免疫算法的克隆选择过程
免疫算法中的克隆变异操作

免疫算法中的克隆变异操作下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!免疫算法是一种启发式优化算法,利用模拟免疫系统中的免疫机制进行问题求解。
免疫算法——精选推荐

免疫算法理论与应用近代免疫的概念是指机体对自己或非己的识别并排除非己的功能,目的是维持自身生理平衡与稳定.免疫算法就是模拟免疫系统抗原识别、抗原与抗体结合及抗体产生过程,并利用免疫系统多样性和记忆机理抽象得到的一种免疫算法。
这里介绍免疫算法的算法流程与代码.免疫学中基本概念的思想在免疫算法设计中得到有效应用,即亲和力,相似度,浓度及激励度,根据算法需要给出描述. 定义1 亲和力指抗体与抗原的匹配程度.反映在优化问题上,抗体(NBP)的亲和力定义为函数,与成反比,在此仍表示抗aff:S (0,1)aff(x)f(x)f(x)x体对应的可行解的目标函数.这里选择 1 aff(x) ,0 1 .f(x)1e定义2 相似度指抗体与其他抗体的相似程度,其被定义为,此根据信息熵理论设计.体G为设M为含有m个字符的字符集,群Aff:S S *0,1+由N个长度为的字符串构成的集合,即l,其中G中基因座的其中为M 信息熵定义为 jG ,X ..., M,1 i l-xxxx12lim中第个符号出现在基因座上的概率. ,ij log(G,N)p pp Hj ij ijiji 1定义3 抗体浓度指抗体在抗体群中与其相似的抗体所占的比例,定义为函数即C(u) ,其中为C:X S *0,1+, , X|Aff(u,) -浓度阈值,,在此称为浓度抑0 1N制半径. 定义 4 激励度是指抗体应答抗原和被其他抗体激活的综合能力,定义为函e 数,其中为调节因子,.抗体应答 c(x)/1act:X S ,act(x) aff(x)抗原综合能力与其亲和力成正比,与其在抗体群中浓度成反比. 定义 5 克隆选择是指在给定的选择率下,,在抗体群中选择亲0 1和力较高的抗体.亲和力低的抗体则被清除. 定义6 细胞克隆是指在给定的繁殖数M下,抗体群X中所有抗体依据自s2身的亲和力及繁殖率共繁殖M个克隆的映射.,它是确定性映射,:X S Tcmxxxs即设为抗体群的繁殖率函数,为抗体群,则定义X {,,...,}r: 12m x抗体繁殖个相同的克隆构成的集合. 由下式确定:mmiiim . N r(X) af(f), Mmxmiiii 1定义 7 亲和突变是指抗体空间到自身的随机映射,,其作用方式:S S T m是抗体按与其亲和力成正比的可变概率独立地改变自身的基因,可选 . P(x) exp(aff(x))定义 8 克隆抑制指在抗体群中依据抗体的亲和力和相似度抑制部分抗体的确定性映射,.克隆抑制算子的设计,设X是群体规模为M的抗体群,: SMSTr 依据抗体的相似度和抑制半径以及式,将X划分为子群,不妨设Aff(u,) 获q个子群,利用处罚函数对中亲和力低的抗体进行处罚. ,1 i qPPii定义9 免疫选择是指在抗体群中依据抗体的激励度选择抗体的随机映射,N按其概率规则: S,STisac t()xiP{T } . x(X)ii act()xjx X j定义 10 募集新成员指在抗体空间S中随机选择抗体. 免疫算法描述如下: Step 1 确定初始群体规模N,克隆总数M,克隆选择率,抑制半径, 募集新成员插入率,. M N Step 2 随机产生N个抗体构成初始抗体群,计算中抗体亲和力. AA00 Step 3 利用克隆选择算子在中选择个抗体构成群体. NABnn1 Step 4 克隆选择算子作用繁殖M个克隆,中抗体进入记忆池,并更BBnn新记忆池中亲和力低的抗体. Step 5 依据亲和突变算子对每个克隆细胞进行突变,获得克隆集. Cn* Step 6克隆抑制算子作用于,获得克隆集C C nn* Step 7 计算与中亲和力较高的N个抗体的激励度.用比例选择选取CAnn 个抗体.其中中亲和力最高的不参与选择.获得新群体. N round( N)1ADnn Step8 由募集新成员算子任选个自我抗体插入,并计算round( N)Dn 个抗体的亲和力,从而获得. round( N)An1 Step 9 若满足终止条件,输出结果,否则,返回step 3. 免疫算法在函数优化中应用举例例Rosebrock函数的全局最大值计算. 222max )(1)f(,) 100 (xxxxx21121s..t8 2.0i4 8(12.04 x i确定编码方法:xx用长度为10的二进制编码串来分别表示俩个决策变量.10位二进制编码串,12xx可以表示从0到1023之间的1024个数,故将的定义域离散化为1023个,12均等的区域,包括俩端点共1024个不同的离散点.从离散点-2.048到 2.048,依次让它们对应于00000000000(0)到11111111111(1023)之间的二进制编码.再将xx,分别表示的两个10位长的二进制编码串接在一起,组成一个20位长的二12进制编码,它就构成了函数优化问题的染色体编码方法.使用这种编码方法,解空间与免疫算法的搜索空间具有一一对应的关系. 确定解码方法:解码时需将20位长的二进制编码串切断为二个10位长的二进制编码串,然后分别将它们转换成对应的十进制整数代码,分别记为和. 依据前述个体编码方yy12yx法和对定义域的离散化方法可知,将代码转换为的解码公式为:iiyx ,(i 1,2) 4.09 62.048i i1023求函数的全局最大值免疫算法代码如下:Rosebrock #include <stdio.h>#include<stdlib.h> #include<time.h>#include<math.h> #define LENGTH1 10 #define LENGTH2 10 #define CHROMLENGTH LENGTH1+LENGTH2 #define POPSIZE 300 int MaxGeneration =500; struct individual { char chrom[CHROMLENGTH+1]; ;//适应度double value ;//亲和力double affective//浓度double concentration;//激励度double activity; }; int generation; int best_index; struct individualpopulation[POPSIZE]; struct individual nextpopulation[POPSIZE];struct individual array[POPSIZE]; struct individual A; structindividual B; struct individual bestindividual; struct individual currentbest; int PopSize =80; double umu =0.08; double r =0.001; double rad =0.3; int clone_total =0;//******************************************************************** void GenerateInitialPopulation(); long DecodeChromosome(char *string,int point,int length); void CalculateObjectValue(struct individual array[],int n); void Calculateaffective(struct individual array[],int n); void EvaluatePopulation(); void affectivesort(struct individual array[],intn); void clonenum(); void MutationOperator(void);void GenerateNextPopulation(void); double CalculateSimilarity(struct individual A,struct individual B); voidInhibition(void); void chongzu(); void CalculateConcentrationValue(struct individual population[],int n);void CalculateActivityValue(struct individual population[],int n);void activeslect(); void sortnewmember(); void PerformEvolution();void FindBestIndividual(); void OutputTextReport();//******************************************************************** void main() { generation=0; GenerateInitialPopulation(); EvaluatePopulation(); while(generation<MaxGeneration) { generation++; GenerateNextPopulation(); EvaluatePopulation(); PerformEvolution(); OutputT extReport(); } } //******************************************************************** void GenerateInitialPopulation() { int i,j; srand((unsigned)time(NULL)); //srand((unsigned)time(0)); for(i=0;i<PopSize ;i++) { for(j=0;j<CHROMLENGTH;j++) { population[i].chrom[j]=(rand()%10<5)?'0':'1'; } population[i].chrom[CHROMLENGTH]='\0'; } } //********************************************************************void GenerateNextPopulation(void) {//排序选择亲和力高的进行克隆affectivesort(population,PopSize); clonenum(); MutationOperator(); Inhibition(); chongzu(); activeslect(); sortnewmember(); } //****************************************************** ************** void EvaluatePopulation(void) { CalculateObjectValue ( population,PopSize); Calculateaffective ( population,PopSize);FindBestIndividual(); } //****************************************************** *********************** long DecodeChromosome(char *string,int point,int length) { int i; long decimal=0L; char *pointer; for(i=0,pointer=string+point;i<length;i++,pointer++) { decimal+=(*pointer-'0')<<(length-1-i); } return(decimal); } //****************************************************** *********************** void CalculateObjectValue(struct individual array[],int n) { int i; long temp1,temp2; double x1,x2; for (i=0;i<n;i++) { temp1=DecodeChromosome(array[i].chrom,0,LENGTH1); temp2=DecodeChromosome(array[i].chrom,LENGTH1,LENGTH2);x1=4.096*temp1/1023.0-2.048; x2=4.096*temp2/1023.0-2.048; array[i].value=100*(x1*x1-x2)*(x1*x1-x2)+(1-x1)*(1-x1); } } //****************************************************** *********************** void Calculateaffective(struct individual array[],int n){ int i; for(i=0;i<n;i++) { array[i].affective=1.0/(exp(-(r*array[i].value))+1.0); } } //****************************************************** *********************** void affectivesort(struct individual array[],int n) { int i,j; struct individual a; for(j=0;j<n-1;j++){ for(i=0;i<n-1-j;i++) { if(array[i].affective<array[i+1].affective){ a=array[i+1]; array[i+1]=array[i]; array[i]=a; } } } }//****************************************************************** void FindBestIndividual() { int i; bestindividual=population[0]; for(i=0;i<PopSize;i++){ if(population[i].affective>bestindividual.affective){ bestindividual=population[i]; best_index=i; }if(generation==0) { currentbest=bestindividual; } else{ if(bestindividual.affective>currentbest.affective){ currentbest=bestindividual; } } } }//***************************************************************************** void PerformEvolution(){ if(bestindividual.affective>currentbest.affective){ currentbest=population[best_index]; } }//***************************************************************************** void clonenum() { int i,j; int M =100; int m[POPSIZE]; int L=0; double sum1=0; double sg =0.8; for(i=0;i<(int)(sg*M);i++) { sum1+=array[i].affective;m[i]=(int)(array[i].affective*M/sum1); clone_total+=m[i]; }for(i=0;i<(int)(sg*M);i++) { for(j=0;j<m[i];j++) nextpopulation[L++]=array[i]; } }//***************************************************************************** void MutationOperator(void) { int i,j; double p,po; for(i=0;i<clone_total;i++){ for(j=0;j<CHROMLENGTH;j++) { po=rand()%1000/1000.0; p=exp((-1)*nextpopulation[i].affective); if(po<p) { nextpopulation[i].chrom[j]=(nextpopulation[i].chrom[j]=='0')?'1':'0'; } } } }//***************************************************************************** double CalculateSimilarity (struct individual A,struct individual B) { int j=0; double sum=0.0; for(j=0;j<CHROMLENGTH;j++){ sum+=(A.chrom[j]=B.chrom[j])?0:1; } sum=sum*(log(2.0))/CHROMLENGTH; return sum; }//***************************************************************************** void Inhibition(void) { int i,j; int L=0;int numinh=0; //double rad =0.3; CalculateObjectValue(nextpopulation,clone_total); Calculateaffective(nextpopulation,clone_total); 排序进行抑制affectivesort(nextpopulation,clone_total);// for(i=0;i<clone_total-1;i++) { for(j=i+1;j<clone_total;j++) { if(CalculateSimilarity(nextpopulation[i],nextpopulation[j])>rad) { nextpopulation[++L]=nextpopulation[j]; } } clone_total=L+1;L=i+1; } clone_total=L+1; } //****************************************************** *********************** void chongzu() { int i; for(i=0;i<clone_total;i++){ population[i+PopSize]=nextpopulation[i]; } affectivesort(population,clone_total+PopSize); } //****************************************************** *********************** void CalculateConcentrationValue(struct individual population[],int n) { int i,j,m=0; for(i=0;i<n;i++) { for(j=0;j<n;j++) { m+=(CalculateSimilarity(population[i],population[j])<rad)?1: 0; } } population[i].concentration=m*(1.0)/(n); } //****************************************************** *********************** void CalculateActivityValue(struct individual population[],int n) { int i; double h=1.5; for(i=0;i<n;i++) { population[i].activity=population[i].affective*exp(-population[i].concentration/h); } } //****************************************************** *********************** void activeslect() { int i,index; double umu=0.08; int N3=(int)(PopSize*umu); double p;double sum2=0.0; double concent[POPSIZE]; struct individual con_population[POPSIZE];CalculateConcentrationValue(population,PopSize); CalculateActivityValue(population,PopSize); for(i=0;i<PopSize;i++) { sum2+=population[i].activity; } for(i=0;i<PopSize;i++) { concent[i]=population[i].activity/sum2; } for(i=1;i<PopSize;i++) { concent[i]=concent[i-1]+concent[i]; } for(i=0;i<PopSize;i++) { p=rand()%1000/1000.0; index=0; while (p>concent[index]) { index++; } con_population[i]=population[index]; } for(i=0;i<PopSize-N3;i++) { population[i]=con_population[i]; } } //***************************************************************************** void sortnewmember() { int i,j; intN3=(int)(PopSize*umu); for(i=0;i<N3;i++) { for(j=0;j<CHROMLENGTH;j++) { population[i+PopSize-N3].chrom[j]=(rand()%10<5)?'0':'1'; } population[i+PopSize-N3].chrom[CHROMLENGTH]='\0';} } //***************************************************************************** void OutputT extReport(void) { int i; printf("gen=%d,best=%f,",generation,currentbest.value);printf("chromosome="); for(i=0;i<CHROMLENGTH;i++) { printf("%c",currentbest.chrom[i]); } printf("\n"); } 运行结果为:所以该问题全局最优解为. f( 2.048,2.048) 3905.926227参考文献[1] 黄席樾,张著洪等.现代智能算法理论及应用.北京科学出版社,2005.[2] 周明.遗传算法原理及其应用.国防工业出版社,2002.202.。
免疫克隆选择算法的改进及其应用

免疫克隆选择算法的改进及其应用邱亚龙;张昕;范妙炳;叶奕纯;陈婷【摘要】Based on the principle of biological immune system, an improved immune clonally selection algorithm(ICSA) was proposed. The algorithm introduced the analysis of antigenic determinant, calculated the network cut factor of antibody space and the end times of antibodies evolution, and created environment required to produce antibodies; shock variation method was adopted to make antibodies mutated; Innovative space adaptive mutation was proposed creatively; The improved ICSA was applied to analyze the parameters optimization problem of the atmospheric pollution harm rate universal formulaRi=1/(1+ae-bxi)c; The results show that the algorithm within the scope of the global and local search is more exquisite. Solution accuracy is significantly increased.%基于生物免疫系统原理,提出了改进的免疫克隆选择算法。
一种新的免疫克隆选择算法

c n e g n e s e d I A s s o o b n e o u i n r t a e y c p b e o o v n o o v r e c p e . CS i h wn t e a v l t a y s r t g a a l f s l i g c mp e o lx
( c o l fE e to isa dI fr t n in s iest fS in ea d Te h oo y,Z e a g 2 2 0 ,Chn ) S h o lcr nc n n o mai ,Ja g uUnv riyo ce c n c n lg o o h  ̄in 1 0 3 ia
维普资讯
第 6卷 第 6期 20 0 7年 1 2月
江 南 大 学 学 报( 然 科 学 版) 自
J u na fJ a na o r lo i ng n Uni e st ( t r lSce c ii n) v r iy Na u a i n e Ed to
摘
要 : 出 了一种 新 的人 工免疫 系统 算法—— 免疫 隆选 择 算 法 , 述 了算 法的 操作 过 程。 用 提 克 描 采
函数优 化仿 真 实验 与进化 算 法进 行 比较 , 结果 表 明免 克 隆选择 算 法 收敛 速 度 快 , 解精 度 高, 疫 求 稳
定性好 , 并能有效 地 克服早 熟 问题 和骗 问题 .
织 、 忆 等进化 学 习 机理 , 合 分 类 器 、 经 网络 和 记 结 神
机器 推理 等系统 的一 些 优点 , 研 究 成 果 涉及 到控 其
制 、 据处 理 、 化 学 习和 故 障 诊 断 等许 多 领 域 , 数 优 已 经 成为 继神 经 网络 、 糊逻 辑 和 进 化计 算 后 人 Nhomakorabea 智 模
免疫算法基本流程 -回复

免疫算法基本流程 -回复免疫算法(Immune Algorithm,IA)是仿生学领域的一种元启发式算法,它模仿人类免疫系统的功能,用于解决复杂问题的优化问题。
其基本流程包括问题建模、个体编码、种群初始化、克隆操作、变异操作、选择操作等,接下来本文将从这些方面进一步展开详细描述。
一、问题建模在使用免疫算法解决优化问题之前,需要将问题进行合理的建模。
建模过程主要涉及问题的因素、目标和约束条件等问题,例如在TSP(Traveling Salesman Problem)中,需要定义地图中所有城市之间的距离以及行走路线的长度等因素。
建模完成后,将其转化为适合于免疫算法处理的数学表示形式,这有助于优化算法的精度和效率。
二、个体编码从问题建模后,需要将问题的变量转化为适合免疫算法处理的个体编码,即将问题的解转化成一些序列或数值,这样才能进行算法的操作。
对于不同的问题,需要设计合适的编码方式,例如对于TSP问题,可以将城市序列编码成01字符串等。
三、种群初始化在免疫算法中,需要构建一个种群,种群中的每个个体代表了问题的一个解。
种群初始化是在搜索空间中随机生成一组解,并且保证这些解满足约束条件。
种群大小需要根据问题规模和计算能力来合理安排,一般情况下,种群大小越大,搜索空间越大,但是计算成本也越高。
四、克隆操作在免疫算法中,克隆操作是其中一个重要的基因变异操作。
该操作的目的是产生大量近似于当前最优的个体,增加搜索空间的多样性。
克隆操作的流程如下:1.计算适应度函数值,根据适应度函数值进行排序。
2.选择适应度函数值最优的一部分个体进行克隆操作。
3.对克隆个体进行加密操作,增加其多样性。
5、变异操作变异操作是免疫算法中的一个基本操作,其目的是使部分克隆个体产生和原个体不同的搜索方向,增加搜索空间的变异性。
在变异操作中,采用随机、局部搜索或任意搜索等方法来对某些个体进行改变其参数或某些属性,以期望产生一些新的解。
变异操作的流程如下:1.从克隆群体中随机选择一定数量的个体进行变异操作。
免疫算法资料

免疫算法免疫算法(Immune Algorithm)是一种基于人类免疫系统工作原理的启发式算法,通过模拟人体免疫系统的机理来解决优化问题。
人体免疫系统作为生物体内的防御系统,可以识别并消灭入侵的病原体,同时保护自身免受损害。
免疫算法借鉴了人体免疫系统的自我适应、学习和记忆等特点,将这些特点引入算法设计中,实现了一种高效的优化方法。
算法原理免疫算法中最核心的概念是抗体和抗原,抗体可以看作是搜索空间中的一个解,而抗原则是代表问题的目标函数值。
算法通过不断更新和优化抗体集合,寻找最优解。
免疫算法的工作原理主要包括以下几个步骤:1.初始化种群:随机生成一组初始解作为抗体集合。
2.选择和克隆:根据适应度值选择一部分优秀的抗体,将其进行克隆,数量与适应度成正比。
3.变异和超克隆:对克隆的抗体进行变异操作,引入随机扰动,形成新的候选解。
超克隆即通过一定规则保留部分克隆体,并淘汰弱势克隆体。
4.选择替换:根据新生成解的适应度与原有解的适应度进行比较,更新抗体集合。
应用领域免疫算法由于其模拟人体免疫系统的独特性,被广泛应用于复杂优化问题的求解,如工程优化、图像处理、模式识别、数据挖掘等领域。
免疫算法在这些领域中具有很强的适用性和可扩展性,能够有效地解决局部最优和高维空间搜索问题。
在工程优化方面,免疫算法可以用来解决设计问题、调度问题、控制问题等,提高系统的性能和效率;在图像处理领域,免疫算法可以用来实现图像分割、特征提取、目标识别等任务,有效处理大规模图像数据;在数据挖掘领域,免疫算法可以发现数据之间的潜在关联和规律,帮助用户做出决策。
发展趋势随着人工智能技术的快速发展,免疫算法在解决复杂问题中的优势逐渐凸显。
未来,免疫算法将继续深化与其他优化算法和机器学习领域的整合,发展出更加高效和智能的算法模型。
同时,随着计算机性能的提升和算法理论的不断完善,免疫算法在实际应用中将展现出更广阔的应用前景。
综上所述,免疫算法作为一种启发式优化算法,在工程优化、图像处理、数据挖掘等领域具有广泛的应用前景。
免疫算法公式

免疫算法公式免疫算法是一种新型的优化算法,其基本思想是模拟生物体免疫系统对外界刺激的反应过程,以实现优化问题的求解。
免疫算法涉及到一些基本的公式,包括:1. 抗体与抗原的亲和度计算公式亲和度是指抗体与抗原之间相互作用的强度,通常使用欧几里得距离或哈密顿距离来计算。
欧几里得距离公式如下:$d(x,y)=sqrt{(x_1-y_1)^2+(x_2-y_2)^2+...+(x_n-y_n)^2}$ 其中,$x$和$y$代表两个向量,$n$代表向量维数。
2. 抗体的亲和力更新公式抗体的亲和力可以通过适当的更新策略来调整,以达到最优解。
典型的更新公式包括:$aff_j=aff_j+alphacdot(aff_i-aff_j)$其中,$aff_i$和$aff_j$分别代表两个抗体的亲和力值,$alpha$是调整因子。
3. 克隆选择算子公式克隆选择算子是免疫算法中的核心操作,它通过复制和选择策略来增加优秀抗体的数量。
克隆选择算子的基本公式如下:$n_i=frac{p_i}{sum_{j=1}^Np_j}$其中,$n_i$代表第$i$个抗体的克隆数量,$p_i$代表抗体$i$的适应度值,$N$代表总抗体数量。
4. 基因重组算子公式基因重组算子是免疫算法的另一个重要操作,它通过随机交换抗体基因的方式来产生新的解。
基因重组算子的公式如下:$x_k=left{begin{aligned}&x_{i,k},&rand()<p_c&x_{j,k},&rand( )>=p_cend{aligned}right.$其中,$x_{i,k}$和$x_{j,k}$分别代表两个抗体在第$k$个基因位置的取值,$p_c$是交叉概率,$rand()$是一个均匀分布的随机数。
以上是免疫算法中一些常用的公式,它们在免疫算法的求解过程中起到非常重要的作用。
一种用于风机故障诊断的免疫克隆特征选择算法

一种用于风机故障诊断的免疫克隆特征选择
算法
1. 引言
风机在工业生产和民用设施中均得到了广泛的应用。
由于风机长
时间运行,其叶片、轴承、齿轮等各部分易受磨损和损坏,导致故障
概率较高。
因此,对于风机的故障诊断和预测,具有重要的实用价值。
目前,传统的基于规则及统计分析的故障诊断方法已经逐渐显现了其
局限性,对于风机出现的复杂故障难以处理。
2. 免疫克隆特征选择算法
免疫克隆特征选择算法是一种基于免疫克隆算法的特征选择方法,该方法可以从众多特征中筛选出最重要的特征来进行风机故障诊断。
该方法独具特色,可用于从海量数据中进行特征选择和数据的降维处理,进而提高机器学习的分类预测能力。
3. 免疫克隆特征选择算法的流程
3.1 数据预处理
对于风机的故障数据,需要进行数据预处理,包括数据清洗、特
征提取、特征归一化等工作,以获得规范化的数据。
3.2 特征选择
将预处理后的数据特征构建成特征集,采用免疫克隆算法进行特征选择,从特征集中筛选出最优特征组合。
3.3 免疫克隆算法
该算法利用免疫系统中的克隆机制对特征进行筛选,根据特征的重要程度来构建特征权重,提高特征的分类预测能力,进而对故障数据进行准确的分类预测。
4. 结论
免疫克隆特征选择算法可以在风机故障诊断领域得到广泛应用,其特征选择能力和分类预测能力优越,可以提高风机故障预测的准确率。
该算法将成为未来风机故障诊断领域的重要研究手段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
免疫算法的克隆选择过程
% 二维人工免疫优化算法
% m--抗体规模
% n--每个抗体二进制字符串长度
% mn--从抗体集合里选择n个具有较高亲和度的最佳个体进行克隆操作
% A--抗体集合(m×n),抗体的个数为m,每个抗体用n个二进制编码(代表参数) % T--临时存放克隆群体的集合,克隆规模是抗原亲和度度量的单调递增函数% FM--每代最大适应度值集合
% FMN--每代平均适应度值集合
% AAS--每个克隆的最终下标位置
% BBS--每代最优克隆的下标位置
% Fit--每代适应度值集合
% tnum--迭代代数
% xymin--自变量下限
% xymax--自变量上限
% pMutate--高频变异概率
% cfactor--克隆(复制)因子
% Affinity--亲和度值大小顺序
%%
clear all
clc
tic;
m=65;
n=22;
mn=60;
xmin=0;
xmax=8;
tnum=100;
pMutate=0.2;
cfactor=0.1;
A=InitializeFun(m,n); %生成抗体集合A,抗体数目为m,每个抗体基因长度为n F='X+10*sin(X.*5)+9*cos(X.*4)'; %目标函数
FM=[]; %存放各代最优值的集合
FMN=[]; %存放各代平均值的集合
t=0;
%%
while t<tnum
t=t+1;
X=DecodeFun(A(:,1:22),xmin,xmax); %将二进制数转换成十进制数
Fit=eval(F); %以X为自变量求函数值并存放到集合Fit中
if t==1
figure(1)
fplot(F,[xmin,xmax]);
grid on
hold on
plot(X,Fit,'k*')
title('抗体的初始位置分布图')
xlabel('自变量')
ylabel('每代适应度值集合')
end
if t==tnum
figure(2)
fplot(F,[xmin,xmax]);
grid on
hold on
plot(X,Fit,'r*')
title('抗体的最终位置分布图')
xlabel('自变量')
ylabel('每代适应度值集合')
end
%% 把零时存放抗体的集合清空
T=[];
%% 把第t代的函数值Fit按从小到大的顺序排列并存放到FS中
[FS,Affinity]=sort(Fit,'ascend');
%% 把第t代的函数值的坐标按从小到大的顺序排列并存放到XT中
XT=X(Affinity(end-mn+1:end));
%% 从FS集合中取后mn个第t代的函数值按原顺序排列并存放到FT中FT=FS(end-mn+1:end);
%% 把第t代的最优函数值加到集合FM中
FM=[FM FT(end)];
%% 克隆(复制)操作,选择mn个候选抗体进行克隆,克隆数与亲和度成正比,AAS是每个候选抗体克隆后在T中的坐标
[T,AAS]=ReproduceFun(mn,cfactor,m,Affinity,A,T);
%% 把以前的抗体保存到临时克隆群体T里
T=Hypermutation(T,n,pMutate,xmax,xmin);
%% 从大到小重新排列要克隆的mn个原始抗体
AF1=fliplr(Affinity(end-mn+1:end));
%% 把以前的抗体保存到临时克隆群体T里%从临时抗体集合T中根据亲和度的值选择mn个
T(AAS,:)=A(AF1,:);
X=DecodeFun(T(:,1:22),xmin,xmax);
Fit=eval(F);
AAS=[0 AAS];
FMN=[FMN mean(Fit)];
for i=1:mn
%克隆子群中的亲和度最大的抗体被选中
[OUT(i),BBS(i)]=max(Fit(AAS(i)+1:AAS(i+1)));
BBS(i)=BBS(i)+AAS(i);
end
%从大到小重新排列要克隆的mn个原始抗体
AF2=fliplr(Affinity(end-mn+1:end));
%选择克隆变异后mn个子群中的最好个体保存到A里,其余丢失A(AF2,:)=T(BBS,:);
end
disp(sprintf('\n The optimal point is:'));
disp(sprintf('\n x: %2.4f, f(x):%2.4f',XT(end),FM(end)));
%%
figure(3)
grid on
plot(FM)
title('适应值变化趋势')
xlabel('迭代数')
ylabel('适应值')
hold on
plot(FMN,'r')
hold off
grid on。