《应用回归分析》试卷
回归分析考试试题及答案

回归分析考试试题及答案一、单项选择题(每题2分,共20分)1. 回归分析中,自变量和因变量之间的关系是()。
A. 确定性关系B. 函数关系C. 相关关系D. 因果关系答案:C2. 简单线性回归模型中,回归系数的估计值是通过()方法得到的。
A. 最小二乘法B. 最大似然法C. 贝叶斯方法D. 决策树方法答案:A3. 在多元线性回归分析中,如果自变量之间存在完全相关关系,则会导致()。
A. 多重共线性B. 异方差性C. 自相关D. 非线性答案:A4. 回归分析中,残差平方和(SSE)是用来衡量()的。
A. 模型的拟合优度B. 模型的预测能力C. 模型的解释能力D. 模型的预测误差答案:D5. 回归方程的显著性检验中,F检验的零假设是()。
A. 所有回归系数都等于0B. 所有回归系数都不等于0C. 至少有一个回归系数等于0D. 至少有一个回归系数不等于0答案:A6. 回归分析中,调整后的R平方(Adjusted R-squared)用于()。
A. 调整模型的复杂性B. 调整样本量的大小C. 调整自变量的数量D. 调整因变量的范围答案:C7. 在回归分析中,如果自变量的增加导致因变量的增加,则称自变量和因变量之间存在()。
A. 正相关B. 负相关C. 无相关D. 完全相关答案:A8. 回归分析中,残差的标准差(S)是用来衡量()的。
A. 模型的拟合优度B. 模型的预测能力C. 模型的解释能力D. 模型的预测误差答案:D9. 在多元线性回归中,如果一个自变量的t统计量显著,那么我们可以得出结论()。
A. 该自变量对因变量有显著影响B. 该自变量对因变量没有显著影响C. 该自变量对因变量的影响不明确D. 该自变量对因变量的影响是正的答案:A10. 回归分析中,Durbin-Watson统计量用于检测()。
A. 多重共线性B. 异方差性C. 自相关D. 非线性答案:C二、多项选择题(每题3分,共15分)11. 以下哪些因素可能导致回归模型中的异方差性?()A. 模型中遗漏了重要的解释变量B. 模型中包含了不应该包含的变量C. 模型中的误差项不是独立同分布的D. 模型中的误差项具有非恒定的方差答案:CD12. 在回归分析中,以下哪些方法可以用来处理多重共线性问题?()A. 增加样本量B. 移除相关性高的自变量C. 使用岭回归D. 增加更多的自变量答案:BC13. 以下哪些是回归分析中常用的诊断图?()A. 残差图B. 正态Q-Q图C. 散点图D. 杠杆值图答案:ABD14. 在回归分析中,以下哪些因素可能导致模型的预测能力下降?()A. 模型过拟合B. 模型欠拟合C. 模型中的误差项具有自相关性D. 模型中的误差项具有异方差性答案:ABCD15. 以下哪些是回归分析中常用的模型选择标准?()A. AIC(赤池信息准则)B. BIC(贝叶斯信息准则)C. R平方D. 调整后的R平方答案:ABCD三、简答题(每题10分,共30分)16. 简述简单线性回归模型的基本形式。
应用回归分析试题

应用回归分析试题(一)一、选择题1. 两个变量与x 的回归模型中,通常用2R 来刻画回归的效果,则正确的叙述是( D )A. 2R 越小,残差平方和越小B. 2R 越大,残差平方和越大C. 2R 与残差平方和无关D. 2R 越小,残差平方和越大 2.下面给出了4个残差图,哪个图形表示误差序列是自相关的(B )(A ) (B)(C ) (D )3.在对两个变量x ,y 进行线性回归分析时,有下列步骤:①对所求出的回归直线方程作出解释; ②收集数据(i x ,i y ),1,2i ,…,n ;③求线性回归方程; ④求未知参数; ⑤根据所搜集的数据绘制散点图如果根据可行性要求能够作出变量,x y 具有线性相关结论,则在下列操作中正确的是( D )A .①②⑤③④B .③②④⑤①C .②④③①⑤D .②⑤④③①4.下列说法中正确的是(B )A.任何两个变量都具有相关关系B.人的知识与其年龄具有相关关系 C .散点图中的各点是分散的没有规律 D .根据散点图求得的回归直12345678xey线方程都是有意义的5. 下面的各图中,散点图与相关系数r 不符合的是(B )二、填空题1. OLSE 估计量的性质线性、无偏、最小方差。
2. 学习回归分析的目的是对实际问题进行预测和控制。
3. 检验统计量t 值与P 值的关系是P(|t |>|t 值|)=P 值,P 值越小,|t 值| 越大 ,回归方程越显著。
4. 在一元线性回归中,SST 自由度为n-1, SSE 自由度为n-2, SSR 自由度为1。
5. 在多元线性回归中,样本决定系数2R = 1SSR SSESSTSST =-。
三、叙述题1. 叙述一元线性回归模型中回归方程系数的求解过程及结果(OLSE 法)答案:定义离差平方和2^1)()(i ni i y y Q ∑=-=β最小二乘思想找出参数10,ββ的估计值^1^0,ββ。
使得离差平方和最小,使^1^0,ββ满足下述条件:∑∑==--=-=ni i i ni i i x y x y Q 1210,121^^010)(min ),(),(1ββββββββ根据微分中值定理可得:0)(2|0)(2|^11^01^11^11^00^00=---=∂∂=---=∂∂∑∑====i i n i i i n i i x x y Qx y Qββββββββββ求解正规方程组得到:⎪⎪⎪⎩⎪⎪⎪⎨⎧---=-=∑∑=-=----n i i n i i i x x y y x x xy 121^11^^0)())((βββ 令 --=-=--==--=--=-=-=∑∑∑∑y x n y x y y x x L xn x x x L ni i i i ni i xy ni ini i xx 1121212)()()(则一元线性回归模型中回归方程系数可表示为⎪⎪⎩⎪⎪⎨⎧=-=--xx xy L L x y ^1^1^0βββ2. 叙述多元线性回归模型的基本假设 答案:假设1.解释变量12,,,K X X X L 是非随机的 假设(i ε)=0;假设(i ε)=2σ,i =1,2,……ncov(,i j εε)=0,i j ≠, ,i j =1,2,……n; 假设4.解释变量12,,,K X X X L 线性无关;假设5.2(0,)i N εσ:3. 回归模型中随机误差项ε的意义是什么答案:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为一个随机方程,使得我们可以借助随机数学方法研究y 与12,,px x x L 的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。
应用回归分析期末试题

应用回归分析期末试题一元线性回归分析1.讨论家庭收入x 影响家庭消费支出y 的问题。
现已建立εββ++=x y o 1的数学模型,已知5400=x ,2997=y ,3490800002=∑x ,1234929002=∑y,193836000=∑xy ,求回归方程。
答:∧0β,∧1β的表达式如下:⎪⎪⎩⎪⎪⎨⎧=-=∧∧∧xx xyl l x y 110βββ 得:⎪⎩⎪⎨⎧==∧∧4845.053.38010ββ则回归方程为x y 4845.053.380+=∧。
2.在给定样本(){}n i y x i i ,...,1,,=后,一元线性回归模型为i i i x y εββ++=10(已经符合一元线性回归模型的假设),求0β,1β的最小二乘估计∧0β,∧1β。
答:要求0β,1β的最小二乘估计∧0β,∧1β,即求使得离差平方和()10,ββQ 达到最小时的10,ββ,满足),(min ),(10,1010ββββββQ Q =∧∧由于()10,ββQ 是一个非负二次型,对10,ββ的偏导存在,下求偏导⎪⎪⎩⎪⎪⎨⎧=---=∂∂=---=∂∂∑∑==ni ii i ni i i x x y Q x y Q110111000)(20)(2ββββββ 求解得⎪⎪⎩⎪⎪⎨⎧=-=∧∧∧xx xyl l x y 110βββ 其中∑==ni i x n x 11,∑==n i i y n y 11,2)(∑-=x x l i xx ,)()(y y x x l i i xy --=∑。
3.证明:最小二乘法的参数估计1ββ和o 具有线性性和无偏性。
答(1)线性性:估计量0β和1β为随机变量i y 的线性函数 1β:由0)(=-∑x x i ,有∑=∧-==ni i xxi xxxy y l xx l l 11)(β,所以1β是i y 的线性组合。
0β:i ni xx iy x l xx n x y ∑=∧∧--=-=110)1(ββ,可见0β也是i y 的线性组合。
《应用回归分析》试卷

《应用回归分析》试卷★要求将答案做在答题纸上,做在别处无分。
一、(50分)单项选择题(每题1分)1.回归分析的建模依据为()A.统计理论B.预测理论C.经济理论D.数学理论2.随机方程式构造依据为()A.经济恒等式 B.政策法规 C.变量间的技术关系 D.经济行为3. 回归模型的被解释变量一定是()A.控制变量 B.政策变量 C.内生变量 D.外生变量4.在同一时点或时期上,不同统计单位的相同统计指标组成的数据是()A.时期数据 B.时点数据 C.时序数据 D.截面数据5.回归分析的目的为()A.研究解释变量对被解释变量的依赖关系 B.研究解释变量和被解释变量的相关关系C.研究被解释变量对解释变量的依赖关系D.以上说法都不对6.在回归分析中,有关被解释变量Y和解释变量X的说法正确的为()A.Y为随机变量,X为非随机变量 B. Y为非随机变量,X为随机变量C.X、Y均为随机变量D. X、Y均为非随机变量7.在X与Y的相关分析中()A.X是随机变量,Y是非随机变量 B. Y是随机变量,X是非随机变量C.X和Y都是随机变量D. X和Y均为非随机变量8.总体回归线是指()A.解释变量X取给定值时,被解释变量Y的样本均值的轨迹。
B.样本观测值拟合的最好的曲线。
C.使残差平方和最小的曲线D.解释变量X取给定值时,被解释变量Y的条件均值或期望值的轨迹。
9.最小二乘准则是指()A.随机误差项ε的平方和最小 B. Y与它的期望值E(Y/X)的离差平方和最小C. X与它均值E(X)的离差的平方和最小D.残差e的平方和最小10.按照经典假设,线性回归模型中的解释变量应为非随机变量,且( )A.与被解释变量Y不相关B.与随机误差项ε不相关C. 与回归值ˆY不相关D.以上说法均不对11.有效估计量是指( )A.在所有线性无偏估计中方差最大B.在所有线性无偏估计量中变异系数最小C.在所有线性无偏估计量中方差最小D.在所有线性无偏估计量中变异系数最大12.在一元线性回归模型中, 2σ的无偏估计量2ˆσ为( )A.21niien=∑B.211niien=-∑C.212niien=-∑D.213niien=-∑13判定系数2R的取值范围为( )A.202R ≤≤ B. 201R ≤≤C. 204R ≤≤D. 214R ≤≤14.回归系数1β通过了t 检验,表示( )A.10β≠B.1ˆ0β≠ C.11ˆ0,0ββ≠= D.11ˆ0,0ββ=≠ 15.个值区间预测就是给出( )A.预测值0ˆY 的一个置值区间 B.实际值0Y 的一个置值区间 C.实际值0Y 的期望值的一个置值区间 D.实际值0X 的一个置值区间16.一元线性回归模型01Y X ββε=++中, 0β的最小二乘估计是( )A.01ˆˆY X ββ=+B. 01ˆˆY X ββ=+ C. 01ˆˆY X ββ=- D. 01ˆˆY X ββ=+ 17.回归分析中简单回归指的是_____A.两个变量之间的回归B.三个以上变量的回归C.两个变量之间的线性回归D.变量之间的线性回归 18.运用OLSE ,模型及相关变量的基本假定不包括_____A.E(εi)=0B.cov(εi, εj)=0 i ≠j,i,j=1,2,3,……,nC.var(εi)=0 i=1,2……,nD.解释变量是非随机的 19. R 2(调整R 2)的计算公式是_____ A.R 2= 1-11n n p ---.SSE SST B. R 2=1-11n p n ---.SSE SST C. R 2=1-12n n p ---.SSE SST D. R 2=1-21n p n ---.SSE SST20.下列选项哪个是用来检验模型是否存在异方差问题_____A.方差扩大化因子VIFB.DW 检验C.等级相关系数D.连贯检验 21.在多元线性回归模型中,调整后的判定系数2R 与判定系数2R 的关系为()A.22R R <B. 22R R <C. 22R R ≤D. 22R R ≤ 22.下列哪种情况说明存在异方差( )A.()0i E ε=B.()0,i j E i j εε=≠C.22()i E εσ=(常数)D. 22()i i E εσ=23.当模型存在异方差时,使用普通最小二乘法得到的估计量是( )A.有偏估计量B.有效估计量C.无偏估计量D.渐进有效估计量24.下列哪种方法不是检验异方差的方法( )A.残差图分析法B.等级相关系数法C.样本分段比检验D.DW 检验法 25.异方差情形下,常用的估计方法是( )A.一阶差分法 B 广义差分法 C. 工具变量法 D.加权最小二乘法 26.下列那种情况属于存在序列相关( )A.(,)0,i j Cov i j εε=≠B. (,)0,i j Cov i j εε≠≠C. 2(,),i j Cov i j εεσ== D. 2(,),i j i Cov i j εεσ==27.若线性回归模型的随机误差项存在序列相关时,直接用普通最小二乘法估计参数,则参数估计量为( )A.有偏估计量B.有效估计量C.无效估计量D.渐进有效估计量28.下列哪种方法不是检验序列有效的方法( )A.残差图分析法B.自相关系数法C.方差扩大因子法D. DW 检验法29. DW 检验适用于检验( )A.异方差B.序列相关C.多重共线性D.设定误差 30.若计算的DW 的统计量为2,则表明该模型( ) A.不存在序列相关 B.存在一阶正序列相关 C.存在一阶负序列相关 D.存在高阶相关 31.DW 检验的原假设为( )A. DW=0B. 0ρ=C. DW=1D. 1ρ= 32.DW 统计量的取范围是()A. 10DW -≤≤B. 11DW -≤≤C. 22DW -≤≤D. 04DW ≤≤33.根据20个观测值估计的一元线性回归模型的 DW=2.3,在样本容量 n =20,解释变量个数 k =1(不包含常数项),显著型水平α=0.05时,查得dL=1.201,dU=1.411,则可以判断该模型( )A.不存在一阶自相关B.有正的一阶自相关C.有负的一阶自相关D.无法确定 34.当模型存在一阶自相关情况下,常用的估计方法是( )A.加权最小二乘法B.广义差分法C.工具变量法D.普通最小二乘法 35.采用一阶差分法估计一阶自相关模型,适合于( ) A. 1ρ≈ B. 0ρ≈ C. 10ρ-<< D. 01ρ<<36.在多元线性回归模型中,若某个解释变量对其余解释变量的判定系数接近1,则表明模型中存在( )A.异方差B.自相关C.多重共线性D.设定误差37.在线性回归模型中,若解释变量1X 和2X 的观测值成比例,即有12i i X kX =,其中k 为非零常数,则表明模型中存在( ) A.异方差 B.严格共线性 D 序列相关 D.高度共线性38.经验认为,某个解释变量与其他解释变量间多重共线性很严重的判别标准是这个解释变量的方差扩大化因子( ) A.大于零 B 小于1 C 大于10 D 小于5 39.若查表得到dL 和dU ,则不存在序列相关的区间为( )A.0DW dL ≤≤B. 4dU DW dU ≤≤-C. 44dU DW dL -≤≤-D. 44dU DW -≤≤ 40.设01Y X ββε=++,Y 表示居民消费支出,X 表示居民收入,D=1代表城镇居民,D=0代表农村居民,则截距变动模型为( )A. 012Y X D βββε=+++B. 021()Y X βββε=+++C. 012()Y X βββε=+++D. 012(*)Y X D X βββε=+++41.设01Y X ββε=++,Y 表示居民消费支出,X 表示居民收入,D=1代表城镇居民,D=0代表农村居民,则斜率变动模型为( )A. 012Y X D βββε=+++B. 021()Y X βββε=+++C. 012()Y X βββε=+++D. 012(*)Y X D X βββε=+++42.设虚拟变量D 影响线性回归模型中X 的斜率,如何引进虚拟变量,使模型成为斜率变动模型( )A.直接引进DB.按新变量D*X 引进C.按新变量(D+X)引进D.无法引进43.虚拟变量的赋值原则是( )A.给定某一质量变量的某属性出现为1,未出现为0B.不用赋值C.按照某一质量变量属性种类编号赋值D. 以上说法都不正确44.有关虚拟变量的表述正确的是( )A.用来代表质的因素,有时候也可以代表数量因素B.只能用来代表质的因素C.只能用来代表数量因素D.以上说法都不正确45.如果一个回归模型包含截距项,对一个具有M 个特征的质的因素需要引入的虚拟变量的个数为( )A.MB.(M-1)C.(M-2)D.(M+1)46.设个人消费函数01Y X ββε=++中,消费支出Y 不仅与收入X 有关,而且与消费者的性别、年龄构成有关,年龄构成可以分为老,中,青三个层次,假定边际消费倾向不变,该消费函数引入虚拟变量的个数为( )A.1个B.2个C.3个D.4个47.在一个包含截距项的回归模型01Y X ββε=++中,如果将一个具有M 个特征的质的因素设定M 个虚拟变量,则会产生的问题是( )A.异方差B.序列相关C.不完全多重线性相关D.完全多重线性相关48.设消费函数为012Y X D βββε=+++,式中Y 表示某年居民的消费水平,X 表示同年居民的收入水平,D 为虚拟变量,D=1表示正常年份,D=0表示非正常年份,则( )A.该模型为截距、斜率同时变动模型B.该模型为截距变动模型C.该模型为斜率变动模型D.该模型为时间序列模型49.设截距和斜率同时变动模型为0123(*)Y X D D X ββββε=++++,对模型做t 检验,下面哪种情况成立时,该模型为截距变动模型( )A.230,0ββ≠≠B. 230,0ββ==C. 230,0ββ≠=D. 230,0ββ=≠50.根据样本资料建立的消费函数如下:ˆ110.5650.5t tC D X =++,其中,C 为消费,X 为收入,虚拟变量D=1表示城镇家庭,D=0表示农村家庭,所有参数均检验显著,则城镇家庭的消费函数为( )A. ˆ110.50.5t t C X =+B. ˆ175.50.5t t C X =+C. ˆ110.565.5t t C X =+D. ˆ1300.5t tC X =+ 二、(10分)判断题(每题1分,做出判断即可)1. 最小二乘估计量具有最小方差。
应用回归分析实验期末考试

国际旅游外汇收入是国民经济发展的重要组成部分,影响一个国家或者地区旅游收入的因素包括自然、文化、社会、经济、交通等多方面的因素。
本案例研究第三产业对旅游外汇收入的影响。
《中国统计年鉴》把第三产业划分为12个组成部分,分别为:X1:农林牧渔服务业;X2:地质勘查水利管理业;X3:交通运输仓储和邮电通信业X4:批发零售贸易和餐饮业;X5:金融保险业;X6:房地产业;x7:社会服务业X8:卫生体育和社会福利业;x9:教育文化艺术和广播;x10:科学研究和综合艺;X11:党政机关;x12:其他行业选取1998年我国31个省、市、自治区的数据,以国际旅游外汇收入(百万美元)为因变量y,以如上12个行业为自变量做多元线性回归分析,完成以下问题,形成实验报告1、计算相关系数矩阵,并指出哪个协变量对响应变量的影响最大。
2、计算多元回归模型参数β的最小二乘估计,并写出模型。
3、计算多元回归模型参数β最小二乘估计置信度为95%的置信区间。
4、计算方差σσ2=var(ε)的估计。
5、对回归模型参数β=0进行t检验,并分析结果。
6、对回归模型进行F检验,并分析结果。
7、计算调整的决定系数RR2的值,并解释其意义。
8、找出模型的异常点和强影响点。
9、对模型进行正态检验、异方差检验、序列相关性检验、多重共线性检验10、根据检验结果对已经得到的模型进行处理,并得到最终的模型,并对最终的模型予以解释11、根据最终的模型,对观测数据点xx0=(xx1,xx2,…,xx12)=(1.5,7.8,161,194.5,237.7,155.4,93.2,22.7,80.3,34.5,55.6, 67.7)进行响应变量的点预测和置信度为95%的区间预测。
《应用回归试分析》试题答案

一、一家保险公司十分关心其总公司营业部加班的程度,决定认真调查现状。
经十周时间,收集了每周加班时间的数据和签发的新保单数目,x 为每周签发的新保单数目,y 为每周加(3)设回归方程为01y x ββ∧∧∧=+11221(2637021717)0.0036(71043005806440)()ni ii nii x y n x yxn x --=-=--β===--∑∑01 2.850.00367620.1068y x ββ-∧-=-=-⨯=0.10680.0036y x∧∴=+可得回归方程为(4) 22n i=11()n-2i i y y σ∧∧=-∑ 2n01i=11(())n-2i y x ββ∧∧=-+∑=0.2305 σ∧=0.4801(5) 由于211(,)xxN L σββ∧t σ∧==服从自由度为n-2的t 分布。
因而/2|(2)1P t n αασ⎡⎤⎢⎥<-=-⎢⎥⎣⎦也即:1/211/2(p t t ααβββ∧∧∧∧-<<+=1α-可得195%β∧的置信度为的置信区间为0.4801/⨯⨯(0.0036-1.8600.0036+1.860即为:(0.0028,0.0044)22001()(,())xxx N n L ββσ-∧+t ∧∧==服从自由度为n-2的t 分布。
因而/2(2)1P t n αα∧⎡⎤⎢⎥⎢⎥<-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦即0/200/2()1p βσββσα∧∧∧∧-<<+=- 095%0.3567,0.5703β∧-可得的置信度为的置信区间为()(6)x 与y 的决定系数 22121()()nii nii y y r y y ∧-=-=-==-∑∑16.8202718.525=0.908(7)ANOV Ax平方和 df均方F 显著性组间(组合) 1231497.500 7 175928.214 5.302.168 线性项 加权的1168713.036 1 1168713.036 35.222 .027 偏差62784.464 6 10464.077 .315.885组内 66362.500 2 33181.250 总数1297860.0009由于(1,9)F F α>,拒绝0H ,说明回归方程显著,x 与y 有显著的线性关系。
应用回归分析第四章部分答案.doc

第4章违背基本假设的情况4.1答:例4.1:截面资料下研究居民家庭的储蓄行为Yi=0°+0N+£i其中:乙•表示第i个家庭的储蓄额,X,表示第i个家庭的口J支配收入。
由于高收入家庭储蓄额的差异较大,低收入家庭的储蓄额则更有规律性,差杲较小,所以6的方差呈现单调递增型变化。
例4. 2:以某一行业的企业为样本建立企业生产函数模型Yj=Af Kf2 L曾被解释变量:产出量乙解释变量:资本K、劳动L、技术A,那么每个企业所处的外部环境对产出量的影响被包含在随机谋慕项中。
由于每个企业所处的外部环境对产出量的影响程度不同,造成了随机误差项的异方差性。
这时,随机误差项£的方差并不随某-个解释变量观测值的变化而呈规律性变化,呈现复杂型。
4.2答:回归模型一旦出现异方差性,如果仍采用OLS估计模型参数,会产生下列不良后果:1、参数估计量非冇效2、变量的显著性检验失去意义3、回归方程的应用效果极不理想总的来说,当模型出现异方差性时,参数OLS估计值的变异程度增大,从而造成对Y的预测误差变大,降低预测精度,预测功能失效。
4.3答:普通最小二乘估计就是寻找参数的估计值使离羌平方和达极小。
其中每个平方项的权数相同,是普通最小二乘回归参数估计方法。
在误差项等方差不相关的条件下,普通最小二乘估计是冋归参数的最小方差线性无偏估计。
然而在异方差的条件下,平方和中的毎一项的地位是不相同的,误差项的方差大的项,在残差平方和屮的取值就偏大,作用就大,因而普通最小二乘估计的回归线就被拉向方差大的项,方差大的项的拟合程度就好,而方差小的项的拟合程度就差。
dboLS 求出的仍然是的无偏估计,但不再是最小方差线性无偏估计。
所以就是:对较大的残差平方赋予较小的权数,对较小的残差平方赋予较大的权数。
这样对残差所提供信息的重要程度作一番校止,以提高参数估计的精度。
加权最小二乘法的方法:_ A-尿)'/=1N工叽兀一兀)(必-兀)N工a-兀)/=1八00严几-01“瓦w;=厶(cr2=kXj)6(因为比例系数R在参数估计屮可以消却1=74.4答:运用加权最小二乘法消除多元线性回归中异方差性的思想与一元线性回归的类似。
《应用回归分析》课后题答案解析

(8) t
1
2
/ Lxx
1
Lxx
2
其中
1 n2
n i1
ei 2
1 n2
n i1
( yi
2
yi )
0.0036 1297860 8.542 0.04801
t /2 1.895
t 8.542 t /2
接受原假设 H 0: 1 0, 认为 1 显著不为 0,因变量 y 对自变量 x 的一元线性回归成立。
( yi
2
yi )
1 n-2
n i=1
( yi
( 0 1
2
x))
=
1 3
( 10-(-1+71))2 (10-(-1+7 (20-(-1+7 4))2 (40-(-1+7
2))2 (20-(-1+7 5))2
3))2
1 16 9 0 49 36
3
110 / 3
1
330 6.1
《应用回归分析》部分课后习题答案
第一章 回归分析概述
变量间统计关系和函数关系的区别是什么 答:变量间的统计关系是指变量间具有密切关联而又不能由某一个或某一些变量 唯一确定另外一个变量的关系,而变量间的函数关系是指由一个变量唯一确定另 外一个变量的确定关系。
回归分析与相关分析的联系与区别是什么 答:联系有回归分析和相关分析都是研究变量间关系的统计学课题。区别有 a. 在回归分析中,变量 y 称为因变量,处在被解释的特殊地位。在相关分析中,变 量 x 和变量 y 处于平等的地位,即研究变量 y 与变量 x 的密切程度与研究变量 x 与变量 y 的密切程度是一回事。b.相关分析中所涉及的变量 y 与变量 x 全是随机 变量。而在回归分析中,因变量 y 是随机变量,自变量 x 可以是随机变量也可以 是非随机的确定变量。C.相关分析的研究主要是为了刻画两类变量间线性相关的 密切程度。而回归分析不仅可以揭示变量 x 对变量 y 的影响大小,还可以由回归 方程进行预测和控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《应用回归分析》试卷★要求将答案做在答题纸上,做在别处无分。
一、(50分)单项选择题(每题1分)1.回归分析的建模依据为()A.统计理论B.预测理论C.经济理论D.数学理论2.随机方程式构造依据为()A.经济恒等式 B.政策法规 C.变量间的技术关系 D.经济行为3. 回归模型的被解释变量一定是()A.控制变量 B.政策变量 C.内生变量 D.外生变量4.在同一时点或时期上,不同统计单位的相同统计指标组成的数据是()A.时期数据 B.时点数据 C.时序数据 D.截面数据5.回归分析的目的为()A.研究解释变量对被解释变量的依赖关系 B.研究解释变量和被解释变量的相关关系C.研究被解释变量对解释变量的依赖关系D.以上说法都不对6.在回归分析中,有关被解释变量Y和解释变量X的说法正确的为()A.Y为随机变量,X为非随机变量 B. Y为非随机变量,X为随机变量C.X、Y均为随机变量D. X、Y均为非随机变量7.在X与Y的相关分析中()A.X是随机变量,Y是非随机变量 B. Y是随机变量,X是非随机变量C.X和Y都是随机变量D. X和Y均为非随机变量8.总体回归线是指()A.解释变量X取给定值时,被解释变量Y的样本均值的轨迹。
B.样本观测值拟合的最好的曲线。
C.使残差平方和最小的曲线D.解释变量X取给定值时,被解释变量Y的条件均值或期望值的轨迹。
9.最小二乘准则是指()A.随机误差项ε的平方和最小 B. Y与它的期望值E(Y/X)的离差平方和最小C. X与它均值E(X)的离差的平方和最小D.残差e的平方和最小10.按照经典假设,线性回归模型中的解释变量应为非随机变量,且( )A.与被解释变量Y不相关B.与随机误差项ε不相关C. 与回归值ˆY不相关D.以上说法均不对11.有效估计量是指( )A.在所有线性无偏估计中方差最大B.在所有线性无偏估计量中变异系数最小C.在所有线性无偏估计量中方差最小D.在所有线性无偏估计量中变异系数最大12.在一元线性回归模型中, 2σ的无偏估计量2ˆσ为( )A.21niien=∑B.211niien=-∑C.212niien=-∑D.213niien=-∑13判定系数2R的取值范围为( )A.202R ≤≤B. 201R ≤≤C. 204R ≤≤ D. 214R ≤≤14.回归系数1β通过了t 检验,表示( )A.10β≠B.1ˆ0β≠ C.11ˆ0,0ββ≠= D.11ˆ0,0ββ=≠ 15.个值区间预测就是给出( )A.预测值0ˆY 的一个置值区间 B.实际值0Y 的一个置值区间 C.实际值0Y 的期望值的一个置值区间 D.实际值0X 的一个置值区间16.一元线性回归模型01Y X ββε=++中,0β的最小二乘估计是( )A.01ˆˆY X ββ=+B. 01ˆˆY X ββ=+C. 01ˆˆY X ββ=- D. 01ˆˆY X ββ=+ 17.回归分析中简单回归指的是_____A.两个变量之间的回归B.三个以上变量的回归C.两个变量之间的线性回归D.变量之间的线性回归 18.运用OLSE ,模型及相关变量的基本假定不包括_____A.E(εi)=0B.cov(εi, εj)=0 i ≠j,i,j=1,2,3,……,nC.var(εi)=0 i=1,2……,nD.解释变量是非随机的 19. R 2(调整R 2)的计算公式是_____ A.R 2= 1-11n n p ---.SSE SSTB. R 2=1-11n p n ---.SSE SST C. R 2=1-12n n p ---.SSE SSTD. R 2=1-21n p n ---.SSE SST 20.下列选项哪个是用来检验模型是否存在异方差问题_____A.方差扩大化因子VIFB.DW 检验C.等级相关系数D.连贯检验 21.在多元线性回归模型中,调整后的判定系数2R 与判定系数2R 的关系为()A.22R R < B. 22R R < C. 22R R ≤ D. 22R R ≤ 22.下列哪种情况说明存在异方差( )A.()0i E ε=B.()0,i j E i j εε=≠C.22()i E εσ=(常数)D. 22()i i E εσ= 23.当模型存在异方差时,使用普通最小二乘法得到的估计量是( )A.有偏估计量B.有效估计量C.无偏估计量D.渐进有效估计量24.下列哪种方法不是检验异方差的方法( )A.残差图分析法B.等级相关系数法C.样本分段比检验D.DW 检验法 25.异方差情形下,常用的估计方法是( )A.一阶差分法 B 广义差分法 C. 工具变量法 D.加权最小二乘法 26.下列那种情况属于存在序列相关( )A.(,)0,i j Cov i j εε=≠B. (,)0,i j Cov i j εε≠≠C. 2(,),i j Cov i j εεσ== D. 2(,),i j i Cov i j εεσ==27.若线性回归模型的随机误差项存在序列相关时,直接用普通最小二乘法估计参数,则参数估计量为( )A.有偏估计量B.有效估计量C.无效估计量D.渐进有效估计量28.下列哪种方法不是检验序列有效的方法( )A.残差图分析法B.自相关系数法C.方差扩大因子法D. DW 检验法29. DW 检验适用于检验( )A.异方差B.序列相关C.多重共线性D.设定误差 30.若计算的DW 的统计量为2,则表明该模型( ) A.不存在序列相关 B.存在一阶正序列相关 C.存在一阶负序列相关 D.存在高阶相关 31.DW 检验的原假设为( )A. DW=0B. 0ρ=C. DW=1D. 1ρ= 32.DW 统计量的取范围是()A. 10DW -≤≤B. 11DW -≤≤C. 22DW -≤≤D. 04DW ≤≤33.根据20个观测值估计的一元线性回归模型的 DW=2.3,在样本容量 n =20,解释变量个数 k =1(不包含常数项),显著型水平α=0.05时,查得dL=1.201,dU=1.411,则可以判断该模型( )A.不存在一阶自相关B.有正的一阶自相关C.有负的一阶自相关D.无法确定 34.当模型存在一阶自相关情况下,常用的估计方法是( )A.加权最小二乘法B.广义差分法C.工具变量法D.普通最小二乘法 35.采用一阶差分法估计一阶自相关模型,适合于( )A. 1ρ≈B. 0ρ≈C. 10ρ-<<D. 01ρ<<36.在多元线性回归模型中,若某个解释变量对其余解释变量的判定系数接近1,则表明模型中存在( )A.异方差B.自相关C.多重共线性D.设定误差37.在线性回归模型中,若解释变量1X 和2X 的观测值成比例,即有12i i X kX =,其中k 为非零常数,则表明模型中存在( ) A.异方差 B.严格共线性 D 序列相关 D.高度共线性38.经验认为,某个解释变量与其他解释变量间多重共线性很严重的判别标准是这个解释变量的方差扩大化因子( ) A.大于零 B 小于1 C 大于10 D 小于5 39.若查表得到dL 和dU ,则不存在序列相关的区间为( )A.0DW dL ≤≤B. 4dU DW dU ≤≤-C. 44dU DW dL -≤≤-D. 44dU DW -≤≤ 40.设01Y X ββε=++,Y 表示居民消费支出,X 表示居民收入,D=1代表城镇居民,D=0代表农村居民,则截距变动模型为( )A. 012Y X D βββε=+++B. 021()Y X βββε=+++C. 012()Y X βββε=+++D. 012(*)Y X D X βββε=+++41.设01Y X ββε=++,Y 表示居民消费支出,X 表示居民收入,D=1代表城镇居民,D=0代表农村居民,则斜率变动模型为( )A. 012Y X D βββε=+++B. 021()Y X βββε=+++C. 012()Y X βββε=+++D. 012(*)Y X D X βββε=+++42.设虚拟变量D 影响线性回归模型中X 的斜率,如何引进虚拟变量,使模型成为斜率变动模型( )A.直接引进DB.按新变量D*X 引进C.按新变量(D+X)引进D.无法引进43.虚拟变量的赋值原则是( )A.给定某一质量变量的某属性出现为1,未出现为0B.不用赋值C.按照某一质量变量属性种类编号赋值D. 以上说法都不正确44.有关虚拟变量的表述正确的是( )A.用来代表质的因素,有时候也可以代表数量因素B.只能用来代表质的因素C.只能用来代表数量因素D.以上说法都不正确45.如果一个回归模型包含截距项,对一个具有M 个特征的质的因素需要引入的虚拟变量的个数为( )A.MB.(M-1)C.(M-2)D.(M+1)46.设个人消费函数01Y X ββε=++中,消费支出Y 不仅与收入X 有关,而且与消费者的性别、年龄构成有关,年龄构成可以分为老,中,青三个层次,假定边际消费倾向不变,该消费函数引入虚拟变量的个数为( )A.1个B.2个C.3个D.4个47.在一个包含截距项的回归模型01Y X ββε=++中,如果将一个具有M 个特征的质的因素设定M 个虚拟变量,则会产生的问题是( )A.异方差B.序列相关C.不完全多重线性相关D.完全多重线性相关48.设消费函数为012Y X D βββε=+++,式中Y 表示某年居民的消费水平,X 表示同年居民的收入水平,D 为虚拟变量,D=1表示正常年份,D=0表示非正常年份,则( )A.该模型为截距、斜率同时变动模型B.该模型为截距变动模型C.该模型为斜率变动模型D.该模型为时间序列模型49.设截距和斜率同时变动模型为0123(*)Y X D D X ββββε=++++,对模型做t 检验,下面哪种情况成立时,该模型为截距变动模型( )A.230,0ββ≠≠B.230,0ββ== C. 230,0ββ≠= D. 230,0ββ=≠50.根据样本资料建立的消费函数如下:ˆ110.5650.5ttCD X =++,其中,C 为消费,X 为收入,虚拟变量D=1表示城镇家庭,D=0表示农村家庭,所有参数均检验显著,则城镇家庭的消费函数为( )A. ˆ110.50.5t t C X =+B. ˆ175.50.5t t C X =+C. ˆ110.565.5t t C X =+D. ˆ1300.5t tC X =+ 二、(10分)判断题(每题1分,做出判断即可)1. 最小二乘估计量具有最小方差。
( )2. 多元线性回归中,F 检验是用来检验模型中每一个自变量对y 的影响是否显著。
( )3. 在一元线性回归方程10y x ββ∧∧∧=+中,1var()β∧反映的是估计量1β∧的波动大小。