RBF神经网络剖析

合集下载

神经网络及BP与RBF比较

神经网络及BP与RBF比较

一、神经网络概述1.简介人工神经网络是模仿脑细胞结构和功能、脑神经结构以及思维处理问题等脑功能的信息处系统,它从模仿人脑智能的角度出发,探寻新的信息表示、存储和处理方式,这种神经网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的,它采用了与传统人工智能和信息处理技术完全不同的机理,克服了传统的基于逻辑符号的人工智能在处理直觉、非结有针对性化信息方面的缺陷,具有自适应、自组织和实时学习的特点,它通过预先提供的一批相互对应的输入和输出数据,分析掌握两者之间潜在的规律,最终根据这些规律,用新的输入数据来推算输出结果。

人工神经网络(ANN)学习对于训练数据中的错误健壮性很好,且已被成功地应用到很多领域,例如视觉场景分析、语音识别、机器人控制以及医学图像处理等。

人工神经网络2.人工神经网络的特点及功能人工神经网络具有以下几个突出的优点:(1)能充分逼近复杂的非线性关系。

只有当神经元对所有输入信号的综合处理结果超过某一个限值后才能输出一个信号。

(2)所有定量或定性的信息都等势分布贮存于网络内的各神经元,每个神经元及其连线只能表示一部分信息,因此当有节点断裂时也不影响总体运行效果,具有很强的鲁棒性和容错能力。

(3)采用并行分布处理方法,使得快速进行大量运算成为可能。

(4)可学习和自适应不知道或不确定的系统。

人工神经网络的特点和优越性,使其具有以下三个显著的功能:(1)具有自学习功能:这种功能在图像识别和处理以及未来预测方面表现得尤为明显。

自学习功能在未来预测方面也意义重大,随着人工神经网络的发展,未来它将在更多的领域,比如经济预测、市场预测、效益预测等等,发挥更好的作用。

(2)具有联想存储功能:人的大脑能够对一些相关的知识进行归类划分,进而具有联想的功能,当我们遇到一个人或者一件事情的时候,跟此人或者此事相关的一些信息会浮现在你的脑海,而人工神经网络则通过它的反馈网络,实现一些相关事物的联想。

绝对经典RBF神经网络

绝对经典RBF神经网络
输出函数线性中包含阈值参数, 用于赔偿基函数在样本集上
平均值与目标值之平均值之间差异。
第6页
函数迫近问题(内插值)
普通函数都可表示成一组基函数线性组合,
RBF网络相当于用隐层单元输出组成一组基函数,
然后用输出层来进行线性组合,以完成迫近功效。
①给定样本数据
P {p1, p2 pi pQ},
②寻找函数,使其满足:ti F ( pi )
各隐节点扩展常数。因为RBF网隐节点数对其泛化能力有
极大影响,所以寻找能确定聚类数目标合理方法,是聚类
方法设计RBF网时需首先处理问题。除聚类算法外,还有
绝对经典RBF神经网络 梯度训练方法、资源分配网络(RAN)等
第16页
一. 自组织中心选取法
1989年,Moody和Darken提出了一个由两个阶段组成混合 学习过程思绪。
Cover定理能够定性地表述为:将复杂模式分类问题非线 性地投射到高维空间将比投射到低维空间更可能是线性可 分
空间转换
低维空间:线性不可分
高维空间:线性可分
绝对经典RBF神经网络
第12页
举例:逻辑运算异或分类
X1 X2
空间变换前
绝对经典RBF神经网络
Φ1(x)
w11
Φ2(x)
w11
Output y
j 1
设第j 个隐节点在第i个样本输出为: ij G( pi p j )
可矩阵表示:W T,若R可逆,则解为 W 1T 依据Micchelli定理可得,假如隐节点激活函数采取
径向基函数,且p1, p2 ,..., pQ 各不相同,则线性方程组
有唯一解。 Q RBF网络输出 F( pi ) wj( pi cj )
% 每一层神经元权值和阈值都与径向基函数位置和宽度相关系,输出层线性神经元将这些径 向基函数权值相加。假如隐含层神经元数目足够,每一层权值和阈值正确,那么径向基函 数网络就完全能够准确迫近任意函数。

RBF神经网络概述

RBF神经网络概述

RBF神经网络概述1 RBF神经网络的基本原理2 RBF神经网络的网络结构3 RBF神经网络的优点1 RBF神经网络的基本原理人工神经网络以其独特的信息处理能力在许多领域得到了成功的应用。

它不仅具有强大的非线性映射能力,而且具有自适应、自学习和容错性等,能够从大量的历史数据中进行聚类和学习,进而找到某些行为变化的规律。

径向基函数(RBF)神经网络是一种新颖有效的前馈式神经网络,它具有最佳逼近和全局最优的性能,同时训练方法快速易行,不存在局部最优问题,这些优点使得RBF网络在非线性时间序列预测中得到了广泛的应用。

1985年,Powell提出了多变量插值的径向基函数(Radial-Basis Function, RBF)方法。

1988年,Broomhead和Lowe首先将RBF应用于神经网络设计,构成了径向基函数神经网络,即RBF神经网络。

用径向基函数(RBF)作为隐单元的“基”构成隐含层空间,对输入矢量进行一次变换,将低维的模式输入数据变换到高维空间内,通过对隐单元输出的加权求和得到输出,这就是RBF网络的基本思想。

2 RBF神经网络的网络结构RBF网络是一种三层前向网络:第一层为输入层,由信号源节点组成。

第二层为隐含层,隐单元的变换函数是一种局部分布的非负非线性函数,他对中心点径向对称且衰减。

隐含层的单元数由所描述问题的需要确定。

第三层为输出层,网络的输出是隐单元输出的线性加权。

RBF网络的输入空间到隐含层空间的变换是非线性的,而从隐含层空间到输出层空间的变换是线性。

不失一般性,假定输出层只有一个隐单元,令网络的训练样本对为,其中为训练样本的输入,为训练样本的期望输出,对应的实际输出为;基函数为第个隐单元的输出为基函数的中心;为第个隐单元与输出单元之间的权值。

单输出的RBF网络的拓扑图如图1所示:图1RBF网络的拓扑图当网络输入训练样本时,网络的实际输出为:(1)通常使用的RBF有:高斯函数、多二次函数(multiquadric function)、逆多二次函数、薄板样条函数等。

径向基函数(RBF)神经网络

径向基函数(RBF)神经网络

径向基函数(RBF)神经⽹络RBF⽹络能够逼近任意的⾮线性函数,可以处理系统内的难以解析的规律性,具有良好的泛化能⼒,并有很快的学习收敛速度,已成功应⽤于⾮线性函数逼近、时间序列分析、数据分类、模式识别、信息处理、图像处理、系统建模、控制和故障诊断等。

简单说明⼀下为什么RBF⽹络学习收敛得⽐较快。

当⽹络的⼀个或多个可调参数(权值或阈值)对任何⼀个输出都有影响时,这样的⽹络称为全局逼近⽹络。

由于对于每次输⼊,⽹络上的每⼀个权值都要调整,从⽽导致全局逼近⽹络的学习速度很慢。

BP⽹络就是⼀个典型的例⼦。

如果对于输⼊空间的某个局部区域只有少数⼏个连接权值影响输出,则该⽹络称为局部逼近⽹络。

常见的局部逼近⽹络有RBF⽹络、⼩脑模型(CMAC)⽹络、B样条⽹络等。

径向基函数解决插值问题完全内插法要求插值函数经过每个样本点,即。

样本点总共有P个。

RBF的⽅法是要选择P个基函数,每个基函数对应⼀个训练数据,各基函数形式为,由于距离是径向同性的,因此称为径向基函数。

||X-X p||表⽰差向量的模,或者叫2范数。

基于为径向基函数的插值函数为:输⼊X是个m维的向量,样本容量为P,P>m。

可以看到输⼊数据点X p是径向基函数φp的中⼼。

隐藏层的作⽤是把向量从低维m映射到⾼维P,低维线性不可分的情况到⾼维就线性可分了。

将插值条件代⼊:写成向量的形式为,显然Φ是个规模这P对称矩阵,且与X的维度⽆关,当Φ可逆时,有。

对于⼀⼤类函数,当输⼊的X各不相同时,Φ就是可逆的。

下⾯的⼏个函数就属于这“⼀⼤类”函数:1)Gauss(⾼斯)函数2)Reflected Sigmoidal(反常S型)函数3)Inverse multiquadrics(拟多⼆次)函数σ称为径向基函数的扩展常数,它反应了函数图像的宽度,σ越⼩,宽度越窄,函数越具有选择性。

完全内插存在⼀些问题:1)插值曲⾯必须经过所有样本点,当样本中包含噪声时,神经⽹络将拟合出⼀个错误的曲⾯,从⽽使泛化能⼒下降。

实验四、RBF神经网络实验报告

实验四、RBF神经网络实验报告
简单说明一下为什么RBF网络学习收敛得比较快。当网络的一个或多个可调参数(权值或阈值)对任何一个输出都有影响时,这样的网络称为全局逼近网络。由于对于每次输入,网络上的每一个权值都要调整,从而导致全局逼近网络的学习速度很慢。BP网络就是一个典型的例子。
如果对于输入空间的某个局部区域只有少数几个连接权值影响输出,则该网络称为局部逼近网络。常见的局部逼近网络有RBF网络、小脑模型(CMAC)网络、B样条网络等。
广义RBF网络
Cover定理指出:将复杂的模式分类问题非线性地映射到高维空间将比投影到低维空间更可能线性可分。
广义RBF网络:从输入层到隐藏层相当于是把低维空间的数据映射到高维空间,输入层细胞个数为样本的维度,所以隐藏层细胞个数一定要比输入层细胞个数多。从隐藏层到输出层是对高维空间的数据进行线性分类的过程,可以采用单层感知器常用的那些学习规则,参见神经网络基础和感知器。
寻找逼近函数F(x)通过最小化下面的目标函数来实现:
加式的第一项好理解,这是均方误差,寻找最优的逼近函数,自然要使均方误差最小。第二项是用来控制逼近函数光滑程度的,称为正则化项,λ是正则化参数,D是一个线性微分算子,代表了对F(x)的先验知识。曲率过大(光滑度过低)的F(x)通常具有较大的||DF||值,因此将受到较大的惩罚。
3)Inverse multiquadrics(拟多二次)函数
σ称为径向基函数的扩展常数,它反应了函数图像的宽度,σ越小,宽度越窄,函数越具有选择性。
完全内插存在一些问题:
1)插值曲面必须经过所有样本点,当样本中包含噪声时,神经网络将拟合出一个错误的曲面,从而使泛化能力下降。K,K<P,从样本中选取K个(假设不包含噪声)作为Φ函数的中心。
隐藏层的作用是把向量从低维m映射到高维P,低维线性不可分的情况到高维就线性可分了。

rbf神经网络原理

rbf神经网络原理

rbf神经网络原理RBF(RadialBasisFunction)神经网络是一种广泛应用的人工神经网络,它以其准确性和高精度被广泛应用于多种领域,其中有建模预测、模式识别和控制系统等。

本文首先介绍了RBF神经网络的基本原理,然后介绍了其优势及模式识别应用,最后重点介绍了其在控制系统研究中的应用。

RBF神经网络的原理是在一个给定的期望输出集合中,通过学习总结出一组带有可调整参数的基函数分布,以此来进行近似。

它的本质是一个二次形式的最小二乘函数:E(w)=∑i{p[i]-yd[i]^2}+∑jε{wj*hj(x)}其中p[i]是第i个观测点的期望输出,hj(x)是第j个基函数,wj是它的参数,yd[i]是第i个点的实际输出值。

基函数通常用高斯函数形式,其参数会在学习过程中不断调整,使得建模能够准确拟合实际数据。

RBF神经网络的优势在于其具有可解释性、快速学习速度、无局部极小点和可扩展性等特点,即其可以有效解决复杂的系统建模和控制问题。

在模式识别方面,由于RBF神经网络具有很高的识别精度,它被广泛用于语音识别、图像分类等复杂任务。

例如,一些研究者使用RBF神经网络来识别人脸图像,以及基于光学字符识别的文本翻译系统,其准确率高达99%。

另外,RBF神经网络也被广泛用于控制系统领域,其中包括机器人控制、动力系统控制及非线性系统的鲁棒控制和稳定控制等。

例如,研究者使用RBF神经网络设计了一种可用于机器人末端重力补偿的非线性控制器,提高了机器人对负载变化的响应效果。

总而言之,RBF神经网络具有可解释性、快速学习速度、无局部极小点和可扩展性等优势,广泛应用于各种领域,如模式识别、控制系统设计等。

通过RBF神经网络可以更好地解决复杂的实际问题,具有极大的应用价值。

RBF神经网络和BF神经网络优缺点

RBF神经网络和BF神经网络优缺点

1.RBF 的泛化能力在多个方面都优于BP 网络, 但是在解决具有相同精度要求的问题时, BP 网络的结构要比RBF 网络简单。

??2.RBF 网络的逼近精度要明显高于BP 网络,它几乎能实现完全逼近, 而且设计起来极其方便, 网络可以自动增加神经元直到满足精度要求为止。

但是在训练样本增多时,RBF 网络的隐层神经元数远远高于前者, 使得RBF 网络的复杂度大增加, 结构过于庞大, 从而运算量也有所增加。

??3.RBF神经网络是一种性能优良的前馈型神经网络,RBF网络可以任意精度逼近任意的非线性函数,且具有全局逼近能力,从根本上解决了BP网络的局部最优问题,而且拓扑结构紧凑,结构参数可实现分离学习,收敛速度快。

4.他们的结构是完全不一样的。

BP是通过不断的调整神经元的权值来逼近最小误差的。

其方法一般是梯度下降。

RBF是一种前馈型的神经网络,也就是说他不是通过不停的调整权值来逼近最小误差的,的激励函数是一般是高斯函数和BP的S型函数不一样,高斯函数是通过对输入与函数中心点的距离来算权重的。

5.bp神经网络学习速率是固定的,因此网络的收敛速度慢,需要较长的训练时间。

对于一些复杂问题,BP算法需要的训练时间可能非常长,这主要是由于学习速率太小造成的。

而rbf神经网络是种高效的前馈式网络,它具有其他前向网络所不具有的最佳逼近性能和全局最优特性,并且结构简单,训练速度快。

6. BP网络用于函数逼近时,权值的调节采用的是负梯度下降法,这种调节权值的方法有它的局限性,既存在着收敛速度慢和局部极小等缺点。

而径向基神经网络在逼近能力、分类能力和学习速度等方面均优于BO网络。

从理论上,RBF网络和BP网络一样可近似任何的连续非线形函数,两者的主要差别在于各使用不同的作用函数,BP网络中的隐层节点使用的是Sigmoid函数,其函数值在输入空间中无限大的范围内为非零值,而RBF网络的作用函数则是局部的。

7. RBF神经网络与BP神经网络的比较RBF神经网络与BP神经网络都是非线性多层前向网络,它们都是通用逼近器。

RBF神经网络

RBF神经网络

的权向量为:W = [w , w
1
b j为节点的基宽度参数 , 且为大于零的数 。 网络 为节点的基宽度参数, 且为大于零的数。
2
⋯wj ⋯wm ]
k时刻网络的输出为: 时刻网络的输出为:
y m ( k )=wh = w1h1+w 2 h2+ ⋯⋯ +w m hm
设理想输出为y(k), 设理想输出为y(k),则性能指标函数为:
∂y (k ) ∂ym (k ) ≈ = ∂u (k ) ∂u (k )
m
∑w h
j =1
c1 j − x1 b2 j
j j
其中取 x1 = u(k) 。
6 RBF网络逼近仿真实例 RBF网络逼近仿真实例
使用RBF网络逼近下列对象:
y (k ) = u (k ) +
3
y ( k − 1) 1 + y ( k − 1)
Ii
wij
I
j
I1
. . .
R1
. . .
. .u .
u ..
R
j
. . .
1
1
.
V1
C1
. . .
j
j
.
Vj
.
u ..
Cj
i
i
.V
i
Ri
.
Ci
Hopfield网络模型 Hopfield网络模型
RBF神经网络 RBF神经网络
信息工程学院 Alen Fielding
1 RBF神经网络 RBF神经网络
径向基函数(RBF径向基函数(RBF-Radial Basis Function)神经网络 Function)神经网络 是由J Moody和 Darken在80年代末提出的一种神经 是由J.Moody和C.Darken在80年代末提出的一种神经 网络,它是具有单隐层的三层前馈网络。 网络,它是具有单隐层的三层前馈网络。由于它模拟 了人脑中局部调整、相互覆盖接收域(或称感受野了人脑中局部调整、相互覆盖接收域(或称感受野Receptive Field)的神经网络结构,因此,RBF网络 Field)的神经网络结构,因此,RBF网络 是一种局部逼近网络, 是一种局部逼近网络 , 它能够以任意精度逼近任意 连续函数,特别适合于解决分类问题。 连续函数,特别适合于解决分类问题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
RBF(径向基)神经网络
Keynote: 尤志强
1、RBF函数是为了解决多变量插值问题 2、RBF神经网络是为了解决非线性可分模式分类问 题
为什么要引入RBF神经网 络?
优点
① 它具有唯一最佳逼近的特性,且无BP算法中存在的局部极小问题。 ②RBF神经网络具有较强的输入和输出映射功能,并且理论证明在前向 网络中RBF网络是完成映射功能的最优网络。 ③ 网络连接权值与输出呈线性关系。 ④ 分类能力好。 ⑤ 学习过程收敛速度快。
x 1
2
R1 ( x ) e
e
1
0.3679
0.1353
0
1
x1
0
0.3679
1
R(x1)
空间变换前
空间变换后
RBF神经网络的插值问题
RBF神经网络是基于RBF函数,RBF函数是解决多变量插值问题
首先了解下什么是插值问题?
插值问题
在工程技术上,给出一批离散的点,要求作出一条通过这些点的光滑曲线,以满足设计 和加工的需要。反映在数学上,即已知函数在一些点的值,寻求它的分析表达式。
可以将映射S看成一个超曲面
这样,该插值问题可以描述如下: 给定一个包含N个不同点的集合 ,寻找一个函数F: F(Xi)=di, i=1,2,…..N
和相应的N个实数的一个集合 满足下述插值条件:
RBF中的插值问题
径向基函数技术就是要选择一个函数F具有下列形式:
其中
RBF中的插值问题
那么综合以上的公式,我们可以得到在径向基网络(输入参数有N个,隐藏层有N个 节点,输出层有一个节点)中我们可以得到以下的线性方程: 向量d表示期望响应向量, w表示线性权值向量,N 是训练样本的长度 用������表示左边 那么该式就可以转换为: ������w=x 这里的������必须为非奇异矩阵, 因此存在。这样就可以解出 权值向量w,表示为: W=x
X1 X2
输入

R2(X)
径向基神经元
x 1
2
y
输出 x1 1 0 0 1 x2 0 1 0 1
1 0 0 1
R1 ( x ) e
1 1 1 0 2 0
R2 ( x ) e
x 2
2
x2 1
R(x2) 1
x 1
2
( x1 1)2 ( x2 1)2 1
假设模式x是m0维输入空间的一个向量,则向量
Cover理论在RBF网络中应用
一个关于 的二分{1,2}是可分的。那么存在一个m1维的向量w使得可以得到如下公 式(Cover ,1965):
那么所获得的超平面的逆像就是:
Байду номын сангаас
总结:模式可分性的cover定理
1、由 2、高维数的隐藏空间,这里的高维数是相对于输入空间而言的。维数由赋给m1的值 (即隐藏单元的个数)决定。 3、理论证明(Nilsson,1965)证明:隐藏空间的维数m1越高,则二分概率越趋向于1
RBF中的插值问题
这里有个关键问题:怎么能保证插值矩阵������是非奇异的? 涉及到Micchelli定理(1986): 如果 是中N个互不相同的点的集合,则N X N阶的插值矩阵������是 非奇异的。
与BP神经网络的比较
Poggio和Girosi已经证明: RBF网络是连续函数的最佳逼近,而BP网络不是。 BP网络使用的Sigmoid函数具有全局特性,它在输入值的很大范围内 每个节点都对输出值产生影响,并且激励函数在输入值的很大范围 内相互重叠,因而相互影响,因此BP网络训练过程很长。 BP网络容易陷入局部极小的问题不可能从根本上避免 BP网络隐层节点数目的确定依赖于经验和试凑,很难得到最优网络。 RBF不仅有良好的泛化能力,而且对于每个输入值,只有很少几个 节点具有非零激励值,因此只需很少部分节点及权值改变。 学习速度可以比通常的BP算法提高上千倍,容易适应新数据
RBF神经网络结构
这个网络,实现从输入空间到隐藏 空间的一个非线性映射,随后从隐 藏空间到输出空间是线性映射。
RBF中的插值问题
在RBF中是如何通过插值方法进行网路的训练呢? 首先假设我们有N个m0维向量,那么我们就确定了输入层节点有 m0 个。相当于一个从m0维输入空间到一维输出空间的映射,可以写成 如下形式:
Cover理论
定义:假设空间不是稠密分布的,将复杂的模式分类问题非线性地投射到高维空 间将比投射到低微空间更可能是线性可分的。
x=0
Cover理论在RBF网络中应用
考虑一族曲面,每一个曲面都自然地将输入空间分成两个区域。 用代表N个模式(向量)x1,x2,……xN的集合,其中每一个模式都 分属于两个类1和2中的一类。如果在这一族曲面中存在一个曲面 能够将分别属于1和2的这些点分成两部分,我们就称这些点事二 分(二元划分)关于这族曲面是可分的。对于每一个模式x ,定 义一个由一组实值函数{ⱷ i(x)| i=1,2,…..m1}组成的向量,表示如下:
RBF神经网络是怎样的?
RBF神经网络概念
1、1985年,Powell提出了多变量插值的径向基函数(Radical Basis Function,RBF)方法 2、1988年, Moody和Darken提出了一种神经网络结构,即RBF神经 网络 3、RBF网络是一种三层前向网络 4、基于“Cover理论” 5、用RBF作为隐单元的“基”构成隐含层空间,将输入矢量直接(即 不需要通过权连接)映射到隐空间 ; 当RBF的中心点确定后,映射关系也就确定; 隐含层空间到输出空间的映射是线性的 通过最小二乘估计来解给定的分类问题。
y Y(x)
P(x)=? y2
x2 xi
y0 o x0 x1
y1
yi
yn
xn n
插值问题
一是在选定近似函数H(x)后,不要求它们通过已知样点,只要求 在某种意义下它在这些样点的总偏差最小----曲线拟合法。
二是给出函数f(x)的一些样点值,选定某些便于计算的函数,要求它们 通过已知样点,由此确定函数H(x)为f(x)的近似值----插值法;
注意:虽然说将一个复杂的模式分类问题非线性地投射到高维数空间将会比投射到低维 数空间更可能线性可分。不过有时非线性映射就足够导致线性可分,而不必升高隐藏单 元空间维数
XOR问题
XOR问题
R1(X)
x1 x2 0 1 0 1 R1(X) 0.3679 0.3679 0.1353 1 y 0 0 0 1 R2(X) 0.3679 0.3679 1 0.1353
相关文档
最新文档