材料制备方法单晶材料

合集下载

单晶材料的制备及其应用

单晶材料的制备及其应用

单晶材料的制备及其应用单晶材料是指由一个完整的晶格构成,无晶界和杂质的材料。

由于其在热处理、力学性能、光学和电学性能等方面与多晶材料不同,因此在现代材料科学和工程学中应用广泛。

一、单晶材料的制备1. 垂直凝固法这种方法是通过在平稳表面的液态金属或合金中拉出一个细长的晶芯,使晶体在顶部生长。

由于重力的作用,晶胞沿垂直方向排列成单晶。

2. 溶液法在溶液中加入溶解度高的化合物,缓慢地降低温度,使晶体在液体中生长,这种方法又称为溶液生长法。

目前最常用的是氧化铝晶体的制备方法。

3. 熔融法将材料融化后在晶体生长室中生长晶体。

例如,在加热到真空中的含有铜元素的陶瓷中放置La2CuO4粉末,待孔隙中的La2CuO4基质被熔化后,再慢慢冷却,就可以获得单晶La2CuO4。

4. 拉伸法这种方法是通过将晶体置于机械控制的拉伸装置中,在高温或室温下拉伸。

这种方法可以用于生长非常大的单晶。

5. 分离法这种方法实际上是从多晶条带中得到单晶。

通过拉伸或有机膜转移等方法把单晶从多晶中分离出来。

二、单晶材料的应用1. 光电领域在光电领域,单晶材料的应用非常广泛。

例如,单晶硅是光电子学器件的核心材料,具有优异的光电特性。

2. 半导体器件单晶材料在半导体器件制造中也非常重要。

例如,锗晶片是电子元件中的核心材料,可用于生产晶体管和光电二极管等。

3. 材料科学单晶材料还可以用于材料科学研究,如研究材料的结构和结构性质等。

4. 超导研究单晶铜氧化物是超导体研究中的重要材料。

单晶铜氧化物具有非常高的超导性能和晶格结构。

5. 生物医学领域单晶材料在生物医学领域中也有广泛的应用。

例如,用单晶硅制作出的基于光学测量和控制的生物芯片,可以应用于生物分析、药物筛选等方面。

总之,单晶材料的制备和应用是材料科学领域中的重要方向。

通过研究单晶材料的制备方法和应用,可以为现代工业和科技进步做出更大的贡献。

单晶制备方法范文

单晶制备方法范文

单晶制备方法范文单晶制备是一种重要的晶体制备方法,用于制备高纯度、大尺寸和高质量的单晶材料。

本文将介绍几种常见的单晶制备方法。

1.熔融法熔融法是制备单晶材料最常用的方法之一、该方法首先将原料粉末加入坩埚中,通过加热坩埚使其熔化。

然后,将熔融体缓慢冷却,使其中的原子或分子有足够的时间重新排列成为有序的晶体结构。

最后,通过剖析、切割或溶解等方法得到单晶。

2.水热法水热法是通过在高温高压的水环境中进行晶体生长的方法。

该方法通常使用混合溶液,将试样和溶剂一起装入高压釜中。

随着温度升高和压力增加,试样溶解,晶体逐渐从溶液中生长。

通过控制温度、压力和溶液成分,可以实现单晶的生长。

3.气相输运法气相输运法是通过在高温气氛中使试样在晶界和界面扩散的方法。

首先,将原料制成粉末,然后将粉末放入烧结体中,在高温下加热。

粉末在高温气氛中扩散,形成晶体生长的条件。

最终得到单晶。

4.化学气相沉积法化学气相沉积法是通过在合适的气氛中,使气态反应物沉积到衬底表面上形成单晶的方法。

该方法通常使用低温和大气压或低气压条件下进行。

通常先将衬底加热到合适的温度,然后通过输送反应气体,使气体中的原子或分子在衬底表面沉积,并逐渐形成单晶。

5.溶液法溶液法是通过在适当的溶剂中将试样溶解并逐渐冷却结晶得到单晶的方法。

溶解试样后,通过逐渐控制溶液的温度和溶剂挥发的速度,使溶液中的试样逐渐结晶为单晶。

溶液法适用于生长一些不易用其他方法制备的化合物单晶。

总结单晶制备方法相对复杂,需要仔细选择适合的方法和条件。

除了以上几种常见的方法外,还有其他一些专用的单晶制备方法,例如激光熔融法、分子束外延法等。

单晶制备方法的选择要考虑材料的物化性质、成本和实际需求等因素。

单晶的制备对于材料科学研究和器件制造都具有重要的意义。

单晶制备方法综述

单晶制备方法综述

单晶制备方法综述单晶制备是一种制备高质量单晶材料的方法,其单晶结构具有高度的有序性和完整度,具有优异的光学、电学和磁学性能,被广泛应用于光电子、半导体器件、光学器件等领域。

本文将综述几种常用的单晶制备方法。

一、卤素热解法卤素热解法是一种基于卤化物的单晶制备方法。

通常采用溶液法得到溶液,再通过卤素热解使其结晶得到单晶。

这种方法制备单晶材料成本低、效率高,被广泛应用。

例如,用氯化钙和硫酸钾溶液制备氯化钡单晶。

二、溶液法溶液法是一种常见的单晶制备方法,通过溶解物质使其达到过饱和状态,再缓慢降温结晶得到单晶。

这种方法适用于许多无机和有机物质的制备。

例如,用硫酸铈和硝酸铈溶液制备铈酸铈单晶。

三、气相输运法气相输运法是利用气相中的化合物在特定的温度和压力下进行热分解、制备单晶材料。

该方法适用于高熔点、低挥发度的物质。

例如,用二氧化钛和氧气气氛在高温下热分解制备二氧化钛单晶。

四、激光熔融法激光熔融法是利用激光束对材料进行局部加热,使其熔化并在快速冷却过程中形成单晶结构。

这种方法可以制备多组分复合材料和高温高压条件下的单晶材料。

例如,用激光束对熔融硅进行快速凝固制备硅单晶。

五、浸渍法浸渍法是将待制备的单晶物质放入溶液中,通过化学反应或溶液中的成分沉积形成单晶。

该方法可以制备各种复杂结构和复合材料的单晶。

例如,用溶液浸渍法制备钛氧化物纳米线单晶。

六、气相沉积法气相沉积法是通过在基底上以气相形式沉积制备单晶薄膜。

该方法具有高纯度、均匀性好和控制性较高等优点,广泛应用于薄膜材料的制备。

例如,用有机金属气相沉积法制备锗硅单晶薄膜。

七、Zone Melting法Zone Melting法是一种通过电熔和定向凝固制备单晶材料的方法。

在电熔过程中,选定的样品会被部分熔化,然后通过固体-液体界面的移动形成单晶结构。

该方法可以制备大面积的单晶材料。

例如,用Zone Melting法制备硅单晶。

综上所述,单晶制备方法种类繁多,每种方法适用于不同类型的材料和特定的应用领域。

单晶材料及其制备

单晶材料及其制备

单晶材料及其制备单晶材料是一种具有一致原子晶格排列形式的材料,即从任何一个角度观察,其内部原子排列方式都是一致。

由于其内部没有显著的晶格突变和晶界,使得单晶材料展现出许多优越的性能。

如单晶硅在微电子行业中的应用,单晶超导体在高温超导领域的应用,以及单晶铜和单晶金在纳米科学技术中的利用等制备单晶材料的方法有很多种,包括Bridgmann法,Czochralski法,气相沉积,液相外延,分子束外延等。

Bridgmann法是一种常用的单晶生长方法,适用于制备高熔点的材料。

其工艺流程通常为先将预制的多晶物料装入石英管中,并将其密封,然后将石英管放入高温炉中,并控制炉的加热,当材料达到其熔点时,再通过调整炉的冷却来使材料逐渐凝固形成单晶。

Czochralski法是制备单晶硅最常用的方法。

首先,将多晶硅放入高频感应炉中熔化,然后将一根种晶(已知晶向的单晶体)浸入熔融的硅中,接着慢慢提出并同时旋转,通过控制提拉速度和转速,可以在种晶上生长出单晶硅。

气相沉积法是通过将原料气体引入反应室,并在适当的条件下,使其在基底表面产生化学反应,从而生成薄膜的方法。

其优点是可以控制膜的成分,厚度和制备薄膜的区域。

液相外延法是一种在溶液中生长单晶的方法,其原理是通过将溶质溶解到溶剂中,然后通过降低温度或增加插入的材料,使溶质在基底表面从溶液中析出,从而形成单晶的过程。

分子束外延法是一种在超高真空条件下,通过将单元元素或化合物材料的原子或分子束射向基底表面,使其在基底上生长出单晶薄膜的方法。

该方法的优点是可以在低温度下生长出高质量的薄膜,且可以控制薄膜的厚度和乃至单层原子的厚度。

随着科学技术的发展,对单晶材料的要求和利用也在不断提高和深化,因此,对单晶材料的制备方法不断进行改进和创新,以适应不断变化和提高的需求。

如现在已经出现的脉冲激光沉积法,超临界流体沉积法等新的单晶制备方法。

不仅提高了单晶材料的制备效率,而且提高了单晶材料的质量和性能。

单晶材料的制备

单晶材料的制备
2.初始退火后,在较低温度下回复退火,以 减少晶粒数目,并帮助晶粒在后期退火时更
3.在液氮温度附近冷辊轧,然后在640℃退火10s, 并在水中淬火,得到用于再结晶的铝,此时样品 还有2mm大小晶粒和强烈的织构,再通过一温度梯 度退火,然后加热至640℃,可得到约1m长的晶体。
4.采用交替施加应变和退火的方法,可得到宽 2.5cm的高能单晶铝带,使用的应变缺乏以使新晶 粒成核,退火温度为650℃。
晶体生长的目的之一是制备成分准确,尽可能无杂质、无缺陷(包括 晶体缺陷)的单晶体。
晶体生长是一种技艺,也是一门正在迅速开展的科学。
国际上——结晶学 萌芽于17世纪 丹麦学者 晶面角守恒定律
晶体生长大局部工作是从20世纪初期才开始的 1902年 焰熔法 1905年 水热法 1917年 提拉法 1952年 Pfann 开展了区熔技术
四、烧结生长
烧结这个词通常仅用于非金属中晶粒的长大。 烧结就是加热压实的多晶体。
烧结时晶粒长大的推动力主要是由以下因素引 起的:
(1)剩余应变。 (2)取向效应。 (3)晶粒维度效应。〔即利用晶粒大小的差作为
实例:应变退火法制备铝单晶
背景
用应变退火法仔细制备的单晶缺陷较少。由于 铝的堆垛层错能和孪晶晶界能都高,应变退火 法有助于制备无孪生的晶体。取向差小的铝晶 体一般是用应变退火法制备的。
应变退火法制备铝单晶的工艺
1.先在550℃使纯度为99.6%的铝退火,以消 除应变的影响并提供大小符合要求的晶粒, 再使无应变的晶粒较细的铝变形以产生 1%~2%d 的应变,然后将温度从450℃升至 550 ℃ ,按25/d的速度退火。最后在600℃ 退火1h。〔假设初始的晶粒尺寸在0.1mm时, 效果特别好。〕
1、固—固生长方法

半导体材料与工艺之单晶半导体材料制备技术方案

半导体材料与工艺之单晶半导体材料制备技术方案

半导体材料与工艺之单晶半导体材料制备技术方案单晶半导体材料制备技术是半导体材料与工艺中的一项重要内容,对于半导体器件的性能和可靠性有着直接的影响。

单晶半导体材料可以提供高电子迁移率、较低的电阻率和优异的光学性能,因此在微电子器件制造过程中被广泛应用。

本文将介绍单晶半导体材料制备的技术方案。

1.单晶生长技术单晶生长是制备单晶半导体材料的关键步骤,目前常用的单晶生长技术包括气相传输(CZ)法、流动增长法(VGF)和外延生长法(EPI)。

其中,CZ法是最常用的单晶生长技术,通过将高纯度的多晶硅加热熔化,再通过拉晶的方式生长单晶硅材料。

VGF法和EPI法则适用于其他半导体材料的生长,如GaAs、InP等。

2.杂质控制技术杂质是影响单晶半导体材料性能的重要因素,因此需要采取一系列的杂质控制技术。

首先是原材料的高纯度要求,通常使用区别于电子级的超高纯度材料,如电镀多晶硅。

其次是在生长过程中采用高纯度的保护气体和容器,以减少杂质的进入。

同时,可以通过控制生长条件和添加适量的掺杂源来控制杂质浓度和类型。

3.单晶取样技术单晶取样是制备单晶半导体材料的重要步骤,主要用于后续的材料表征和器件加工。

常用的单晶取样技术包括悬臂切割法、钻石切割法和溶剂蒸发法等。

悬臂切割法是一种常用且成本较低的单晶取样技术,通过机械切割单晶材料得到所需的单晶样品。

钻石切割法则是使用金刚石刀具进行切割,获得更加精密的单晶样品。

4.单晶材料的表征技术单晶材料的表征是了解其物理性质和化学成分的重要手段,常用的表征技术包括X射线衍射(XRD)、扫描电子显微镜(SEM)、能谱分析(EDS)和拉曼光谱等。

XRD可以定性分析材料的晶体结构和晶格参数;SEM可以观察材料的表面形貌和粗细度;EDS可以分析材料的化学成分和杂质元素的存在;拉曼光谱可以分析材料的晶格振动信息。

综上所述,单晶半导体材料制备技术方案包括单晶生长技术、杂质控制技术、单晶取样技术和单晶材料表征技术等多个方面。

单晶制备方法综述

单晶制备方法综述

单晶制备方法综述单晶是指物质中具有高度有序排列的晶体,具有优异的物理、化学和电学性能。

单晶制备是实现高性能材料研制和工业应用的重要一环。

本文将综述几种常见的单晶制备方法。

1.液相生长法:液相生长法是最常见的单晶制备方法之一、它基于溶剂中溶解度随温度变化的规律,利用溶剂中存在过饱和度来实现晶体生长。

在溶液中加入适量的晶种或原料,通过恒温、搅拌等条件控制溶液中的过饱和度,使得晶体在液相中逐渐生长。

液相生长法具有适用范围广、成本低廉、晶体尺寸可控等优点,被广泛应用于多种单晶材料的制备。

2.熔体法:熔体法是通过将材料加热至高温使其熔化,然后再进行快速冷却来制备单晶。

熔体法适用于熔点较高的材料,如金属和铁电材料等。

具体实施时,将原料加热至熔点以上,然后迅速冷却至晶体生长温度,通过控制冷却速率和成核条件等参数,使得材料在熔体状态下形成单晶。

熔体法制备的单晶具有高纯度、低缺陷密度等特点。

3.化学气相沉积法(CVD):化学气相沉积法是将气体、液体或固体混合物送入反应器中,通过化学反应生成气体中的原子或离子,然后在合适的衬底上生长晶体。

CVD法的主要控制参数包括反应原料、反应条件和衬底选择等,通过优化这些参数可以得到高质量的晶体。

CVD法适用于制备半导体晶体、薄膜和光纤等材料。

4.硅热法:硅热法是指通过将石英管内的硅砂与待制备材料在高温下反应,生成有机金属气体,通过扩散至冷却区域后与基片上的晶种接触形成晶体。

硅热法制备的单晶一般适用于高温超导材料、稀土金属等。

5.水热法:水热法是指在高温高压的水热条件下,利用溶液中溶质的溶解度、晶种和反应物之间的反应动力学及溶质活度等热力学因素来实现晶体生长。

水热法适用于很多无机非金属单晶材料的制备,如氧化物、硅酸盐等。

水热法可以自主调控晶体形貌和尺寸等物理性能。

综上所述,单晶制备方法涵盖了液相生长法、熔体法、化学气相沉积法、硅热法和水热法等多种方法。

不同的方法适用于不同的材料,通过合理选择和控制制备条件,可以得到高质量、尺寸可控的单晶材料,应用于各个领域的研究和应用。

单晶材料及其制备

单晶材料及其制备

单晶材料及其制备单晶材料是指具有完整晶体结构的材料,其晶体结构沿特定方向没有任何界面或晶界。

单晶材料的结晶性能和物理性能优于多晶材料,因此在许多领域中有广泛应用,如电子器件、光学器件、航空航天等。

本文将介绍单晶材料的制备方法、一些常见的单晶材料及其应用。

制备单晶材料的最常用方法是晶体生长方法,主要有凝固法、浮区法、溶液法和气相法等。

凝固法是指通过控制材料的冷却速度使其从熔融态逐渐冷却成为固态。

这种方法适用于高熔点的材料,一般利用高温熔融状况下的材料来制备单晶材料。

其中,常用的方法有慢冷法、拉布拉多法、修正巨晶法等。

浮区法是通过在两个石英管之间形成液体浮区,将镁铝尖晶石单晶材料逐渐生长出来。

过程中,石英管内加入反应物,通过加热使其熔化,并在石英管之间产生上下移动的浮区,由于石英管之间温度梯度的存在,浮区中的反应物在降温的过程中逐渐结晶并生长成单晶材料。

溶液法是将所需物质溶解在溶剂中,通过控制温度和溶剂挥发速度,使溶液逐渐达到饱和状态并结晶成单晶材料。

其中,常见的溶液法包括溶液蒸发法、有机金属溶胶-凝胶法和溶剂热法等。

气相法是通过控制气体混合物在合适的条件下在衬底上生长单晶材料。

常见的气相法有气体输运法、金属有机化合物气相沉积法和气相石墨化等。

常见的单晶材料包括硅、镁铝尖晶石、硫化镉、硼化镍、石墨等。

其中,硅是最常见的单晶材料之一,广泛应用于半导体制造、光学器件等领域。

硅具有优异的光电性能和机械性能,具备较高的载流子迁移率和导热性能,被广泛应用于电子器件制造中。

此外,硫化镉是一种重要的半导体材料,具有宽的能带间隙和高的光电转换效率,被广泛应用于太阳能电池和激光器等光电器件。

在航空航天领域,单晶材料也有广泛应用。

例如,单晶高温合金被用于制造航空发动机中的叶片和涡轮叶片,因其具有高强度、耐热性和抗腐蚀性能,能够承受高温和高压工况环境。

此外,单晶超合金也被广泛应用于航空发动机的燃烧室和喷嘴等部件。

总之,单晶材料具有独特的结晶结构和优异的物理性能,在电子器件、光学器件、航空航天等领域有广泛应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料制备技术
第16页/共37页
16
在晶体生长过程中,当不存在成分过冷时,如 果在平直的固液界面上由于不稳定因素扰动产生凸 起,也会由于过热的环境将其熔化而继续保持平面 界面。
而当界面前沿存在成分过冷时,界面前沿由于不 稳定因素而形成的凸起会因为处于过冷区而发展, 平界面失稳,导致树枝晶的形成。
材料制备技术
1 单晶材料的发展与概述 2 固相-固相平衡的晶体生长 3 液相-固相平衡的晶体生长 4 常用单晶材料的制备方法
材料制备技术
第1页/共37页
1
4.1.1 晶体学的发展
天然晶体——石英
50万年以前,蓝田猿人和北京猿人使用的工具——石英 早在南北朝,陶弘景就指出它“六面如削”的形状 宋代杜绾的《云林石谱》也说“其质六棱”
第17页/共37页
17
4.熔体生长过程的特点:
• (1)通常,当一个结晶固体的温度高于熔点时,固体
就熔化为熔体;当熔体的温度低于凝固点时,熔体就 凝固成固体(往往是多晶)受控制的条件下的 定向凝固过程。
• (2)在该过程中,原子(或分子)随机堆积的阵列直
目的地利用体系的非均匀成核,可以达到特殊的效果 和作用。
材料制备技术
第15页/共37页
15
• 3. 晶体长大
温度梯度分布对晶体 生长方式的影响
在正的温度梯度下,固液界面前 沿液体几乎没有过冷,固液界面 以平面方式向前推进,即晶体以
平面方式向前生长。
在负的温度梯度下, 界面前方的液体强烈过冷, 晶体以树枝晶方式生长。
我国每三年召开一次全国人工晶体生长学术交流会,就晶体 生长理论与技术,新材料晶体的研制,进行广泛的学术交流。
材料制备技术
第6页/共37页
6
4.1.2 单晶体概述
• 单晶体的基本性质 • (1)均匀性 • (2)各向异性 • (3)自限性 • (4)对称性 • (5)最小内能和最大稳定性
材料制备技术
晶体生长的理论发展,特别是伯顿等人提出的理论,推动 了晶体理论的向前发展。
材料制备技术
第5页/共37页
5
• 我国——现代人工晶体材料的研究
开创于上世纪50年代中期
领域的研究从无到有,从零星的实验室研究发展到初具 规模的产业,进展相当迅速。
现在我国的人工水晶,人造金刚石已成为一个高技术产业。
BGO、KTP、KN、BaTiO3和各类宝石晶体均已进入国际市场 BBO、LBO、LAP等晶体也已经达到了国际水平。
李时珍引用胡演的《药丹秘诀》说:“升炼银朱,用石亭脂 二斤,新锅内熔化。次下水银一斤,炒作青砂头。炒不见 星,研末罐盛,石版盖住,铁线缚定,盐泥固济,大火锻 之,待冷取出。贴罐者为银朱,贴口者为丹砂。”
这实际上是汞和硫通过化学气相沉积而形成辰砂的过程, 称为“升炼”。
我们现在生长砷化镓一类的光电晶体,基本上还在用“升炼” 的方法,实际上这种方法在炼丹术时代就已经开始使用了。
第7页/共37页
7
4.1.3 单晶材料制备方法
• 1. 制备方法的选择
——取决于晶体物质的性质
• 2. 晶体生长类型
单组分结晶 多组分结晶
固相-固相平衡的晶体生长
• 3. 常用单晶生长方法 液相-固相平衡的晶体生长
气相-固相平衡的晶体生长
材料制备技术
第8页/共37页
8
4.2 固相—固相平衡的晶体生长
部区域偏离平衡态,出现密度涨落,这时,这个小局部区 域中的原子或分子可能一时聚集起来成为新相的原子集团 (称为胚芽)。
• 这些胚芽在另一个瞬间可能又解体成为原始态的原子或分
子。但某些满足一定条件的胚芽可能成为晶体生长的核心。 如果这时有相变驱动力的作用,这些胚芽可以发展成为新 的相核,进而生长成为晶体。
接转变为有序阵列,这种从无对称结构到有对称性结 构的转变不是一个整体效应,而是通过固一液界面的 移动而逐渐完成的。
10
• 从熔体中生长单晶的最大优点在于:
熔体生长速率大多快于溶液生长、晶体的纯度 和完整性高
材料制备技术
第11页/共37页
11
4.3.1 基本理论
• 1. 晶体生长驱动力——过冷度
冷却速度↑,过冷度↑,晶体生长速度↑ 冷却速度↓,过冷度↓,晶体生长速度↓
材料制备技术
第12页/共37页
12
• 2. 形核理论
• 晶核的形成存在一个临界半径,当晶核半径小于此半径时,
晶核趋于消失,只有当其半径大于此半径时,晶核才稳定 地长大。
材料制备技术
第14页/共37页
14
非均匀成核:
• 所谓非均匀成核,是指体系在外来质点,容器壁或原
有晶体表面上形成的核。在此类体系中,成核几率在 空间各点不同。
• 自然界中的雨雪冰雹等的形成都属于非均匀成核。 • 实际上,在所有物质体系中都会发生非均匀成核。有
• 优点:生长温度低;

晶体形状可预先固定。
• 缺点:难以控制成核以形成大晶粒。
材料制备技术
第9页/共37页
9
4.3 液相-固相平衡的晶体生长
• 4.3.1 基本理论 • 4.3.2 定向凝固技术 • 4.3.3 提拉法 • 4.3.4 泡生法 • 4.3.5 区域熔化技术
材料制备技术
第10页/共37页
材料制备技术
第2页/共37页
2
人造晶体出现也很早——食盐
《演繁露》中记载有:“盐已成卤水,暴烈日中,即成方印, 洁白可爱,初小渐大,或数十印累累相连。” 这实际上就是从过饱和溶液中生长晶体的方法。 《演繁露》为宋代程大昌所撰,成书于1000多年以前。
材料制备技术
第3页/共37页
3
• 银朱——人造辰砂的制造
➢ 晶体生长可以分为成核和长大两个阶段。成核过程主要考虑
热力学条件。长大过程则主要考虑动力学条件。
➢ 在晶体生长过程中,新相核的发生和长大称为成核过程。成
核过程可分为均匀成核和非均匀成核。
材料制备技术
第13页/共37页
13
均匀成核:
• 所谓的均匀成核,是指在一个热力学体系内,各处的成核
几率相等。
• 由于热力学体系的涨落现象,在某个瞬间,体系中某个局
材料制备技术
第4页/共37页
4
• 国际上——结晶学 萌芽于17世纪
丹麦学者 晶面角守恒定律
晶体生长大部分工作室从20世纪初期才开始的 1902年 焰熔法 1905年 水热法 1917年 提拉法 1952年 Pfann 发展了区熔技术
1949年,英国法拉第学会举行了第一次关于晶体生长的 国际讨论会,为以后晶体生长的理论奠定了基础。
相关文档
最新文档