体内,以保护芯片不受外界环境的影响,并且方便与外部电路连接的一种技术。
封装工艺流程是集成电路封装技术的核心内容之一,其质量和工艺水平直接影响着集成电路产品的性能和可靠性。
下面将对集成电路封装技术封装工艺流程进行介绍。
1. 芯片测试首先,芯片在封装之前需要进行测试,以确保其性能符合要求。
常见的测试包括电性能测试、温度测试、湿度测试等。
只有通过测试的芯片才能进行封装。
2. 芯片准备在封装之前,需要对芯片进行准备工作,包括将芯片固定在封装底座上,并进行金线连接。
金线连接是将芯片的引脚与封装底座上的引脚连接起来,以实现与外部电路的连接。
3. 封装材料准备封装材料通常为塑料或陶瓷,其选择取决于芯片的性能要求和封装的环境条件。
在封装之前,需要将封装材料进行预处理,以确保其表面光滑、清洁,并且具有良好的粘附性。
4. 封装封装是整个封装工艺流程的核心环节。
在封装过程中,首先将芯片放置在封装底座上,然后将封装材料覆盖在芯片上,并通过加热和压力的方式将封装材料与封装底座紧密结合。
在封装过程中,需要控制封装温度、压力和时间,以确保封装材料与芯片、封装底座之间的结合质量。
5. 封装测试封装完成后,需要对封装产品进行测试,以确保其性能和可靠性符合要求。
常见的封装测试包括外观检查、尺寸测量、焊接质量检查、封装材料密封性测试等。
6. 封装成品通过封装测试合格的产品即为封装成品,可以进行包装、贴标签、入库等后续工作。
封装成品可以直接用于电子产品的生产和应用。
总的来说,集成电路封装技术封装工艺流程是一个复杂的过程,需要精密的设备和严格的工艺控制。
只有通过合理的工艺流程和严格的质量控制,才能生产出性能优良、可靠性高的集成电路产品。
随着科技的不断进步,集成电路封装技术也在不断创新和发展,以满足不断变化的市场需求。
相信随着技术的不断进步,集成电路封装技术将会迎来更加美好的发展前景。
集成电路封装工艺介绍

为什么要对芯片进行封装?任何事物都有其存在的道理,芯片封装的意义又体现在哪里呢?从业内普遍认识来看,芯片封装主要具备以下四个方面的作用:固定引脚系统、物理性保护、环境性保护和增强散热。
下面我们就这四方面做一个简单描述。
1.固定引脚系统要让芯片正常工作,就必须与外部设备进行数据交换,而封装最重要的意义便体现在这里。
当然,我们不可能将芯片内的引脚直接与电路板等连接,因为这部分金属线相当细,通常情况下小于1.5微米(μm),而且多数情况下只有1.0微米。
但通过封装以后,将外部引脚用金属铜与内部引脚焊接起来,芯片便可以通过外部引脚间接地与电路板连接以起到数据交换的作用。
外部引脚系统通常使用两种不同的合金——铁镍合金及铜合金,前者可用于高强度以及高稳定性的场合,而后者具有导电性和导热性较好的优势。
具体选用何种引脚系统可根据实际情况来定。
2.物理性保护芯片通过封装以后可以免受微粒等物质的污染和外界对它的损害。
实现物理性保护的主要方法是将芯片固定于一个特定的芯片安装区域,并用适当的封装外壳将芯片、芯片连线以及相关引脚封闭起来,从而达到保护的目的。
应用领域的不同,对于芯片封装的等级要求也不尽相同,当然,消费类产品要求最低。
3.环境性保护封装的另一个作用便是对芯片的环境性保护,可以让芯片免受湿气等其他可能干扰芯片正常功能的气体对它正常工作产生不良影响。
4.增强散热众所周知,所有半导体产品在工作的时候都会产生热量,而当热量达到一定限度的时候便会影响芯片正常工作。
而封装体的各种材料本身就可以带走一部分热量。
当然,对于大多数发热量大的芯片,除了通过封装材料进行降温以外,还需要考虑在芯片上额外安装一个金属散热片或风扇以达到更好的散热效果。
集成电路封装工艺介绍(上)电子封装是一个富于挑战、引人入胜的领域。
它是集成电路芯片生产完成后不可缺少的一道工序,是器件到系统的桥梁。
封装这一生产环节对微电子产品的质量和竞争力都有极大的影响。
集成电路封装工艺介绍

集成电路封装工艺介绍
SMD(Surface Mount Technology,表面安装技术)集成电路封装技术是一种利用表面安装技术来安装集成电路片上的元件,这种技术为模块封装提供了一种新的封装方式。
SMD封装技术在使用后可以实现低成本、高密度和高可靠性,在封装技术中已经得到了广泛应用。
下面介绍SMD集成电路封装工艺:
1.贴标:将集成电路封装片进行贴标,贴标中需包含集成电路芯片型号、芯片生产厂商、批量等信息,以及集成电路封装片的图纸。
2.清洗:进行封装片的清洗,通常使用抛光膏、洗涤液等来完成清洗工作,使其能够保持清洁无杂质。
3.引弧焊:将元件焊接到封装片上,通常采用引弧焊工艺,即采用电弧的能量将元件与前面进行过清洗的封装片上焊上。
4.返修:返修是根据集成电路封装的失效原因,通过改变封装片上的焊接参数和元件的安装形式,来改善集成电路封装的质量,以保证封装片的质量,通过返修可以减少集成电路封装的失效。
5.检测:检测是从元件安装,焊接,到封装完成后,进行完整性和质量检测,进而使其在使用中能够发挥良好的性能,满足质量要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据材料性能,膜材料分四类 根据材料性能,膜材料分四类:
1.导体膜:主要用于形成电路图形,为电阻电容, 半导体元件和半导体芯片等部件提供电极电学连接 2.电阻膜:形成电路中的电阻, 电阻率:100-2000µΩ.cm 方块阻值:10-1000Ω/□ 3.介质膜:形成电容膜和实现绝缘和表面钝化 4.功能膜:特殊功能膜
打线键合技术
超声波键合: - 振幅20- 超声波键合:20-60kHz,振幅 -200µm超声波 振幅 超声波
铝线和金线是常见材料 优点:温度低,键合尺寸小, 优点:温度低,键合尺寸小,适合键合点间 距小,密度高的芯片连接 距小, 缺点: 缺点:必须沿金属线回绕方向排列
热压键合:预热300- 度 电子点火, 热压键合:预热 -400度,电子点火,
去飞边毛刺
塑料封装中,塑料树脂溢出、贴带毛边,引 线毛刺等统称为飞边毛刺 毛刺的厚度薄于10µm,对后面工序有影响
去飞边毛刺的工艺:介质去飞边毛刺
溶剂去飞边毛刺 水去飞边毛刺
上锡焊
该工序是在框架外引脚上做保护性镀层,以 加可焊性
方法:电镀
浸锡 电镀:清洗-电镀槽电镀-冲洗-吹干-烘干 浸锡:清洗-浸助焊剂-热浸焊-清洗-烘干
丝网印刷 基板清洗 丝网印刷:丝网孔板制备 干燥 烧成
刮板
浆料
玻璃胶贴装法:玻璃胶是低成本芯片粘贴材料 玻璃胶贴装法:
冷却降温注意速度 优点:无空隙,热稳定好, 优点:无空隙,热稳定好,低结合应力 缺点: 缺点:胶中有机成分和溶剂要去除 多用于陶瓷封装, 多用于陶瓷封装,玻璃胶在特殊处理的铜合金 引脚架上才能键合
芯片互连
芯片互连:将芯片焊区与电子封装外壳的 芯片互连:将芯片焊区与电子封装外壳的I/O 引线或基板上的金属布线区相连 常见的方法:打线键合WB(Wire Bonding) 常见的方法:打线键合 载带自动键合TAB(Tape Automated Bonding) 载带自动键合 倒装芯片键合FCB(Flip Chip Bonding) C4 倒装芯片键合 WB:4<n<257 n为I/O数 TAB:10<n<600 FCB:5<n<16000
载带自动键合关键材料
基带材料 TAB金属材料 金属材料 芯片突点金属材料
载带自动键合关键技术
载带制作技术: 载带制作技术: 芯片突点制作技术 载带引线和芯片突点内引线焊接 外引线焊接技术
载带制作技术
载带分三类: 载带分三类:
Cu箔单层带 箔单层带 Cu---PI(巨酰亚胺 双层带 巨酰亚胺)双层带 巨酰亚胺 Cu---粘贴剂-- 三层 粘贴剂-- 粘贴剂--PI三层 带
打码
打码:在封装模块的顶面印上标识,如制造 打码 商信息,国家,器件代码等 打码方法:油墨印码 激光印码 打码方法
元器件装配
方式:波峰焊 方式 回流焊 波峰焊适合:插孔式封装PTH 波峰焊适合 回流焊适合:表面贴装式,混合型元器件装配 回流焊适合
第三章 膜材料与工艺
厚膜材料:几微米至几百微米的膜 薄膜材料:几微米以下的膜 厚膜工艺和薄膜工艺 微系统封装和集成电路中应用越来越多 作用:电气连接 元件搭配 特殊功能 表面改性
环氧树脂 作用:耐机械震动和冲击 作用 减少芯片和基板热膨胀实配 使应力再分配 填充方法:芯片基板加热70-75度 填充方法 注射 可靠性提高5-10倍
成型技术
将芯片与引线框架“包装”起来 金属封装 塑料封装 陶瓷封装 以塑料封装的转移成型技术为例 后固化:提高塑料聚合度必须的 后固化 条件:170-175℃,2-4h 条件
集成电路芯片封装工艺流程
芯片封装技术工艺流程
硅片切割 硅片减薄
芯片贴 装
焊 打码
去飞边毛刺
芯片切割
为何减薄? 为何减薄? 尺寸变大 变厚 切割划片困难 以TSOP为例:总厚900µm 有效厚300µ m 为例:总厚 有效厚 为例 背面减薄技术: 背面减薄技术: 研磨,化学机械抛光CMP,干式抛光, 研磨,化学机械抛光 ,干式抛光, 电化学腐蚀(Electrochemical Etching) 电化学腐蚀 湿法腐蚀, 湿法腐蚀,等离子腐蚀 有损坏,工艺改进: 有损坏,工艺改进:DBG(Dicing Before Grinding)先划片后减薄 DBT(Dincing By Thinning)减薄划片 优点:避免硅片翘曲, 优点:避免硅片翘曲,划片引起的边缘损害
缺点:电镀:周围厚,中间薄
浸锡:中间厚,周围薄
焊锡成分:一般63Sn/37Pb,低共熔合金 焊锡成分 熔点:183-184℃ 85Sn/15Pb 90Sn/10Pb 95Sn/5Pb 减少铅的用量 镀钯工艺:富镍阻挡层粘性好,再镀钯 镀钯工艺
切筋成型
切筋:指切除框架外引脚之间以及框架带上 切筋 连在一起的地方 成型:将引脚弯成一定的形状,以适合装配 成型 引脚非共面性:工艺过程 引脚非共面性 热收缩应力
金线多用, 金线多用,铝线不易成球
热超声波键合:基板维持100- 度 热超声波键合:基板维持 -150度,结合工具不加热
优点;抑制接触处金属化合物反应,变形 优点;抑制接触处金属化合物反应,
热压键合
热超声波键合
载带自动键合TAB(Tape Automated Bonding)
1968年由美国通用电气公司研究 年由美国通用电气公司研究 定义:芯片焊区与电子封装外壳的I/O或基板上的金 定义:芯片焊区与电子封装外壳的 或基板上的金 属布线区用具有引线图形的金属箔丝连接
气相淀积为主
厚膜材料和工艺
厚膜材料是有机介质掺入微细金属粉,玻璃 粉或陶瓷粉末的混合物,通过丝网印制工 ,印刷到绝缘基板上
厚膜导体材料: 非半导体元器件之间的电气连接,往往 采用厚膜导体材料 浆料形式:电导率:Ag>Cu >Au 厚膜电阻材料: 厚膜介质材料:
厚膜工艺
1.按导体,绝缘体和介质材料选好材料制成 粉料主剂 2.加入玻璃粘结剂,金属氧化物等混合成厚 浆料 3.按电路图形涂于基板上,进行导体,电阻 和介电体制成膜 4.烧制成引线端子,布线,电感,电阻,电 容,绝缘层和保护膜等
芯片贴装
共晶贴装法: 共晶, 共晶贴装法:金69%-硅31%共晶,363度反应 硅 共晶 度反应
多用于陶瓷封装, 多用于陶瓷封装,在氮气中进行 预型片:1/3芯片面积 预型片: 芯片面积 缺点:高温, 缺点:高温,芯片框架热碰撞系数失配
焊接贴装法:芯片-金 焊盘淀积Au-Pd-Ag,焊料 焊料Pb-Sn 焊接贴装法:芯片 金,焊盘淀积 焊料
优点:热传导性好, 优点:热传导性好,适合高功率器件封装 焊料:硬质焊料:金硅, 焊料:硬质焊料:金硅,金锡 软质焊料: 软质焊料:铅锡 共同点: 共同点:都是利用合金反应
导电胶贴装法:导电胶含银的高分子聚合物, 导电胶贴装法 导电胶含银的高分子聚合物,有良好的
导热导电性能的环氧树脂, 导热导电性能的环氧树脂, 75%- %银,目的是散热 %-80% %- 多用于塑料封装工艺 固化: 小时; 固化:150度,1小时;186度,半小时 度 小时 度
凸点芯片制作工艺: 凸点芯片制作工艺:蒸发溅射凸点 电镀突点 置球及模板印刷制作 突点芯片倒装焊: 突点芯片倒装焊 基板材料: 基板材料:Si,陶瓷,PCB 基板金属焊制造:蒸发-光刻-电镀 基板金属焊制造 工艺:热压焊FCB 工艺 再流焊FCB 环氧树脂光固化 各项异性导电胶
倒装焊接后芯片下面的填充:
薄膜材料和工艺
薄膜材料
导体薄膜材料:Au薄膜 Al薄膜
电阻薄膜材料
金属类 合金类 陶瓷类 金属类:Ta W Cr 合金类:Ta-Cu,Pd-Ag
介质薄膜材料:
Si3N4 研发高介电常数薄膜:Ta2O5
电容器薄膜:SiO2
SrTiO3
薄膜制备方法 气相淀积:物理气相淀积 化学气相淀积 液相淀积:电镀,阳极氧化,丝网印刷 物理气相淀积: 蒸发 溅射 离子镀
芯片突点制作技术
突块式载带, 突块式载带,突块式芯片 突点形状: 突点形状:蘑菇状突点 直状突点
载带引线和芯片突点内引线焊接 载带引线和芯片外引线焊接技术
倒装芯片键合技术
缺点: 缺点:不能直观检查,突点制作复杂,材料 间的匹配性 优点: 优点:安装和互连同时,省时快,适合大批 生产,小电阻,电容,适合高功率器件 突点芯片焊区: 突点芯片焊区:Al,粘附层,扩散阻挡层,金属 突块