ANSYS workbench结构优化

合集下载

AnsysWorkbenchV14.5参数化优化操作

AnsysWorkbenchV14.5参数化优化操作

Ansys workbench流体流动与传热优化通过这种实验可是实现网格考核、结构尺寸对目标函数的影响分析、参数的敏感性分析以及工况参数对目标函数的影响分析等,找到最优的网格尺寸、结构尺寸和操作工况。

下图为典型的ANSYS workbench优化分析的示意图:其中模块与模块之间的关联可以实现交换数据。

本文采用响应面优化的方法实现流体流动与传热的模拟优化。

1.几何模型的建立一.Geometry阶段采用solidworks建立几何模型(注意本机上一定要同时有ANSYS和solidworks)。

下图为建立几何模型的过程:为了简便采用简单的模型来验证本方法。

建立一个草图圆,然后智能尺寸标注,弹出尺寸修改窗,还有尺寸设置窗口。

在这里要设置实现参数化的几何尺寸关联接口。

方法为:在尺寸设置窗口的主要指那一栏的第一个参数前面手动加上一个”DS_”,同时在模型树里面把每一步的操作名改为英文的(注意避开一些敏感字母),以下都按此操作。

然后退出草图,拉伸凸台。

这里标注第二个尺寸:拉伸长度。

鼠标指针放到拉伸特征上,这是窗口出现草图出现拉伸的尺寸,蓝色的尺寸。

然后右击该尺寸,出现尺寸设置窗口,修改主要指加上“DS_”。

至此,几何模型的创建结束,保持文档。

回到ansys workbench界面,geometry后面打上了对号,提示已经完成。

双击geometry启动DM工具。

导入刚刚创建的模型,出现导入对话框,里面有很多设置项,这里采用默认设置,点击generate按钮导入创建的几何模型。

可以看到属性里已经出现修改过的参数化尺寸。

显示两个paremeters,前面的框点击出现P表示设置成参数书尺寸了。

关闭DM,回到workbench界面。

二.Meshing阶段点击mesh启动meshing设置边界:点击geometry,然后右键选择create named selection创建边界:网格部分的控制点击mesh,在下方出现设置框。

如何采用ansys workbench对结构进行拓扑优化分析

如何采用ansys workbench对结构进行拓扑优化分析

如何采用ansys workbench对结构进行拓扑优化分析
在ansys workbench中拓扑优化分析流程如下所示。

以下图所示结构为例,演示拓扑优化分析的过程,优化条件如下:
最大应力小于1000PSI;质量去除50%;结构材料为结构钢;结构承受750psi的内压,两端的安装孔固定约束。

拓扑优化的边界条件设置如下,设置对应的优化区域,载荷约束条件区域为非优化区域,设置最大应力和去除质量的约束条件。

优化前后的结果对比,优化后材料质量取出来42%
基于SCDM模块,对优化后的片面模型进行几何处理,并将模型一键转为为实体模型,进行优化后模型的验证分析。

验证分析的流程如下所示,通过workbench的一键传递,自动生成验证分析的静力学模块,按照上图所示的几何模型,完成几何处理,最后进行验证分析。

验证前后的结果对比如下所示,初始模型的变形为0.00032in,优化后模型的变形为
0.00061,初始模型的最大应力为8208psi,优化后模型的最大应力为9636psi,满足优化要求。

学会使用AnsysWorkbench进行有限元分析和结构优化

学会使用AnsysWorkbench进行有限元分析和结构优化

学会使用AnsysWorkbench进行有限元分析和结构优化Chapter 1: Introduction to Ansys WorkbenchAnsys Workbench是一款广泛应用于工程领域的有限元分析和结构优化软件。

它的功能强大,能够帮助工程师在设计过程中进行力学性能预测、应力分析以及结构优化等工作。

本章节将介绍Ansys Workbench的基本概念和工作流程。

1.1 Ansys Workbench的概述Ansys Workbench是由Ansys公司开发的一套工程分析软件,主要用于有限元分析和结构优化。

它集成了各种各样的工具和模块,使得用户可以在一个平台上进行多种分析任务,如结构分析、热分析、电磁分析等。

1.2 Ansys Workbench的工作流程Ansys Workbench的工作流程通常包括几个基本步骤:(1)几何建模:通过Ansys的几何建模功能,用户可以创建出需要分析的结构的几何模型。

(2)加载和边界条件:在这一步骤中,用户需要为结构定义外部加载和边界条件,如施加的力、约束和材料特性等。

(3)网格生成:网格生成是有限元分析的一个关键步骤。

在这一步骤中,Ansys Workbench会将几何模型离散化为有限元网格,以便进行分析计算。

(4)材料属性和模型:用户需要为分析定义合适的材料属性,如弹性模量、泊松比等。

此外,用户还可以选择适合的分析模型,如静力学、动力学等。

(5)求解器设置:在这一步骤中,用户需要选择适当的求解器和设置求解参数,以便进行分析计算。

(6)结果后处理:在完成分析计算后,用户可以对计算结果进行后处理,如产生应力、位移和变形等结果图表。

Chapter 2: Finite Element Analysis with Ansys Workbench本章将介绍如何使用Ansys Workbench进行有限元分析。

我们将通过一个简单的示例,演示有限元分析的基本步骤和方法。

基于ANSYS Workbench的T形结构优化设计

基于ANSYS Workbench的T形结构优化设计

基于ANSYS Workbench的T形结构优化设计作者:张召颖张帆邹洵张国胜马保平来源:《计算机辅助工程》2019年第03期摘要:针对T形结构传统设计周期长、材料利用率低、设计成本高等问题,使用SolidWorks建立数字模型,将其转换成ANSYS Workbench可读的格式文件,进行拓扑优化设计。

对T形结构在载荷作用下进行最优化设计,建立以单元材料密度为设计变量,以结构最小柔顺度为目标函数,以质量减少百分比为约束函数的数学模型。

采用ANSYS Workbench的Topology Optimization模塊进行拓扑优化设计,对比优化前、后结构的应力和变形,可知运用拓扑优化技术实现T形结构的轻量化设计合理有效。

关键词:T形结构; 拓扑优化; 密度; 柔顺度; 有限元中图分类号:TH131.9; TB115.1文献标志码:BTshape structure optimization designbased on ANSYS WorkbenchZHANG Zhaoying ZHANG Fan ZOU Xun ZHANG Guosheng MA Baoping(School of Mechanical and Automotive Engineering Shanghai University of Engineering Science Shanghai 201620 China)Abstract:As to the issuesthat the design cycle ofthe traditional design of Tshape structure is long the material utilization ratio is low and the design cost is high a digital model is built using SolidWorks the model is converted to the readable format file of ANSYS Workbench and the topology optimizationdesign is performed. The optimal design of Tshape structure under load is carried out. A mathematicalmodel is built in which the unit material density is design variable the minimum structural compliance is objective function and the percentage of mass reduction is constraint function. The topology optimization design is carried out using Topology Optimization module of ANSYS Workbench. The stress and deformation of optimized structure is compared with the initial one. The results show that the lightweight design of Tshape structure using topology optimization technology is reasonable and effective.Key words:Tshape structure; topology optimization; density; compliance; finite element0;引;言结构优化设计是20世纪60年代发展起来的一门新兴学科,其将数学中的最优化理论与工程设计结合[1],运用计算机大规模处理技术,可以在众多方案中找到最优的设计方案,使结构设计使用最少的材料、采用最经济的制造方案实现结构的最佳性能。

基于ANSYS WORKBENCH的六自由度机械臂有限元分析及结构优化

基于ANSYS WORKBENCH的六自由度机械臂有限元分析及结构优化

1 六 自由度机械臂有 限元分析
1 . 1 有限元模型的建立
臂构 件 较 多且 等 效 简化 后造 型 简单 , 因此 可 以选 用Me c h a n i c a l , 网格 大 小 为 2 0 , 自动 网格 划 分 ,如 图1 所 示 ,节 点数 量 为4 7 4 4 2 ,单 元数 为2 2 8 1 2 。后
下 点 :
行 的可 靠 性 ,需 要 对 其 进 行 机 械 结 构 分 析 。近 年
来 对 机 械 结 构 的 分 析 已 经 从 结 构 静 力 学 延 伸 到 了
动 力 特 性 领 域 ,特 别 是 对 振 动 分 析 的 模 态 仿 真 已
1 )简 化 各种 连 接 ,将 齿轮 啮 合 简化 为 轴 和孔
姜振 廷 ,郑忠 才 ,董 旭
J l ANG Zh e n . t i n g,ZHENG Z h o n g . c a i , DO NG Xu
( 山东建筑大学 ,济南 2 5 0 1 0 1 )
摘 要 : 六 自由度机械臂作为机器人的 主要执 行机构 ,其机械性能决定 了工作的可靠性 。论文针对机械 臂的整体结 构进行 静力学特性和 振动特 性研究 ,基于A N S Y S WO R K B E N C H 的有 限元分析功 能 ,得到 了静 力学仿真和 模态仿 真的结果 ,并对 结果进行 了分析 ,在此基础 上对机械 臂进行 了减重优化 ,通过模态分析 ,验证 了优 化结果的可靠性。 关键 词 :机械臂 ;有限元 ;A N S Y S WO R K B E N C H
限 元分 析 。
软 件 中完 成 材 料 属性 的加 载 ,接 触 面 的 约 束 , 网
格 的 划 分 。 其 中 机 械 臂 连 接 部 分 及 夹 持 手 材 料 为 不 锈钢 , 弹性 模 量 l 9 3 G P a ,泊 松 比0 . 3 1 , 密度 7 7 5 0 k g / m。 ,其 他 部 分 等效 为硬 铝 合 金 ,弹 性模 量 7 1 GP a ,泊松 比0 . 3 3 ,密度 2 7 7 0 k g / m 。接 触面 选用 Bo n d e d 和N o S e p a r a t i o n 两种 面约 束 定义 , 由于 机械

ANSYSWorkbench优化设计技术系列讲座(一):设计探索与优化技术概述

ANSYSWorkbench优化设计技术系列讲座(一):设计探索与优化技术概述

ANSYSWorkbench优化设计技术系列讲座(一):设计探索与优化技术概述ANSYS Workbench(以下简称WB)是ANSYS公司开发的仿真应用集成工作平台,ANSYS WB环境提供了参数(Parameter)和设计点(DesignPoint)的管理功能。

集成于WB中的ANSYS DesignXplorer模块(以下简称DX)则提供了强大的设计探索及优化分析功能。

基于WB以及DX的分析结果,设计人员将能够识别影响结构性能的关键变量、确定结构的性能响应同设计变量之间的内在关系、找到满足相关约束条件下的优化设计方案。

WB提供的Parameter Set功能可以实现分析项目中所有参数的管理,参数包括输入参数、输出参数以及用户定义参数等类型。

在Parameter Set管理页面下的“Table of DesignPoints”列表则列出了一系列输入变量的不同取值和对应的输出变量的数值表,即:设计点列表。

WB中的设计点(Design Points),就是一组给定的输入参数取值及其相应的输出参数取值,设计点实际上代表了一种设计方案。

输入参数在其取值范围内变化和组合,可以有很多的设计点,这些设计点就构成成了一个设计空间。

不同设计方案可以通过参数平行轴图来描述。

利用设计点列表可以对设计点进行管理和选择更新设计点,或者选择鼠标右键菜单“Copy inputs to Current”将某个设计点复制到当前设计方案,这样就可以在计算后在后处理程序里用图形查看此设计点的各种响应。

实际上,WB的设计点功能通常是与DX功能结合使用。

集成于WB中的DX提供了更为全面的设计空间探索工具和功能,也是本章将重点介绍的内容。

DX提供的各种分析工具都是基于参数而展开,参数相关性分析用于研究哪些输入变量对输出变量影响最大,基于试验设计的设计点采样和响应面技术可以全方位地揭示输出变量关于输入变量的变化规律,目标驱动优化技术则基于各种优化方法来提供最佳备选设计方案;此外,DX还提供了用于确定输入参数的不确定性(随机性)对输出参数影响的6-sigma分析工具。

基于ANSYS workbench的汽车传动轴有限元分析和优化设计

基于ANSYS workbench的汽车传动轴有限元分析和优化设计

基于ANSYS workbench的汽车传动轴有限元分析和优化设计使用ANSYS Workbench进行汽车传动轴的有限元分析和优化设计是一种常见的方法。

以下是基于ANSYS Workbench的汽车传动轴有限元分析和优化设计的一般步骤:1.创建几何模型:使用CAD软件创建传动轴的几何模型,并将其导入到ANSYS Workbench中。

确保几何模型准确、完整,并符合设计要求。

2.网格划分:对传动轴几何模型进行网格划分,将其划分为离散的单元。

选择合适的网格划分方法和单元类型,以确保模型的准确性和计算效率。

3.材料属性定义:定义传动轴所使用的材料的力学性质,如弹性模量、泊松比、密度等。

确保选择适当的材料模型,以准确模拟材料的行为。

4.载荷和约束定义:定义施加在传动轴上的载荷,如扭矩、轴向力等。

同时,定义约束条件,如固定轴承端点、自由转动等。

5.设置分析类型和求解器:根据实际情况选择适当的分析类型,如静态、动态、模态等。

配置求解器设置,选择合适的求解器类型和参数。

6.进行有限元分析:运行有限元分析,计算传动轴的应力、变形和振动等。

根据分析结果,评估传动轴的性能和强度。

7.优化设计:根据有限元分析的结果,对传动轴的结构进行优化设计。

通过调整传动轴的几何形状、材料或其他参数,以提高其性能。

8.重新进行有限元分析:对优化后的设计进行再次有限元分析,以验证优化结果。

如果需要,可以多次进行重复优化和分析的步骤。

9.结果评估和优化验证:评估优化结果的有效性,并验证传动轴在实际工况下的性能。

根据需求进行修正和改进。

请注意,基于ANSYS Workbench的有限元分析和优化设计需要一定的专业知识和技能。

AnsysWorkbenchV14.5参数化优化操作

AnsysWorkbenchV14.5参数化优化操作

Ansys workbench流体流动与传热优化通过这种实验可是实现网格考核、结构尺寸对目标函数的影响分析、参数的敏感性分析以及工况参数对目标函数的影响分析等,找到最优的网格尺寸、结构尺寸和操作工况。

下图为典型的ANSYS workbench优化分析的示意图:其中模块与模块之间的关联可以实现交换数据。

本文采用响应面优化的方法实现流体流动与传热的模拟优化。

1.几何模型的建立一.Geometry阶段采用solidworks建立几何模型(注意本机上一定要同时有ANSYS和solidworks)。

下图为建立几何模型的过程:为了简便采用简单的模型来验证本方法。

建立一个草图圆,然后智能尺寸标注,弹出尺寸修改窗,还有尺寸设置窗口。

在这里要设置实现参数化的几何尺寸关联接口。

方法为:在尺寸设置窗口的主要指那一栏的第一个参数前面手动加上一个”DS_”,同时在模型树里面把每一步的操作名改为英文的(注意避开一些敏感字母),以下都按此操作。

然后退出草图,拉伸凸台。

这里标注第二个尺寸:拉伸长度。

鼠标指针放到拉伸特征上,这是窗口出现草图出现拉伸的尺寸,蓝色的尺寸。

然后右击该尺寸,出现尺寸设置窗口,修改主要指加上“DS_”。

至此,几何模型的创建结束,保持文档。

回到ansys workbench界面,geometry后面打上了对号,提示已经完成。

双击geometry启动DM工具。

导入刚刚创建的模型,出现导入对话框,里面有很多设置项,这里采用默认设置,点击generate按钮导入创建的几何模型。

可以看到属性里已经出现修改过的参数化尺寸。

显示两个paremeters,前面的框点击出现P表示设置成参数书尺寸了。

关闭DM,回到workbench界面。

二.Meshing阶段点击mesh启动meshing设置边界:点击geometry,然后右键选择create named selection创建边界:网格部分的控制点击mesh,在下方出现设置框。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档