2020高考数学专题复习----立体几何专题

合集下载

2020年高考数学一轮复习:立体几何

2020年高考数学一轮复习:立体几何

2020年高考数学一轮复习——立体几何1.如图,AC 是圆O 的直径,点B 在圆O 上,∠BAC =30°,BM ⊥AC ,垂足为M .EA ⊥平面ABC ,CF ∥AE ,AE =3,AC =4,CF =1.(1)证明:BF ⊥EM ;(2)求平面BEF 与平面ABC 所成锐二面角的余弦值. 解:(1)证明:∵EA ⊥平面ABC ,∴BM ⊥EA , 又BM ⊥AC ,AC ∩EA =A ,∴BM ⊥平面ACFE , ∴BM ⊥EM .①在Rt △ABC 中,AC =4,∠BAC =30°,∴AB =23,BC =2, 又BM ⊥AC ,则AM =3,BM =3,CM =1.∵FM =MC 2+FC 2=2,EM =AE 2+AM 2=32, EF =42+(3-1)2=25,∴FM 2+EM 2=EF 2,∴EM ⊥FM . ② 又FM ∩BM =M ,③∴由①②③得EM ⊥平面BMF ,∴EM ⊥BF .(2)如图,以A 为坐标原点,过点A 垂直于AC 的直线为x 轴,AC ,AE 所在的直线分别为y 轴,z 轴建立空间直角坐标系.由已知条件得A (0,0,0),E (0,0,3),B (3,3,0),F (0,4,1), ∴BE ―→=(-3,-3,3),BF ―→=(-3,1,1). 设平面BEF 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·BE ―→=0,n ·BF ―→=0,得⎩⎨⎧-3x -3y +3z =0,-3x +y +z =0,令x =3,得y =1,z =2,∴平面BEF 的一个法向量为n =(3,1,2). ∵EA ⊥平面ABC ,∴取平面ABC 的一个法向量为AE ―→=(0,0,3). 设平面BEF 与平面ABC 所成的锐二面角为θ, 则cos θ=|cos 〈n ,AE ―→〉|=622×3=22.故平面BEF 与平面ABC 所成的锐二面角的余弦值为22.2.如图所示,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,PA =2,∠ABC =90°,AB =3,BC =1,AD =23,∠ACD =60°,E 为CD 的中点.(1)求证:BC ∥平面PAE ;(2)求直线PD 与平面PBC 所成角的正弦值. 解:(1)证明:∵AB =3,BC =1,∠ABC =90°, ∴AC =2,∠BCA =60°.在△ACD 中,∵AD =23,AC =2,∠ACD =60°, ∴由余弦定理可得:AD 2=AC 2+CD 2-2AC ·CD ·cos ∠ACD ,∴CD =4, ∴AC 2+AD 2=CD 2,∴△ACD 是直角三角形. 又E 为CD 的中点,∴AE =12CD =CE =2,又∠ACD =60°,∴△ACE 是等边三角形, ∴∠CAE =60°=∠BCA ,∴BC ∥AE . 又AE ⊂平面PAE ,BC ⊄平面PAE , ∴BC ∥平面PAE .(2)由(1)可知∠BAE =90°,以点A 为坐标原点,以AB ,AE ,AP 分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,则P (0,0,2),B (3,0,0),C (3,1,0),D (-3,3,0),∴PB ―→=(3,0,-2),PC ―→=(3,1,-2),PD ―→=(-3,3,-2).设n =(x ,y ,z )为平面PBC 的法向量, 则⎩⎪⎨⎪⎧n ·PB ―→=0,n ·PC ―→=0,即⎩⎨⎧3x -2z =0,3x +y -2z =0,取x =1,则y =0,z =32,n =⎝⎛⎭⎫1,0,32,∴cos 〈n ,PD ―→〉=n ·PD ―→|n |·|PD ―→|=-2374·16=-217, ∴直线PD 与平面PBC 所成角的正弦值为217.3.如图,在四棱锥S -ABCD 中,AB ∥CD ,BC ⊥CD ,侧面SAB为等边三角形,AB =BC =2,CD =SD =1.(1)证明:SD ⊥平面SAB ;(2)求AB 与平面SBC 所成角的正弦值.解:(1)证明:以C 为坐标原点,射线CD 为x 轴正半轴建立如图所示的空间直角坐标系C -xyz ,则D (1,0,0),A (2,2,0),B (0,2,0).设S (x ,y ,z ),显然x >0,y >0,z >0,则AS ―→=(x -2,y -2,z ),BS ―→=(x ,y -2,z ),DS ―→=(x -1,y ,z ).由|AS ―→|=|BS ―→|,得 (x -2)2+(y -2)2+z 2=x 2+(y -2)2+z 2,解得x =1.由|DS ―→|=1,得y 2+z 2=1. ① 由|BS ―→|=2,得y 2+z 2-4y +1=0.②由①②,解得y =12,z =32.∴S ⎝⎛⎭⎫1,12,32,AS ―→=⎝⎛⎭⎫-1,-32,32,BS ―→=⎝⎛⎭⎫1,-32,32,DS ―→=⎝⎛⎭⎫0,12,32, ∴DS ―→·AS ―→=0,DS ―→·BS ―→=0,∴DS ⊥AS ,DS ⊥BS , 又AS ∩BS =S ,∴SD ⊥平面SAB .(2)设平面SBC 的法向量为n =(x 1,y 1,z 1), 则n ⊥BS ―→,n ⊥CB ―→,∴n ·BS ―→=0,n ·CB ―→=0. 又BS ―→=⎝⎛⎭⎫1,-32,32,CB ―→=(0,2,0),∴⎩⎪⎨⎪⎧x 1-32y 1+32z 1=0,2y 1=0,取z 1=2,得n =(-3,0,2). ∵AB ―→=(-2,0,0),∴cos 〈AB ―→,n 〉=AB ―→·n | AB ―→||n |=-2×(-3)2×7=217. 故AB 与平面SBC 所成角的正弦值为217.4.(2018·诸暨高三适应性考试)如图,四棱锥P-ABCD中,平面PAD⊥平面ABCD,△PAD是边长为2的等边三角形,底面ABCD是直角梯形,∠BAD=∠CDA=90°,AB=2DC=22,E是CD的中点.(1)求证:AE⊥PB;(2)设F是棱PB上的点,EF∥平面PAD,求EF与平面PAB所成角的正弦值.解:(1)证明:取AD的中点G,连接PG,BG,∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PG⊥AD,∴PG⊥平面ABCD,∵AE⊂平面ABCD,∴AE⊥PG.又∵tan∠DAE=tan∠ABG=2 4,∴∠ABG+∠EAB=∠DAE+∠EAB=∠DAB=90°,∴AE⊥BG.∵BG∩PG=G,BG⊂平面PBG,PG⊂平面PBG,∴AE⊥平面PBG,∴AE⊥PB.(2)法一:作FH∥AB交PA于H,连接DH,则HF∥DC. ∵EF∥平面PAD,平面FHDE∩平面PAD=DH,∴EF∥DH,∴四边形FHDE为平行四边形,∴HF=DE.易知DC∥AB,DC=12AB,∴HF=14AB,即H为PA的一个四等分点.取PA的中点K,连接DK,则DK⊥PA.∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,AB⊥AD,∴AB⊥平面PAD.∵DK⊂平面PAD,∴AB⊥DK,∵PA∩AB=A,∴DK⊥平面PAB.∴∠DHK为EF与平面PAB所成的角,由已知得DK=3,DH=DK2+HK2=13 2,∴sin ∠DHK =DK DH =3132=23913, ∴EF 与平面PAB 所成角的正弦值为23913.法二:以A 为坐标原点,AB ,AD 所在直线为x 轴,y 轴建立如图所示的空间直角坐标系.则A (0,0,0),B (22,0,0),P (0,1,3),E⎝⎛⎭⎫22,2,0,PB ―→=(22,-1,-3),EP ―→=⎝⎛⎭⎫-22,-1,3.设PF ―→=λPB ―→,则EF ―→=EP ―→+λPB ―→=⎝⎛⎭⎫22λ-22,-1-λ,3-3λ.由(1)知PG ⊥平面ABCD ,∴PG ⊥AB . ∵AD ⊥AB ,PG ⊥AD =G , ∴AB ⊥平面PAD ,∴AB ―→=(22,0,0)为平面PAD 的一个法向量. ∵EF ∥平面PAD ,∴EF ―→·AB ―→=22×⎝⎛⎭⎫22λ-22=0,解得λ=14. ∴EF ―→=⎝⎛⎭⎫0,-54,334.设平面PAB 的一个法向量为n =(x ,y ,z ), 又AB ―→=(22,0,0),PB ―→=(22,-1,-3), 则⎩⎪⎨⎪⎧n ·AB ―→=0,n ·PB ―→=0,即⎩⎨⎧22x =0,22x -y -3z =0,取y =3,得z =-1,∴n =(0,3,-1). ∴|cos 〈n ,EF ―→〉|=⎪⎪⎪⎪-534-3342×132=23913,∴EF 与平面PAB 所成角的正弦值为23913.5.(2019届高三·镇海中学检测)如图,在三棱柱ABC -A 1B 1C 1中,平面A 1ACC 1⊥平面ABC ,AB =BC =2,∠ACB =30°,∠C 1CB =60°,BC 1⊥A 1C ,E 为AC 的中点,CC 1=2.(1)求证:A 1C ⊥平面C 1EB ;(2)求直线CC 1与平面ABC 所成角的余弦值. 解:(1)证明:因为AB =BC =2,E 为AC 的中点, 所以AC ⊥BE .又因为平面A 1ACC 1⊥平面ABC ,平面A 1ACC 1∩平面ABC =AC , 所以BE ⊥平面A 1ACC 1,所以BE ⊥A 1C .又因为BC 1⊥A 1C ,BC 1∩BE =B ,BC 1⊂平面C 1EB ,BE ⊂平面C 1EB , 所以A 1C ⊥平面C 1EB .(2)法一:因为平面A 1ACC 1⊥平面ABC , 所以直线CC 1与平面ABC 所成角为∠C 1CA . 因为∠ACB =30°,AB =BC =2,E 为AC 的中点, 所以EC =3,EB =1.因为CC 1=BC =2,∠C 1CB =60°,所以BC 1=2, 因为BE ⊥平面A 1ACC 1,所以BE ⊥EC 1,所以EC 1= 3. 在△CC 1E 中,根据余弦定理可知,cos ∠C 1CE =33. 所以直线CC 1与平面ABC 所成角的余弦值为33. 法二:以E 为坐标原点,EC 为x 轴,EB 为y 轴建立如图所示的空间直角坐标系.因为∠ACB =30°,AB =BC =2,E 为AC 的中点, 所以EC =3,EB =1.因为CC 1=CB =2,∠C 1CB =60°,所以BC 1=2, 因为BE ⊥平面AA 1CC 1,所以BE ⊥EC 1,所以EC 1= 3. 所以|CC 1―→|=2,|C 1E ―→|=3, 设C 1(x,0,y ),又C (3,0,0),所以⎩⎨⎧(x -3)2+y 2=4,x 2+y 2=3,解得⎩⎨⎧x =33,y =263,所以C 1⎝⎛⎭⎫33,0,263,则CC 1―→=⎝⎛⎭⎫-233,0,263, 易知平面ABC 的一个法向量为n =(0,0,1), 设直线CC 1与平面ABC 所成的角为α, 则sin α=|cos 〈CC 1―→,n 〉|=63,所以cos α=33.即直线CC 1与平面ABC 所成角的余弦值为33. 6.如图所示,四棱锥P -ABCD 的底面ABCD 为矩形,PA ⊥平面ABCD ,点E 是PD 的中点,点F 是PC 的中点.(1)证明:PB ∥平面AEC ;(2)若底面ABCD 为正方形,探究在什么条件下,二面角C -AF -D 的大小为60°?解:易知AD ,AB ,AP 两两垂直,建立如图所示的空间直角坐标系A -xyz ,设AB =2a ,AD =2b ,AP =2c ,则A (0,0,0),B (2a,0,0),C (2a,2b,0),D (0,2b,0),P (0,0,2c ).连接BD 交AC 于点O ,连接OE ,则O (a ,b,0),又E 是PD的中点,所以E (0,b ,c ).(1)证明:因为PB ―→=(2a,0,-2c ),EO ―→=(a,0,-c ), 所以PB ―→=2EO ―→,所以PB ―→∥EO ―→, 即PB ∥EO .因为PB ⊄平面AEC ,EO ⊂平面AEC , 所以PB ∥平面AEC .(2)因为四边形ABCD 为正方形,所以a =b ,则A (0,0,0),B (2a,0,0),C (2a,2a,0),D (0,2a,0),P (0,0,2c ),E (0,a ,c ),F (a ,a ,c ),因为z 轴⊂平面CAF ,所以设平面CAF 的一个法向量为n =(x,1,0),而AC ―→=(2a,2a,0),所以AC ―→·n =2ax +2a =0,得x =-1,所以n =(-1,1,0). 因为y 轴⊂平面DAF ,所以设平面DAF 的一个法向量为m =(1,0,z ), 而AF ―→=(a ,a ,c ),所以AF ―→·m =a +cz =0,得z =-a c , 所以m =⎝⎛⎭⎫1,0,-ac ∥m ′=(c,0,-a ).所以cos 60°=|n·m′||n||m′|=c2(a2+c2)=12,得a=c.故当AP与正方形ABCD的边长相等时,二面角C-AF-D的大小为60°.。

2020年高考数学一轮复习专题四立体几何课件文

2020年高考数学一轮复习专题四立体几何课件文

【典例】 (2016·新课标全国卷Ⅰ,12 分)如图,已知正三棱锥 P-ABC 的侧面是直角三角形,PA=6.顶点 P 在平面 ABC 内的正投 影为点 D,D 在平面 PAB 内的正投影为点 E,连接 PE 并延长交 AB 于点 G.
(1)证明:G 是 AB 的中点; (2)在图中作出点 E 在平面 PAC 内的正投影 F(说明作法及理由), 并求四面体 PDEF 的体积.
所以 CD⊥平面 A1OC.
第七章
看,立体几何是历年高考的重点,约占 整个试卷的 13%,通常以一大一小的模式命题,以中、低档难度为 主.三视图、简单几何体的表面积与体积,点、线、面位置关系的 判定与证明以及空间角的计算是考查的重点内容,前者多以客观题 的形式命题,后者主要以解答题的形式加以考查.着重考查推理论 证能力和空间想象能力,而且对数学运算的要求有加强的趋势,转 化与化归思想贯穿整个立体几何的始终.
由已知,正三棱锥的侧面是直角三角形且 PA=6,可得 DE=2, PE=2 2.
在等腰直角三角形 EFP 中,可得 EF=PF=2.(11 分) 所以四面体 PDEF 的体积 V=13×12×2×2×2=43.(12 分)
【阅卷点评】 本题通过正投影考查线面垂直.第(1)题较基 础,考查学生对垂直的判定和性质的理解;第(2)题较复杂,既考 查了学生的抽象推理能力,又考查了学生的计算能力.
【标准解答】 (1)证明:因为 P 在平面 ABC 内的正投影为 D, 所以 AB⊥PD.
因为 D 在平面 PAB 内的正投影为 E,所以 AB⊥DE.(2 分) 又 PD∩DE=D,所以 AB⊥平面 PED,故 AB⊥PG. 又由已知可得,PA=PB,从而 G 是 AB 的中点.(4 分)
(2)在平面 PAB 内,过点 E 作 PB 的平行线交 PA 于点 F,F 即 为 E 在平面 PAC 内的正投影.(5 分)

2020高考数学(理)大一轮复习考点与题型全归纳:第八章 立体几何

2020高考数学(理)大一轮复习考点与题型全归纳:第八章 立体几何

第八章 立体几何第一节 空间几何体的结构特征、三视图和直观图一、基础知识1.简单几何体(1)多面体的结构特征①特殊的四棱柱 四棱柱――――→底面为平行四边形平行六面体――――→侧棱垂直于底面直平行六面体――→底面为矩形长方体――――→底面边长相等正四棱柱――――→侧棱与底面边长相等正方体 上述四棱柱有以下集合关系:{正方体}{正四棱柱}{长方体}{直平行六面体}{平行六面体}{四棱柱}.②多面体的关系:棱柱――→一个底面退化为一个点棱锥――→平行于底面的平面截得棱台(2)旋转体的结构特征▲球的截面的性质(1)球的任何截面是圆面;(2)球心和截面(不过球心)圆心的连线垂直于截面;(3)球心到截面的距离d 与球的半径R 及截面的半径r 的关系为r =R 2-d 2. 2.直观图(1)画法:常用斜二测画法. (2)规则:①原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴、y ′轴的夹角为45°(或135°),z ′轴与x ′轴和y ′轴所在平面垂直.②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段长度在直观图中变为原来的一半.3.三视图几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方和正上方观察几何体画出的轮廓线.二、常用结论1.常见旋转体的三视图(1)球的三视图都是半径相等的圆.(2)底面与水平面平行放置的圆锥的正视图和侧视图为全等的等腰三角形. (3)底面与水平面平行放置的圆台的正视图和侧视图为全等的等腰梯形. (4)底面与水平面平行放置的圆柱的正视图和侧视图为全等的矩形. 2.斜二测画法中的“三变”与“三不变”“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变,与y 轴平行的线段的长度变为原来的一半,图形改变.“三不变”⎩⎪⎨⎪⎧平行性不改变,与x 轴和z 轴平行的线段的长度不改变,相对位置不改变.考点一空间几何体的结构特征[典例]下列结论正确的是()A.侧面都是等腰三角形的三棱锥是正三棱锥B.六条棱长均相等的四面体是正四面体C.有两个侧面是矩形的棱柱是直棱柱D.用一个平面去截圆锥,底面与截面之间的部分叫圆台[解析]底面是等边三角形,且各侧面三角形全等,这样的三棱锥才是正三棱锥,所以A错;斜四棱柱也有可能两个侧面是矩形,所以C错;截面平行于底面时,底面与截面之间的部分才叫圆台,所以D错.[答案] B[题组训练]1.下列结论中错误的是()A.由五个面围成的多面体只能是三棱柱B.正棱台的对角面一定是等腰梯形C.圆柱侧面上的直线段都是圆柱的母线D.各个面都是正方形的四棱柱一定是正方体解析:选A由五个面围成的多面体也可以是四棱锥,所以A选项错误.B、C、D说法均正确.2.下列命题正确的是()A.两个面平行,其余各面都是梯形的多面体是棱台B.两个面平行且相似,其余各面都是梯形的多面体是棱台C.直角梯形以一条直角腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体是圆台D.用平面截圆柱得到的截面只能是圆和矩形解析:选C如图所示,可排除A、B选项.只要有截面与圆柱的母线平行或垂直,截得的截面才为矩形或圆,否则为椭圆或椭圆的一部分.考点二空间几何体的直观图[典例]已知等腰梯形ABCD,CD=1,AD=CB=2,AB=3,以AB所在直线为x轴,则由斜二测画法画出的直观图A′B′C′D′的面积为________.[解析]法一:如图,取AB的中点O为坐标原点,建立平面直角坐标系,y轴交DC 于点E,O,E在斜二测画法中的对应点为O′,E′,过E′作E′F′⊥x′轴,垂足为F′,因为OE =(2)2-12=1, 所以O ′E ′=12,E ′F ′=24.所以直观图A ′B ′C ′D ′的面积为 S ′=12×(1+3)×24=22.法二:由题中数据得等腰梯形ABCD 的面积S =12×(1+3)×1=2.由S 直观图=24S 原图形的关系,得S 直观图=24×2=22. [答案] 22[题组训练]1.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( )解析:选A 由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y 轴上的对角线长为2 2.故选A.2.已知正三角形ABC 的边长为2,那么△ABC 的直观图△A ′B ′C ′的面积为________.解析:如图,图①、图②分别表示△ABC 的实际图形和直观图. 从图②可知,A ′B ′=AB =2,O ′C ′=12OC =32,C ′D ′=O ′C ′sin 45°=32×22=64.所以S △A ′B ′C ′=12A ′B ′·C ′D ′=12×2×64=64.答案:64考点三 空间几何体的三视图考法(一) 由几何体识别三视图[典例] (2019·长沙模拟)如图是一个正方体,A ,B ,C 为三个顶点,D 是棱的中点,则三棱锥A -BCD 的正视图、俯视图是(注:选项中的上图为正视图,下图为俯视图)( )[解析] 正视图和俯视图中棱AD 和BD 均看不见,故为虚线,易知选A. [答案] A考法(二) 由三视图判断几何体特征[典例] (1)(2018·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图所示.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .2 5C .3D .2(2)(2019·武汉调研)已知某四棱锥的三视图如图所示,则该四棱锥的四个侧面中最小的面积为________.[解析] (1)先画出圆柱的直观图,根据题图的三视图可知点M ,N 的位置如图①所示.圆柱的侧面展开图及M ,N 的位置(N 为OP 的四等分点)如图②所示,连接MN ,则图中MN 即为M 到N 的最短路径.ON =14×16=4,OM =2,∴MN =OM 2+ON 2=22+42=2 5.(2)由三视图知,该几何体是在长、宽、高分别为2,1,1的长方体中,截去一个三棱柱AA 1D 1-BB 1C 1和一个三棱锥C -BC 1D 后剩下的几何体,即如图所示的四棱锥D -ABC 1D 1,其中侧面ADD 1的面积最小,其值为12.[答案] (1)B (2)12考法(三) 由三视图中的部分视图确定剩余视图[典例] (2018·唐山五校联考)如图是一个空间几何体的正视图和俯视图,则它的侧视图为( )[解析] 由正视图和俯视图可知,该几何体是由一个圆柱挖去一个圆锥构成的,结合正视图的宽及俯视图的直径可知侧视图应为A ,故选A.[答案] A[题组训练]1.如图1所示,是一个棱长为2的正方体被削去一个角后所得到的几何体,其中DD 1=1,AB=BC=AA1=2,若此几何体的俯视图如图2所示,则可以作为其正视图的是()解析:选C根据该几何体的直观图和俯视图知,其正视图的长应为底面正方形的对角线长,宽应为正方体的棱长,故排除B、D;而在三视图中看不见的棱用虚线表示,故排除A.故选C.2.(2017·全国卷Ⅰ)某多面体的三视图如图所示,其中正视图和侧视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12C.14 D.16解析:选B由三视图可知该多面体是一个组合体,下面是一个底面是等腰直角三角形的直三棱柱,上面是一个底面是等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,这些梯形的面积之和为(2+4)×22×2=12,故选B.[课时跟踪检测]1.对于用“斜二测画法”画平面图形的直观图,下列说法正确的是()A.等腰三角形的直观图仍为等腰三角形B.梯形的直观图可能不是梯形C.正方形的直观图为平行四边形D.正三角形的直观图一定为等腰三角形解析:选C根据“斜二测画法”的定义可得正方形的直观图为平行四边形.2.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是() A.球B.三棱锥C.正方体D.圆柱解析:选D球、正方体的三视图的形状都相同,大小都相等,首先排除选项A和C.对于三棱锥,考虑特殊情况,如三棱锥C-OAB,当三条棱OA,OB,OC两两垂直,且OA =OB=OC时,正视图方向为AO方向,其三视图的形状都相同,大小都相等,故排除选项B.选项D,不论圆柱如何放置,其三视图的形状都不可能完全相同.3.(2019·福州模拟)一水平放置的平面图形,用斜二测画法画出它的直观图如图所示,此直观图恰好是一个边长为2的正方形,则原平面图形的面积为()A.2 3 B.2 2C.4 3 D.8 2解析:选D由斜二测画法可知,原平面图形是一个平行四边形,且平行四边形的一组对边长为2,在斜二测画法画出的直观图中,∠B′O′A′=45°且O′B′=22,那么在原图形中,∠BOA=90°且OB=4 2.因此,原平面图形的面积为2×42=82,故选D.4.给出下列几个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0 B.1C.2 D.3解析:选B①错误,只有这两点的连线平行于轴时才是母线;②正确;③错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.5.若某几何体的三视图如图所示,则这个几何体的直观图可以是()解析:选D由三视图知该几何体的上半部分是一个三棱柱,下半部分是一个四棱柱.故选D.6.用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是()A .8B .7C .6D .5解析:选C 画出直观图可知,共需要6块.7.(2018·南宁二中、柳州高中联考)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图和侧视图,且该几何体的体积为83,则该几何体的俯视图可以是( )解析:选C 若俯视图为选项C 中的图形,则该几何体为正方体截去一部分后的四棱锥P -ABCD ,如图所示,该四棱锥的体积V =13×(2×2)×2=83,符合题意.若俯视图为其他选项中的图形,则根据三视图易判断对应的几何体不存在,故选C.8.如图,在底面边长为1,高为2的正四棱柱ABCD -A1B 1C 1D 1(底面ABCD 是正方形,侧棱AA 1⊥底面ABCD )中,点P 是正方形A 1B 1C 1D 1内一点,则三棱锥P -BCD 的正视图与俯视图的面积之和的最小值为( )A.32 B .1 C .2D.54解析:选A 由题图易知,三棱锥P -BCD 的正视图面积为12×1×2=1.当顶点P 的投影在△BCD 内部或其边上时,俯视图的面积最小,为S △BCD =12×1×1=12.所以三棱锥P -BCD的正视图与俯视图的面积之和的最小值为1+12=32.故选A.9.设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体; ②底面是矩形的平行六面体是长方体; ③直四棱柱是直平行六面体; ④棱台的相对侧棱延长后必交于一点. 其中真命题的序号是________.解析:命题①符合平行六面体的定义,故命题①是正确的;底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的;因为直四棱柱的底面不一定是平行四边形,故命题③是错误的;命题④由棱台的定义知是正确的.答案:①④10.一个圆台上、下底面的半径分别为3 cm 和8 cm ,若两底面圆心的连线长为12 cm ,则这个圆台的母线长为________cm.解析:如图,过点A 作AC ⊥OB ,交OB 于点C . 在Rt △ABC 中,AC =12(cm),BC =8-3=5 (cm). ∴AB =122+52=13(cm). 答案:1311.已知某几何体的三视图如图所示,正视图和侧视图都是矩形,俯视图是正方形,在该几何体上任意选择4个顶点,以这4个点为顶点的几何体的形状给出下列命题:①矩形;②有三个面为直角三角形,有一个面为等腰三角形的四面体;③两个面都是等腰直角三角形的四面体.其中正确命题的序号是________.解析:由三视图可知,该几何体是正四棱柱,作出其直观图为如图所示的四棱柱ABCD -A 1B 1C 1D 1,当选择的4个点是B 1,B ,C ,C 1时,可知①正确;当选择的4个点是B ,A ,B 1,C 时,可知②正确;易知③不正确.答案:①②12.如图,三棱锥A -BCD 中,AB ⊥平面BCD ,BC ⊥CD ,若AB =BC=CD =2,则该三棱锥的侧视图(投影线平行于BD )的面积为________.解析:因为AB ⊥平面BCD ,投影线平行于BD ,所以三棱锥A -BCD 的侧视图是一个以△BCD 的BD 边上的高为底,棱锥的高为高的三角形,因为BC ⊥CD ,AB =BC =CD =2, 所以△BCD 中BD 边上的高为2,故该三棱锥的侧视图的面积S =12×2×2= 2.答案: 2第二节空间几何体的表面积与体积一、基础知识1.圆柱、圆锥、圆台的侧面展开图及侧面积公式①几何体的侧面积是指(各个)侧面面积之和,而表面积是侧面积与所有底面面积之和.②圆台、圆柱、圆锥的转化当圆台的上底面半径与下底面半径相等时,得到圆柱;当圆台的上底面半径为零时,得到圆锥,由此可得:2.空间几何体的表面积与体积公式二、常用结论几个与球有关的切、接常用结论(1)正方体的棱长为a,球的半径为R,①若球为正方体的外接球,则2R=3a;②若球为正方体的内切球,则2R=a;③若球与正方体的各棱相切,则2R =2a .(2)若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.(3)正四面体的外接球与内切球的半径之比为3∶1. 考点一 空间几何体的表面积[典例] (1)(2018·全国卷Ⅰ)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π(2)(2019·沈阳质检)某四棱锥的三视图如图所示,则该四棱锥的侧面积是( )A .4+4 2B .42+2C .8+4 2D.83[解析] (1)设圆柱的轴截面的边长为x , 则x 2=8,得x =22,∴S 圆柱表=2S 底+S 侧=2×π×(2)2+2π×2×2 2 =12π.故选B.(2)由三视图可知该几何体是一个四棱锥,记为四棱锥P -ABCD ,如图所示,其中P A ⊥底面ABCD ,四边形ABCD 是正方形,且P A =2,AB =2,PB =22,所以该四棱锥的侧面积S 是四个直角三角形的面积和,即S =2×⎝⎛⎭⎫12×2×2+12×2×22=4+42,故选A. [答案] (1)B (2)A [题组训练]1.(2019·武汉部分学校调研)一个几何体的三视图如图所示,则它的表面积为( )A .28B .24+2 5C .20+4 5D .20+2 5解析:选B 如图,三视图所对应的几何体是长、宽、高分别为2,2,3的长方体去掉一个三棱柱后的棱柱ABIE -DCMH ,则该几何体的表面积S =(2×2)×5+⎝⎛⎭⎫12×1×2×2+2×1+2×5=24+2 5.故选B.2.(2018·郑州第二次质量预测)某几何体的三视图如图所示,则该几何体的表面积是( )A .20+2πB .24+(2-1)πC .24+(2-2)πD .20+(2+1)π解析:选B 由三视图知,该几何体是由一个棱长为2的正方体挖去一个底面半径为1、高为1的圆锥后所剩余的部分,所以该几何体的表面积S =6×22-π×12+π×1×2=24+(2-1)π,故选B. 考点二 空间几何体的体积[典例] (1)(2019·开封高三定位考试)某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为( )A .4πB .2π C.4π3D .π(2)(2018·天津高考)如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为1,则四棱锥A 1-BB 1D 1D 的体积为________.[解析] (1)直接法由题意知该几何体的直观图如图所示,该几何体为圆柱的一部分,设底面扇形的圆心角为α,由tan α=31=3,得α=π3,故底面面积为12×π3×22=2π3,则该几何体的体积为2π3×3=2π.(2)法一:直接法连接A 1C 1交B 1D 1于点E ,则A 1E ⊥B 1D 1,A 1E ⊥BB 1,则A 1E ⊥平面BB 1D 1D ,所以A 1E 为四棱锥A 1-BB 1D 1D 的高,且A 1E =22, 矩形BB 1D 1D 的长和宽分别为2,1, 故V A 1-BB 1D 1D =13×(1×2)×22=13. 法二:割补法连接BD1,则四棱锥A 1-BB 1D 1D 分成两个三棱锥B -A 1DD 1与B -A 1B 1D 1,所以V A 1-BB 1D 1D =V B -A 1DD 1+V B -A 1B 1D 1=13×12×1×1×1+13×12×1×1×1=13. [答案] (1)B (2)13[题组训练]1.(等体积法)如图所示,已知三棱柱ABC -A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1-ABC 1的体积为( )A.312B.34C.612D.64解析:选A 三棱锥B 1-ABC 1的体积等于三棱锥A -B 1BC 1的体积,三棱锥A -B 1BC 1的高为32,底面积为12,故其体积为13×12×32=312. 2.(割补法)某几何体的三视图如图所示,则这个几何体的体积是( )A .13B .14C .15D .16解析:选C 所求几何体可看作是将长方体截去两个三棱柱得到的几何体,在长方体中还原该几何体,如图中ABCD -A ′B ′C ′D ′所示,长方体的长、宽、高分别为4,2,3,两个三棱柱的高为2,底面是两直角边长分别为3和1.5的直角三角形,故该几何体的体积V =4×2×3-2×12×3×32×2=15,故选C.3.(直接法)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23π B.13+23π C.13+26π D .1+26π 解析:选C 由三视图知,四棱锥是底面边长为1,高为1的正四棱锥,结合三视图可得半球半径为22,从而该几何体的体积为13×12×1+12×4π3×⎝⎛⎭⎫223=13+26π. 考点三 与球有关的切、接问题考法(一) 球与柱体的切、接问题[典例] (2017·江苏高考)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.[解析] 设球O 的半径为R ,因为球O 与圆柱O 1O 2的上、下底面及母线均相切,所以圆柱的底面半径为R 、高为2R ,所以V 1V 2=πR 2·2R 43πR 3=32.[答案] 32考法(二) 球与锥体的切、接问题[典例] (2018·全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( )A .123B .18 3C .24 3D .54 3[解析] 由等边△ABC 的面积为93,可得34AB 2=93,所以AB =6,所以等边△ABC 的外接圆的半径为r =33AB =2 3.设球的半径为R ,球心到等边△ABC 的外接圆圆心的距离为d ,则d =R 2-r 2=16-12=2.所以三棱锥D -ABC 高的最大值为2+4=6,所以三棱锥D -ABC 体积的最大值为13×93×6=18 3.[答案] B[题组训练]1.(2018·福建第一学期高三期末考试)已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于( )A .4π B.163πC.323π D .16π解析:选D 如图,由题意知圆柱的中心O 为这个球的球心, 于是,球的半径r =OB =OA 2+AB 2= 12+(3)2=2. 故这个球的表面积S =4πr 2=16π.故选D.2.三棱锥P -ABC 中,AB =BC =15,AC =6,PC ⊥平面ABC ,PC =2,则该三棱锥的外接球表面积为________.解析:由题可知,△ABC 中AC 边上的高为15-32=6,球心O 在底面ABC 的投影即为△ABC 的外心D ,设DA =DB =DC =x ,所以x 2=32+(6-x )2,解得x =564,所以R 2=x 2+⎝⎛⎭⎫PC 22=758+1=838(其中R 为三棱锥外接球的半径),所以外接球的表面积S =4πR 2=832π. 答案:832π[课时跟踪检测]1.(2019·深圳摸底)过半径为2的球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的体积的比值为( )A.932 B.916 C.38D.316解析:选A 由题意知所得截面为圆,设该圆的半径为r ,则22=12+r 2,所以r 2=3,所以所得截面的面积与球的体积的比值为π×343π×23=932,故选A.2.如图是某一几何体的三视图,则这个几何体的体积为( )A .4B .8C .16D .20解析:选B 由三视图知,此几何体是一个三棱锥,底面为一边长为6,高为2的三角形,三棱锥的高为4,所以体积为V =13×12×6×2×4=8.故选B.3.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛解析:选B 设米堆的底面半径为r 尺,则π2r =8,所以r =16π,所以米堆的体积为V =14×13π×r 2×5=π12×⎝⎛⎭⎫16π2×5≈3209(立方尺).故堆放的米约有3209÷1.62≈22(斛). 4.(2018·贵阳摸底考试)某实心几何体是用棱长为1 cm 的正方体无缝粘合而成的,其三视图如图所示,则该几何体的体积为( )A .35 cm 3B .40 cm 3C .70 cm 3D .75 cm 3解析:选A 结合题中三视图可得,该几何体是个组合体,该组合体从下到上依次为长、宽、高分别为5 cm,5 cm,1 cm 的长方体,长、宽、高分别为3 cm,3 cm,1 cm 的长方体,棱长为1 cm 的正方体,故该组合体的体积V =5×5×1+3×3×1+1×1×1=35(cm 3).故选A.5.(2019·安徽知名示范高中联考)某几何体的三视图如图所示,则该几何体的体积为( )A .1 B.12 C.13D.14解析:选C 法一:该几何体的直观图为四棱锥S -ABCD ,如图,SD ⊥平面ABCD ,且SD =1,四边形ABCD 是平行四边形,且AB =DC =1,连接BD ,由题意知BD ⊥DC ,BD ⊥AB ,且BD =1,所以S 四边形ABCD =1,所以V S -ABCD =13S 四边形ABCD·SD =13,故选C.法二:由三视图易知该几何体为锥体,所以V =13Sh ,其中S 指的是锥体的底面积,即俯视图中四边形的面积,易知S =1,h 指的是锥体的高,从正视图和侧视图易知h =1,所以V =13Sh =13,故选C.6.(2019·重庆调研)某简单组合体的三视图如图所示,则该组合体的体积为( )A.83π3+833B.43π3+833C.43π3+433D.83π3+433解析:选B 由三视图知,该组合体是由一个半圆锥与一个三棱锥组合而成的,其中圆锥的底面半径为2、高为42-22=23,三棱锥的底面是斜边为4、高为2的等腰直角三角形,三棱锥的高为23,所以该组合体的体积V =12×13π×22×23+13×12×4×2×23=43π3+833,故选B. 7.(2019·湖北八校联考)已知一几何体的三视图如图所示,它的侧视图与正视图相同,则该几何体的表面积为( )A .16+12πB .32+12πC .24+12πD .32+20π解析:选A 由三视图知,该几何体是一个正四棱柱与半球的组合体,且正四棱柱的高为2,底面对角线长为4,球的半径为2,所以该正四棱柱的底面正方形的边长为22,该几何体的表面积S =12×4π×22+π×22+22×2×4=12π+16,故选A.8.(2019·福州质检)已知正三棱柱ABC -A 1B 1C 1中,底面积为334,一个侧面的周长为63,则正三棱柱ABC -A 1B 1C 1外接球的表面积为( )A .4πB .8πC .16πD .32π解析:选C 如图所示,设底面边长为a ,则底面面积为34a 2=334,所以a = 3.又一个侧面的周长为63,所以AA 1=2 3.设E ,D 分别为上、下底面的中心,连接DE ,设DE 的中点为O ,则点O 即为正三棱柱ABC -A 1B 1C 1的外接球的球心,连接OA 1,A 1E ,则OE =3,A 1E =3×32×23=1.在直角三角形OEA 1中,OA 1=12+(3)2=2,即外接球的半径R =2,所以外接球的表面积S =4πR 2=16π,故选C.9.(2017·天津高考)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.解析:由正方体的表面积为18,得正方体的棱长为 3. 设该正方体外接球的半径为R ,则2R =3,R =32,所以这个球的体积为43πR 3=4π3×278=9π2.答案:9π210.某四棱柱的三视图如图所示,则该四棱柱的体积为________.解析:由题意知该四棱柱为直四棱柱,其高为1,底面为上底长为1,下底长为2,高为1的等腰梯形,所以该四棱柱的体积为V =(1+2)×12×1=32.答案:3211.一个圆锥的表面积为π,它的侧面展开图是圆心角为2π3的扇形,则该圆锥的高为________.解析:设圆锥底面半径是r ,母线长为l ,所以πr 2+πrl =π,即r 2+rl =1,根据圆心角公式2π3=2πr l ,即l =3r ,所以解得r =12,l =32,那么高h =l 2-r 2= 2.答案: 212.(2017·全国卷Ⅰ)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的表面积为________.解析:如图,连接AO ,OB ,∵SC 为球O 的直径, ∴点O 为SC 的中点, ∵SA =AC ,SB =BC , ∴AO ⊥SC ,BO ⊥SC ,∵平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC , ∴AO ⊥平面SCB , 设球O 的半径为R , 则OA =OB =R ,SC =2R . ∴V S -ABC =V A -SBC =13×S △SBC ×AO =13×⎝⎛⎭⎫12×SC ×OB ×AO ,即9=13×⎝⎛⎭⎫12×2R ×R ×R ,解得 R =3, ∴球O 的表面积S =4πR 2=4π×32=36π. 答案:36π13.如图是一个以A 1B 1C 1为底面的直三棱柱被一平面所截得到的几何体,截面为ABC ,已知A 1B 1=B 1C 1=2,∠A 1B 1C 1=90°,AA 1=4,BB 1=3,CC 1=2,求:(1)该几何体的体积; (2)截面ABC 的面积.解:(1)过C 作平行于A 1B 1C 1的截面A 2B 2C ,交AA 1,BB 1分别于点A 2,B 2.由直三棱柱性质及∠A 1B 1C 1=90°可知B 2C ⊥平面ABB 2A 2,则该几何体的体积V =VA 1B 1C 1-A 2B 2C +VC -ABB 2A 2=12×2×2×2+13×12×(1+2)×2×2=6. (2)在△ABC 中,AB =22+(4-3)2=5, BC =22+(3-2)2=5, AC =(22)2+(4-2)2=2 3.则S △ABC =12×23×(5)2-(3)2= 6.14.如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E -ACD 的体积63,求该三棱锥E -ACD 的侧面积.解:(1)证明:因为四边形ABCD 为菱形,所以AC ⊥BD . 因为BE ⊥平面ABCD ,AC ⊂平面ABCD , 所以BE ⊥AC .因为BD ∩BE =B ,BD ⊂平面BED ,BE ⊂平面BED , 所以AC ⊥平面BED . 又AC ⊂平面AEC , 所以平面AEC ⊥平面BED .(2)设AB=x,在菱形ABCD中,由∠ABC=120°,可得AG=GC=32x,GB=GD=x2.因为AE⊥EC,所以在Rt△AEC中,可得EG=3 2x.由BE⊥平面ABCD,知△EBG为直角三角形,可得BE=2 2x.由已知得,三棱锥E-ACD的体积V三棱锥E-ACD=13·12AC·GD·BE=624x3=63,故x=2.从而可得AE=EC=ED= 6.所以△EAC的面积为3,△EAD的面积与△ECD的面积均为 5. 故三棱锥E-ACD的侧面积为3+2 5.第三节 空间点、直线、平面之间的位置关系一、基础知识1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. (2)公理2:过不在一条直线上的三点, 有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.空间中两直线的位置关系 (1)空间中两直线的位置关系⎩⎪⎨⎪⎧共面直线⎩⎪⎨⎪⎧平行相交异面直线:不同在任何一个 平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线, 经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的 锐角(或直角)叫做异面直线a 与b 所成 的角(或夹角). ②范围:⎝⎛⎦⎤0,π2. (3)公理4:平行于同一条直线的两条直线互相平行.(4)定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 3.空间中直线与平面、平面与平面的位置关系(1)直线与平面的位置关系有相交、平行、在平面内三种情况.直线l 和平面α相交、直线l 和平面α平行统称为直线l 在平面α外,记作l ⊄α.(2)平面与平面的位置关系有平行、相交两种情况.二、常用结论1.公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面.推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.2.异面直线判定的一个定理过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.3.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.考点一平面的基本性质及应用[典例]如图所示,在正方体ABCD-AB1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.[证明](1)如图,连接EF,CD,A1B.1∵E,F分别是AB,AA1的中点,∴EF∥A1B.又A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,如图所示.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈DA,∴CE,D1F,DA三线共点.。

2020届高考数学专题:立体几何计算问题(答案不全)

2020届高考数学专题:立体几何计算问题(答案不全)

立体几何中的计算问题1.三视图——是观察者从三个不同位置观察同一个空间几何体而画出的图形;2.直观图——是观察着站在某一点观察一个空间几何体而画出的图形。

直观图通常是在平行投影下画出的空间图形。

3斜二测法:1.画直观图时,把它画成对应的轴'',''o x o y ,取'''45(135)x o y o r ∠=︒︒,它们确定的平面表示水平平面;2.在坐标系'''x o y 中画直观图时,已知图形中平行于数轴的线段保持平行性不变,平行于x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线段长度减半。

结论:一般地,采用斜二测法作出的直观图面积是原平面图形面积的4倍. 例1.下列命题:①如果一个几何体的三视图是完全相同的,那么这个几何体是正方体;②如果一个几何体的主视图和俯视图都是矩形,那么这个几何体是长方体; ③如果一个几何体的三视图都是矩形,那么这个几何体是长方体;④如果一个几何体的主视图和左视图都是等腰梯形,那么这个几何体是圆台.其中正确的是( )A .①②B .③C .②③D .④ 2、异面直线所成的角(1)定义:a 、b 是两条异面直线,经过空间任意一点O ,分别引直线a′∥a,b′∥b,则a′和b′所成的锐角(或直角)叫做异面直线a 和b 所成的角.(2)取值范围:0°<θ≤90°. (3)求解方法①根据定义,通过平移,找到异面直线所成的角θ; ②解含有θ的三角形,求出角θ的大小.例2.在长方体1111ABCD A B C D -中,11BC CC ==,13AD B π∠=,则直线1AB 与1BC 所成角的余弦值为( )ABCD【答案】D例3.直三棱柱ABC ﹣A 1B 1C 1中,若∠BAC=90°,AB=AC=AA 1,则异面直线 BA 1与AC 1所成的角为( ) A .60°B .90°C .120°D .150°例4.在四面体ABCD 中,AC 与BD 的夹角为30°,2AC =,BD =M ,N 分别是AB ,CD 的中点,则线段MN 的长度为________. 【答案】13.二面角 找(或作)二面角的平面角的主要方法.(i)定义法(ii)垂面法 (iii)三垂线法(Ⅳ)根据特殊图形的性质 (4)求二面角大小的常见方法先找(或作)出二面角的平面角θ,再通过解三角形求得θ的值.例5.已知正三棱锥底面边长为2,侧棱长为3,则它的侧面与底面所成二面角的余弦值为________.【答案】12例6.如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,E .F 分别为1A B ,1A C 的中点,D 为11B C 上的点,且11A D B C ⊥.(1)求证://EF 平面ABC . (2)求证:平面1A FD ⊥平面11BCC B .(3)若三棱柱所有棱长都为a ,求二面角111A B C C --的平面角的余弦值.【答案】(1)见解析;(2)见解析;(3)74.空间几何体的表面积、体积棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 :222S rl r ππ=+ 圆锥的表面积:2S rl r ππ=+圆台的表面积:22Srl r Rl Rππππ=+++扇形的面积公式2211=36022n R S lr r πα==扇形(其中l 表示弧长,r 表示半径,α表示弧度) 空间几何体的体积柱体的体积 :V S h =⨯底,锥体的体积 :13V S h =⨯底台体的体积 :1)3V S S h =+⨯下上( ,球体的体积:343V R π= 点到平面的距离(1)定义 面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.(2)求点面距离常用的方法: 1)直接利用定义求①找到(或作出)表示距离的线段; ②抓住线段(所求距离)所在三角形解之.2)体积法其步骤是:①在平面内选取适当三点,和已知点构成三棱锥;②求出此三棱锥的体积V 和所取三点构成三角形的面积S ;③由V=31S·h ,求出h 即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.例8.在长、宽、高分别为a b c ,,的长方体中,以它的各面的中心为顶点可得到一个八面体,则该八面体的体积为________.【答案】16abc例9.如图,在上、下底面对应边的比为1:2的三棱台中,过上底面的一边作一个平行于棱的平面11A B EF ,则这个平面分三棱台成两部分的体积之比为( ).A .1:2B .2:3C .3:4D .4:5【答案】C例10.如图,在四棱锥P —ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,PA=AD=4,AB=2,以BD 的中点O 为球心、BD 为直径的球面交PD 于点M.⑴求证:平面ABM ⊥平面PCD ; (2)求点O 到平面ABM 的距离.【答案】(1)见解析(2)3例11.如图,已知多面体EABCDF的底面ABCD是边长为2的正方形,EA⊥底面ABCD,//FD EA,且112FD EA==.(1)求多面体EABCDF的体积;(2)记线段BC的中点为K,在平面ABCD内过点K作一条直线与平面ECF平行,要求保留作图痕迹,但不要求证明.【答案】(1)103V=多面体;(2)见解析.5.与球有关的组合体7-2 球的结构特征⑴球心与截面圆心的连线垂直于截面;⑵截面半径等于球半径与截面和球心的距离的平方差:r2 = R2– d2★7-3 球与其他多面体的组合体的问题球体与其他多面体组合,包括内接和外切两种类型,解决此类问题的基本思路是:⑴根据题意,确定是内接还是外切,画出立体图形;⑵找出多面体与球体连接的地方,找出对球的合适的切割面,然后做出剖面图;⑶将立体问题转化为平面几何中圆与多边形的问题;例11.已知棱长为a的正四面体,其内切球的半径为r,外接球的半径为R,则:r R= ________.【答案】1:3例12.已知棱长为a的正方体,甲球是正方体的内切球,乙球是正方体的外接球,丙球与正方体的各棱都相切,则甲、乙、丙三球的表面积之比为().A.91:3:4B.1:3:2C.D.31:2【答案】B例13.已知,,,S A B C是球O表面上的点,SA⊥平面,,1,ABC AB BC SA AB BC⊥===则球O的体积为__________.例14.已知一个高为16的圆锥内接于一个体积为972π的球,在圆锥内又有一个内切球.求:圆锥内切球的体积.(2)2563Vπ=立体几何中的计算问题一、三视图1.将正方形(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为()A.B.C.D.【答案】B2.如图所示,A O B '''∆表示水平放置的AOB ∆的直观图,B '在x '轴上,A O ''与x '轴垂直,且2A O ''=,则AOB ∆的OB 边上的高为______.【答案】二、线线角3.已知直三棱柱111ABC A B C -的所有棱长都相等,M 为11A C 的中点,则AM 与1BC 所成角的余弦值为( ) A.3B.3C.4D.4【答案】D4.如图所示为一个正方体的展开图.对于原正方体,给出下列结论: ①AB 与EF 所在直线平行; ②AB 与CD 所在直线异面; ③MN 与BF 所在直线成60︒角;④MN 与CD 所在直线互相垂直. 其中正确结论的序号是________. 【答案】②④5.如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,1AA AB AC ==,AB AC ⊥,M 是1CC 的中点,Q 是BC 的中点,点P 在11A B 上,则直线PQ 与直线AM 所成的角为( ). A .30° B .45︒C .60︒D .90︒【答案】D 三、二面角问题二面角:关键是找出二面角的平面角。

2020高考数学二轮专题复习立体几何(理)

2020高考数学二轮专题复习立体几何(理)

立体几何(理)考纲解读】1、平面的概念及平面的表示法,理解三个公理及三个推论的内容及作用,初步掌握性质与推论的简单应用。

2、空间两条直线的三种位置关系,并会判定。

3、平行公理、等角定理及其推论,了解它们的作用,会用它们来证明简单的几何问题,掌握证明空间两直线平行及角相等的方法。

4、异面直线所成角的定义,异面直线垂直的概念,会用图形来表示两条异面直线,掌握异面直线所成角的范围,会求异面直线的所成角。

5. 理解空间向量的概念,掌握空间向量的加法、减法和数乘; 了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算; 掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式.6. 了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念. 掌握棱柱, 棱锥的性质, 并会灵活应用, 掌握球的表面积、体积公式; 能画出简单空间图形的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图.7. 空间平行与垂直关系的论证.8. 掌握直线与平面所成角、二面角的计算方法,掌握三垂线定理及其逆定理,并能熟练解决有关问题, 进一步掌握异面直线所成角的求解方法,熟练解决有关问题.9. 理解点到平面、直线和直线、直线和平面、平面和平面距离的概念会用求距离的常用方法(如:直接法、转化法、向量法). 对异面直线的距离只要求学生掌握作出公垂线段或用向量表示的情况)和距离公式计算距离.【考点预测】在2020 年高考中立体几何命题有如下特点:1. 线面位置关系突出平行和垂直,将侧重于垂直关系.2. 多面体中线面关系论证,空间“角”与“距离”的计算常在解答题中综合出现.3. 多面体及简单多面体的概念、性质、三视图多在选择题,填空题出现.4. 有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点.此类题目分值一般在17---22 分之间,题型一般为 1 个选择题, 1 个填空题, 1 个解答题.要点梳理】1. 三视图:正俯视图长对正、正侧视图高平齐、俯侧视图宽相等2. 直观图:已知图形中平行于x轴和z轴的线段,在直观图中保持长度不变,平行于y轴的线段平行性不变,但在直观图中其长度为原来的一半•3. 体积与表面积公式:1⑴柱体的体积公式:V柱Sh;锥体的体积公式:V锥-Sh;3台体的体积公式:V棱台—h(s . SS S);球的体积公式:V球—r3.3 3⑵球的表面积公式:S求4 R2.4. 有关球与正方体、长方体、圆柱、圆锥、圆台的结合体问题,要抓住球的直径与这些几何体的有关元素的关系.5. 平行与垂直关系的证明,熟练判定与性质定理.6. 利用空间向量解决空间角与空间距离。

数学立体几何大题

数学立体几何大题

(2020年新高考立体几何)20.如图,四棱锥P-ABCD的底面为正方形,PD垂直底面ABCD。

设平面PAD与平面PBC的交线为L。

(1)证明:l垂直平面PDC;
(2)已知PD=AD=1,Q为L上的点,求PB与平面QCD所成角的正弦值的最大值。

(2020年天津卷立体几何)17.如图,在三棱柱ABC-A1B1C1中,CC1垂直平面ABC,AC垂直BC,AC=BC=2,CC1=3,点D,E分别在棱CC1上,且AD=1,CE=2,M为棱A1B1的中点。

(I)求证:C1M垂直B1D
(II) 求二面角B-B1E-D的正弦值
(III)求直线AB与平面DB1E所成角的正弦值
(2020年浙江卷立体几何)19.如图,在三棱台ABC-DEF中,平面ACFD 垂直平面ABC,角ACB=角ACD=45度,DC=2BC。

(I)证明:EF垂直DB
(II)求直线DF与平面DBC所成角的正弦值。

(2020年北京卷立体几何)16.如图,在正方体ABCD-A1B2C3D4中,E为BB1的中点。

(I)求证:BC1//平面AD1E;
(II)求直线AA1与平面AD1E所成角的正弦值。

专题07 立体几何-2020年高考数学(理)二轮专项复习

专题07 立体几何-2020年高考数学(理)二轮专项复习

专题07立体几何立体几何的知识是高中数学的主干内容之一,它主要研究简单空间几何体的位置和数量关系.本专题内容分为三部分:一是点、直线、平面之间的位置关系,二是简单空间几何体的结构,三是空间向量与立体几何.在本专题中,我们将首先复习空间点、直线、平面之间的位置关系,特别是对特殊位置关系(平行与垂直)的研究;其后,我们复习空间几何体的结构,主要是柱体、锥体、台体和球等的性质与运算;最后,我们通过空间向量的工具证明有关线、面位置关系的一些命题,并解决线线、线面、面面的夹角问题.§7-1点、直线、平面之间的位置关系【知识要点】1.空间直线和平面的位置关系:(1)空间两条直线:①有公共点:相交,记作:a∩b=A,其中特殊位置关系:两直线垂直相交.②无公共点:平行或异面.平行,记作:a∥b.异面中特殊位置关系:异面垂直.(2)空间直线与平面:①有公共点:直线在平面内或直线与平面相交.直线在平面内,记作:a⊂α .直线与平面相交,记作:a∩α =A,其中特殊位置关系:直线与平面垂直相交.②无公共点:直线与平面平行,记作:a∥α .(3)空间两个平面:①有公共点:相交,记作:α ∩β =l,其中特殊位置关系:两平面垂直相交.②无公共点:平行,记作:α ∥β .2.空间作为推理依据的公理和定理:(1)四个公理与等角定理:公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行.定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.(2)空间中线面平行、垂直的性质与判定定理:①判定定理:如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.②性质定理:如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线与该直线平行.如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.垂直于同一个平面的两条直线平行.如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.(3)我们把上述判定定理与性质定理进行整理,得到下面的位置关系图:【复习要求】1.了解四个公理与等角定理;2.理解空间中线面平行、垂直的有关性质与判定定理;3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.【例题分析】例1如图,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是AB ,AA 1的中点.求证:(Ⅰ)E 、C 、D 1、F 四点共面;(Ⅱ)CE 、DA 、D 1F 三线共点.【分析】对于(Ⅰ)中证明“E 、C 、D 1、F 四点共面”,可由这四点连接成两条直线,证明它们平行或相交即可;对于(Ⅱ)中证明“CE 、DA 、D 1F 三线共点”,可证其中两条相交直线的交点位于第三条直线上.证明:(Ⅰ)连接D 1C 、A 1B 、EF .∵E ,F 分另是AB ,AA 1的中点,∴EF ∥A 1B ,,211B A EF =又A 1D 1∥BC ,A 1D 1=BC ,∴A 1D 1CB 是平行四边形.∴A 1B ∥D 1C ,EF ∥D 1C ,∴E 、C 、D 1、F 四点共面.(Ⅱ)由(Ⅰ)得EF ∥CD 1,,211CD EF =∴直线CE 与直线D 1F 必相交,记CE ∩D 1F =P ,∵P ∈D 1F ⊂平面A 1ADD 1,P ∈CE ⊂平面ABCD ,∴点P 是平面A 1ADD 1和平面ABCD 的一个公共点.∵平面A 1ADD 1∩平面ABCD =AD ,∴P ∈AD ,∴CE 、DA 、D 1F 三线共点.【评述】1、证明多点共面、多点共线、多线共面的主要依据:(1)证明多点共面常用公理2及其推论;(2)证明多点共线常用公理3,即证明点在两个平面内,从而点在这两个平面的交线上;(3)证明多线共面,首先由其中两直线确定平面,再证其余直线在此平面内.2、证明a ,b ,c 三线交于一点的主要依据:(1)证明a 与b 相交,c 与b 相交,再证明两交点重合;(2)先证明a 与b 相交于点P ,再证明P ∈c .例2在四棱锥P -ABCD 中,底面ABCD 是平行四边形,M ,N 分别是AB ,PC 的中点,求证:MN ∥平面PAD .【分析】要证明“线面平行”,可通过“线线平行”或“面面平行”进行转化;题目中出现了中点的条件,因此可考虑构造(添加)中位线辅助证明.证明:方法一,取PD 中点E ,连接AE ,NE .∵底面ABCD 是平行四边形,M ,N 分别是AB ,PC 的中点,∴MA ∥CD ,.21CD MA =∵E 是PD 的中点,∴NE ∥CD ,.21CD NE =∴MA ∥NE ,且MA =NE ,∴AENM 是平行四边形,∴MN ∥AE .又AE ⊂平面PAD ,MN ⊄平面PAD ,∴MN ∥平面PAD .方法二取CD 中点F ,连接MF ,NF .∵MF ∥AD ,NF ∥PD ,∴平面MNF ∥平面PAD ,∴MN ∥平面PAD .【评述】关于直线和平面平行的问题,可归纳如下方法:(1)证明线线平行:a ∥c ,b ∥c ,a ∥α,a ⊂βα∥βa ⊥α,b ⊥αα∩β=bγ ∩α=a ,γ ∩β=b⇒a ∥b⇒a ∥b⇒a ∥b⇒a ∥b(2)证明线面平行:a ∩α=∅a ∥bα∥βb⊂α,a⊄αa⊂β⇒a∥α⇒a∥α⇒a∥α(3)证明面面平行:α∩β=∅a∥β,b∥βa⊥α,a⊥βα∥γ ,β∥γa,b⊂α,a∩b=A⇒α∥β⇒α∥β⇒α∥β⇒α∥β例3在直三棱柱ABC-A1B1C1中,AA1=AC,AB⊥AC,求证:A1C⊥BC1.【分析】要证明“线线垂直”,可通过“线面垂直”进行转化,因此设法证明A1C垂直于经过BC1的平面即可.证明:连接AC1.∵ABC-A1B1C1是直三棱柱,∴AA1⊥平面ABC,∴AB⊥AA1.又AB⊥AC,∴AB⊥平面A1ACC1,∴A1C⊥A B.①又AA1=AC,∴侧面A1ACC1是正方形,∴A1C⊥AC1.②由①,②得A1C⊥平面ABC1,∴A1C⊥BC1.【评述】空间中直线和平面垂直关系的论证往往是以“线面垂直”为核心展开的.如本题已知条件中出现的“直三棱柱”及“AB⊥AC”都要将其向“线面垂直”进行转化.例4在三棱锥P-ABC中,平面PAB⊥平面ABC,AB⊥BC,AP⊥PB,求证:平面PAC ⊥平面PBC.【分析】要证明“面面垂直”,可通过“线面垂直”进行转化,而“线面垂直”又可以通过“线线垂直”进行转化.证明:∵平面PAB ⊥平面ABC ,平面PAB ∩平面ABC =AB ,且AB ⊥BC ,∴BC ⊥平面PAB ,∴AP ⊥BC .又AP ⊥PB ,∴AP ⊥平面PBC ,又AP ⊂平面PAC ,∴平面PAC ⊥平面PBC .【评述】关于直线和平面垂直的问题,可归纳如下方法:(1)证明线线垂直:a ⊥c ,b ∥c ,a ⊥αb ⊂α⇒a ⊥b⇒a ⊥b (1)证明线面垂直:a ⊥m ,a ⊥n a ∥b ,b ⊥αα∥β,a ⊥βα⊥β,α∩β=l m ,n ⊂α,m ∩n =Aa ⊂β,a ⊥l ⇒a ⊥α⇒a ⊥α⇒a ⊥α⇒a ⊥α(1)证明面面垂直:a ⊥β,a ⊂α⇒α⊥β例5如图,在斜三棱柱ABC -A 1B 1C 1中,侧面A 1ABB 1是菱形,且垂直于底面ABC ,∠A 1AB =60°,E ,F 分别是AB 1,BC 的中点.(Ⅰ)求证:直线EF ∥平面A 1ACC 1;(Ⅱ)在线段AB 上确定一点G ,使平面EFG ⊥平面ABC ,并给出证明.证明:(Ⅰ)连接A 1C ,A 1E .∵侧面A 1ABB 1是菱形,E 是AB 1的中点,∴E 也是A 1B 的中点,又F 是BC 的中点,∴EF ∥A 1C .∵A 1C ⊂平面A 1ACC 1,EF ⊄平面A 1ACC 1,∴直线EF ∥平面A 1ACC 1.(2)解:当31=GA BG 时,平面EFG ⊥平面ABC ,证明如下:连接EG ,FG .∵侧面A 1ABB 1是菱形,且∠A 1AB =60°,∴△A 1AB 是等边三角形.∵E 是A 1B 的中点,31=GA BG ,∴EG ⊥AB .∵平面A 1ABB 1⊥平面ABC ,且平面A 1ABB 1∩平面ABC =AB ,∴EG ⊥平面ABC .又EG ⊂平面EFG ,∴平面EFG ⊥平面ABC .练习7-1一、选择题:1.已知m ,n 是两条不同直线,α ,β ,γ 是三个不同平面,下列命题中正确的是()(A)若m ∥α ,n ∥α ,则m ∥n (B)若m ⊥α ,n ⊥α ,则m ∥n (C)若α ⊥γ ,β ⊥γ ,则α ∥β (D)若m ∥α ,m ∥β ,则α ∥β 2.已知直线m ,n 和平面α ,β ,且m ⊥n ,m ⊥α ,α ⊥β ,则()(A)n ⊥β (B)n ∥β ,或n ⊂β (C)n ⊥α (D)n ∥α ,或n ⊂α 3.设a ,b 是两条直线,α 、β 是两个平面,则a ⊥b 的一个充分条件是()(A)a ⊥α ,b ∥β ,α ⊥β (B)a ⊥α ,b ⊥β ,α ∥β (C)a ⊂α ,b ⊥β ,α ∥β (D)a ⊂α ,b ∥β ,α ⊥β 4.设直线m 与平面α 相交但不垂直,则下列说法中正确的是()(A)在平面α 内有且只有一条直线与直线m 垂直(B)过直线m 有且只有一个平面与平面α 垂直(C)与直线m 垂直的直线不可能与平面α 平行(D)与直线m 平行的平面不可能与平面α 垂直二、填空题:5.在三棱锥P -ABC 中,6==PB PA ,平面PAB ⊥平面ABC ,PA ⊥PB ,AB ⊥BC ,∠BAC =30°,则PC =______.6.在直四棱柱ABCD -A 1B 1C 1D 1中,当底面ABCD 满足条件______时,有A 1C ⊥B 1D 1.(只要求写出一种条件即可)7.设α ,β 是两个不同的平面,m ,n 是平面α ,β 之外的两条不同直线,给出四个论断:①m ⊥n ②α ⊥β ③n ⊥β ④m ⊥α 以其中三个论断作为条件,余下的一个论断作为结论,写出正确的一个命题______.8.已知平面α ⊥平面β ,α ∩β =l ,点A ∈α ,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α ,m ∥β ,给出下列四种位置:①AB ∥m ;②AC ⊥m ;③AB ∥β ;④AC ⊥β ,上述四种位置关系中,不一定成立的结论的序号是______.三、解答题:9.如图,三棱锥P -ABC 的三个侧面均为边长是1的等边三角形,M ,N 分别为PA ,BC的中点.(Ⅰ)求MN 的长;(Ⅱ)求证:PA ⊥BC .10.如图,在四面体ABCD 中,CB =CD ,AD ⊥BD ,且E 、F 分别是AB 、BD 的中点.求证:(Ⅰ)直线EF ∥平面ACD ;(Ⅱ)平面EFC ⊥平面BCD .11.如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,∠BAD =∠FAB=90°,BC ∥AD ,AF BE AF BE AD BC 21,//,21==,G ,H 分别为FA ,FD 的中点.(Ⅰ)证明:四边形BCHG 是平行四边形;(Ⅱ)C ,D ,F ,E 四点是否共面?为什么?(Ⅲ)设AB =BE ,证明:平面ADE ⊥平面CDE .§7-2空间几何体的结构【知识要点】1.简单空间几何体的基本概念:(1)(2)特殊的四棱柱:(3)其他空间几何体的基本概念:几何体基本概念正棱锥底面是正多面形,并且顶点在底面的射影是底面的中心正棱台正棱锥被平行于底面的平面所截,截面与底面间的几何体是正棱台圆柱以矩形的一边所在的直线为轴,将矩形旋转一周形成的曲面围成的几何体圆锥以直角三角形的一边所在的直线为轴,将直角三角形旋转一周形成的曲面围成的几何体圆台以直角梯形中垂直于底边的腰所在的直线为轴,将直角梯形旋转一周形成的曲面围成的几何体球面半圆以它的直径为轴旋转,旋转而成的曲面球球面所围成的几何体2.简单空间几何体的基本性质:几何体性质补充说明棱柱(1)侧棱都相等,侧面是平行四边形(2)两个底面与平行于底面的截面是全等的多边形(3)过不相邻的两条侧棱的截面(对角面)是平行四边形(1)直棱柱的侧棱长与高相等,侧面及对角面都是矩形(2)长方体一条对角线的平方等于一个顶点上三条棱长的平方和正棱锥(1)侧棱都相等,侧面是全等的等腰三角形(2)棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面上的射影也组成一个直角三角形球(1)球心和球的截面圆心的连线垂直于截面(2)球心到截面的距离d ,球的半径R ,截面圆的半径r 满足22d R r -=(1)过球心的截面叫球的大圆,不过球心的截面叫球的小圆(2)在球面上,两点之间的最短距离,就是经过这两点的大圆在这两点间的一段劣弧的长度(两点的球面距离)3.简单几何体的三视图与直观图:(1)平行投影:①概念:如图,已知图形F ,直线l 与平面α 相交,过F 上任意一点M 作直线MM 1平行于l ,交平面α 于点M 1,则点M 1叫做点M 在平面α 内关于直线l 的平行投影.如果图形F 上的所有点在平面α 内关于直线l 的平行投影构成图形F 1,则F 1叫图形F 在α 内关于直线l 的平行投影.平面α 叫投射面,直线l 叫投射线.②平行投影的性质:性质1.直线或线段的平行投影仍是直线或线段;性质2.平行直线的平行投影是平行或重合的直线;性质3.平行于投射面的线段,它的投影与这条线段平行且等长;性质4.与投射面平行的平面图形,它的投影与这个图形全等;性质5.在同一直线或平行直线上,两条线段平行投影的比等于这两条线段的比.(2)直观图:斜二侧画法画简单空间图形的直观图.(3)三视图:①正投影:在平行投影中,如果投射线与投射面垂直,这样的平行投影叫做正投影.②三视图:选取三个两两垂直的平面作为投射面.若投射面水平放置,叫做水平投射面,投射到这个平面内的图形叫做俯视图;若投射面放置在正前方,叫做直立投射面,投射到这个平面内的图形叫做主视图;和直立、水平两个投射面都垂直的投射面叫做侧立投射面,投射到这个平面内的图形叫做左视图.将空间图形向这三个平面做正投影,然后把三个投影按右图所示的布局放在一个水平面内,这样构成的图形叫空间图形的三视图.③画三视图的基本原则是“主左一样高,主俯一样长,俯左一样宽”.4.简单几何体的表面积与体积:(1)柱体、锥体、台体和球的表面积:①S 直棱柱侧面积=ch ,其中c 为底面多边形的周长,h 为直棱柱的高.②'=ch S 21正棱锥形面积,其中c 为底面多边形的周长,h '为正棱锥的斜高.③''+=h c c S )(21正棱台侧面积,其中c ',c 分别是棱台的上、下底面周长,h '为正棱台的斜高.④S 圆柱侧面积=2πRh ,其中R 是圆柱的底面半径,h 是圆柱的高.⑤S 圆锥侧面积=πRl ,其中R 是圆锥的底面半径,l 是圆锥的母线长.⑥S 球=4πR 2,其中R 是球的半径.(2)柱体、锥体、台体和球的体积:①V 柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.②Sh V 31=锥体,其中S 是锥体的底面积,h 是锥体的高.③)(31'+'+=S SS S h V 台体,其中S ',S 分别是台体的上、下底面的面积,h 为台体的高.④3π34R V =球,其中R 是球的半径.【复习要求】1.了解柱、锥、台、球及其简单组合体的结构特征;2.会画出简单几何体的三视图,会用斜二侧法画简单空间图形的直观图;3.理解球、棱柱、棱锥、台的表面积与体积的计算公式.【例题分析】例1如图,正三棱锥P -ABC 的底面边长为a ,侧棱长为b .(Ⅰ)证明:PA ⊥BC ;(Ⅱ)求三棱锥P -ABC 的表面积;(Ⅲ)求三棱锥P -ABC 的体积.【分析】对于(Ⅰ)只要证明BC (PA )垂直于经过PA (BC )的平面即可;对于(Ⅱ)则要根据正三棱锥的基本性质进行求解.证明:(Ⅰ)取BC 中点D ,连接AD ,PD .∵P -ABC 是正三棱锥,∴△ABC 是正三角形,三个侧面PAB ,PBC ,PAC 是全等的等腰三角形.∵D 是BC 的中点,∴BC ⊥AD ,且BC ⊥PD ,∴BC ⊥平面PAD ,∴PA ⊥BC .(Ⅱ)解:在Rt △PBD 中,,4212222a b BD PB PD -=-=∴.442122a b a PD BC S PBC -==⋅∆∵三个侧面PAB ,PBC ,PAC 是全等的等腰三角形,∴三棱锥P -ABC 的侧面积是.44322a b a-∴△ABC 是边长为a 的正三角形,∴三棱锥P -ABC 的底面积是,432a ∴三棱锥P -ABC 的表面积为⋅-+=-+)312(434434322222a b a aa b a a (Ⅲ)解:过点P 作PO ⊥平面ABC 于点O ,则点O 是正△ABC 的中心,∴,63233131aa AD OD =⨯==在Rt △POD 中,,3332222a b OD PD PO -=-=∴三棱锥P -ABC 的体积为.3123334331222222a b a a b a -=-⨯⨯【评述】1、解决此问题要求同学们熟悉正棱锥中的几个直角三角形,如本题中的Rt△POD ,其中含有棱锥的高PO ;如Rt △PBD ,其中含有侧面三角形的高PD ,即正棱锥的斜高;如果连接OC ,则在Rt △POC 中含有侧棱.熟练运用这几个直角三角形,对解决正棱锥的有关问题很有帮助.2、正n (n =3,4,6)边形中的相关数据:正三角形正方形正六边形边长aaa对角线长a2长:2a ;短:a3边心距a 632a a 23面积243a a 22233a 外接圆半径a 33a 22a例2如图,正三棱柱ABC -A 1B 1C 1中,E 是AC 的中点.(Ⅰ)求证:平面BEC 1⊥平面ACC 1A 1;(Ⅱ)求证:AB 1∥平面BEC 1.【分析】本题给出的三棱柱不是直立形式的直观图,这种情况下对空间想象能力提出了更高的要求,可以根据几何体自身的性质,适当添加辅助线帮助思考.证明:(Ⅰ)∵ABC -A 1B 1C 1是正三棱柱,∴AA 1⊥平面ABC ,∴BE ⊥AA 1.∵△ABC 是正三角形,E 是AC 的中点,∴BE ⊥AC ,∴BE ⊥平面ACC 1A 1,又BE ⊂平面BEC 1,∴平面BEC 1⊥平面ACC 1A 1.(Ⅱ)证明:连接B 1C ,设BC 1∩B 1C =D .∵BCC 1B 1是矩形,D 是B 1C 的中点,∴DE ∥AB 1.又DE ⊂平面BEC 1,AB 1⊄平面BEC 1,∴AB 1∥平面BEC 1.例3在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,AB ∥DC ,△PAD 是等边三角形,已知BD =2AD =8,542==DC AB .(Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ;(Ⅱ)求四棱锥P -ABCD 的体积.【分析】本题中的数量关系较多,可考虑从“算”的角度入手分析,如从M 是PC 上的动点分析知,MB ,MD 随点M 的变动而运动,因此可考虑平面MBD 内“不动”的直线BD 是否垂直平面PAD .证明:(Ⅰ)在△ABD 中,由于AD =4,BD =8,54=AB ,所以AD 2+BD 2=AB 2.故AD ⊥BD .又平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,BD ⊂平面ABCD ,所以BD ⊥平面PAD ,又BD ⊂平面MBD ,故平面MBD ⊥平面PAD .(Ⅱ)解:过P 作PO ⊥AD 交AD 于O ,由于平面PAD ⊥平面ABCD ,所以PO ⊥平面ABCD .因此PO 为四棱锥P -ABCD 的高,又△PAD 是边长为4的等边三角形.因此.32423=⨯=PO 在底面四边形ABCD 中,AB ∥DC ,AB =2DC ,所以四边形ABCD 是梯形,在Rt △ADB 中,斜边AB 边上的高为5585484=⨯,即为梯形ABCD 的高,所以四边形ABCD 的面积为.2455825452=⨯+=S 故.316322431=⨯⨯=-ABCD P V 例4如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图.它的主视图和左视图在下面画出(单位:cm)(Ⅰ)画出该多面体的俯视图;(Ⅱ)按照给出的尺寸,求该多面体的体积;(Ⅲ)在所给直观图中连结BC ',证明:BC '∥平面EFG .【分析】画三视图的基本原则是“主左一样高,主俯一样长,俯左一样宽”,根据此原则及相关数据可以画出三视图.证明:(Ⅰ)该几何体三视图如下图:(Ⅱ)所求多面体体积).cm (32842)2221(316442=⨯⨯⨯⨯-⨯⨯=-=正三棱锥长方体V V V (Ⅲ)证明:在长方体ABCD -A'B'C'D'中,连结AD',则AD'∥BC'.因为E ,G 分别为AA',A'D'中点,所以AD'∥EG ,从而EG ∥BC '.又BC'⊄平面EFG ,所以BC'∥平面EFG .例5有两个相同的直三棱柱,底面三角形的三边长分别是3a ,4a ,5a ,高为a2,其中a >0.用它们拼成一个三棱柱或四棱柱,在所有可能的情形中,表面积最小的一个是四棱柱,求a 的取值范围.解:直三棱柱ABC -A 1B 1C 1的三个侧面的面积分别是6,8,10,底面积是6a 2,因此每个三棱柱的表面积均是2×6a 2+6+8+10=12a 2+24.情形①:将两个直三棱柱的底面重合拼在一起,只能拼成三棱柱,其表面积为:2×(12a 2+24)-2×6a 2=12a 2+48.情形②:将两个直三棱柱的侧面ABB 1A 1重合拼在一起,结果可能拼成三棱柱,也可能拼成四棱柱,但表面积一定是:2×(12a 2+24)-2×8=24a 2+32.情形③:将两个直三棱柱的侧面ACC 1A 1重合拼在一起,结果可能拼成三棱柱,也可能拼成四棱柱,但表面积一定是:2×(12a 2+24)-2×6=24a 2+36.情形④:将两个直三棱柱的侧面BCC 1B 1重合拼在一起,只能拼成四棱柱,其表面积为:2×(12a 2+24)-2×10=24a 2+28在以上四种情形中,②、③的结果都比④大,所以表面积最小的情形只能在①、④中产生.依题意“表面积最小的一个是四棱柱”,得24a 2+28<12a 2+48,解得,352<a 所以a 的取值范围是⋅)315,0(例6在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点,求三棱锥F -A 1ED 1的体积.【分析】计算三棱锥F -A 1ED 1的体积时,需要确定锥体的高,即点F 到平面A 1ED 1的距离,直接求解比较困难.利用等积的方法,调换顶点与底面的方式,如1111EFD A ED A F V V --=,也不易计算,因此可以考虑使用等价转化的方法求解.解法1:取AB 中点G ,连接FG ,EG ,A 1G .∵GF ∥AD ∥A 1D 1,∴GF ∥平面A 1ED 1,∴F 到平面A 1ED 1的距离等于点G 到平面A 1ED 1的距离.∴.8183313132111111111a a a D A S V V V EG A EG A D ED A G ED A F =⨯⨯====⋅∆---解法2:取CC 1中点H ,连接FA 1,FD 1,FH ,FC 1,D 1H ,并记FC 1∩D 1H =K .∵A 1D 1∥EH ,A 1D 1=EH ,∴A 1,D 1,H ,E 四点共面.∵A 1D 1⊥平面C 1CDD 1,∴FC ⊥A 1D 1.又由平面几何知识可得FC 1⊥D 1H ,∴FC ⊥平面A 1D 1HE .∴FK 的长度是点F 到平面A 1D 1HE (A 1ED 1)的距离.容易求得.811053453131,1053321111a a a FK S V a FK ED A ED A F =⨯⨯===⋅∴∆-练习7-2一、选择题:1.将棱长为2的正方体木块削成一个体积最大的球,则这个球的表面积为()(A)2π(B)4π(C)8π(D)16π2.如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是()(A)9π(B)10π(C)11π(D)12π3.有一种圆柱体形状的笔筒,底面半径为4cm ,高为12cm .现要为100个这种相同规格的笔筒涂色(笔筒内外均要涂色,笔筒厚度忽略不计).如果所用涂料每0.5kg 可以涂1m 2,那么为这批笔筒涂色约需涂料()(A)1.23kg (B)1.76kg (C)2.46kg (D)3.52kg 4.某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a +b 的最大值为()(A)22(B)32(C)4(D)52二、填空题:5.如图,正三棱柱ABC -A 1B 1C 1的每条棱长均为2,E 、F 分别是BC 、A 1C 1的中点,则EF的长等于______.6.将边长为1的正方形ABCD 沿对角线AC 折起,使得BD =1,则三棱锥D -ABC 的体积是______.7.一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,且该六棱柱的高为3,底面周长为3,则这个球的体积为______.8.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件①:_______________________________________________________________;充要条件②:_______________________________________________________________.(写出你认为正确的两个充要条件)三、解答题:9.如图,在正四棱柱ABCD-A1B1C1D1中,E是DD1的中点.(Ⅰ)求证:BD1∥平面ACE;(Ⅱ)求证:平面ACE⊥平面B1BDD1.10.已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.(Ⅰ)求该几何体的体积V;(Ⅱ)求该几何体的侧面积S.11.如图,已知ABCD-A1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,且AE=FC1=1.(Ⅰ)求证:E,B,F,D1四点共面;(Ⅱ)若点G 在BC 上,32=BG ,点M 在BB 1上,GM ⊥BF ,求证:EM ⊥面BCC 1B 1.§7-3空间向量与立体几何【知识要点】1.空间向量及其运算:(1)空间向量的线性运算:①空间向量的加法、减法和数乘向量运算:平面向量加、减法的三角形法则和平行四边形法则拓广到空间依然成立.②空间向量的线性运算的运算律:加法交换律:a +b =b +a ;加法结合律:(a +b +c )=a +(b +c );分配律:(λ +μ )a =λ a +μ a ;λ (a +b )=λ a +λ b .(2)空间向量的基本定理:①共线(平行)向量定理:对空间两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ ,使得a ∥λ b .②共面向量定理:如果两个向量a ,b 不共线,则向量c 与向量a ,b 共面的充要条件是存在惟一一对实数λ ,μ ,使得c =λ a +μ b .③空间向量分解定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在惟一的有序实数组λ 1,λ 2,λ 3,使得p =λ 1a +λ 2b +λ 3c .(3)空间向量的数量积运算:①空间向量的数量积的定义:a ·b =|a ||b |c os 〈a ,b 〉;②空间向量的数量积的性质:a ·e =|a |c os <a ,e >;a ⊥b ⇔a ·b =0;|a |2=a ·a ;|a ·b |≤|a ||b |.③空间向量的数量积的运算律:(λ a )·b =λ (a ·b );交换律:a ·b =b ·a ;分配律:(a +b )·c =a ·c +b ·c .(4)空间向量运算的坐标表示:①空间向量的正交分解:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i ,j ,k ,则这三个互相垂直的单位向量构成空间向量的一个基底{i ,j ,k },由空间向量分解定理,对于空间任一向量a ,存在惟一数组(a 1,a 2,a 3),使a =a 1i +a 2j +a 3k ,那么有序数组(a 1,a 2,a 3)就叫做空间向量a 的坐标,即a =(a 1,a 2,a 3).②空间向量线性运算及数量积的坐标表示:设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a +b =(a 1+b 1,a 2+b 2,a 3+b 3);a -b =(a 1-b 1,a 2-b 2,a 3-b 3);λ a =(λ a 1,λ a 2,λ a 3);a ·b =a 1b 1+a 2b 2+a 3b 3.③空间向量平行和垂直的条件:a ∥b (b ≠0)⇔a =λ b ⇔a 1=λ b 1,a 2=λ b 2,a 3=λ b 3(λ ∈R );a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0.④向量的夹角与向量长度的坐标计算公式:设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则;||||232221232221b b b a a a ++==++==⋅⋅b b b a a a;||||,cos 232221232221332211bb b aa ab a b a b a ++++++=>=<⋅b a ba b a 在空间直角坐标系中,点A (a 1,a 2,a 3),B (b 1,b 2,b 3),则A ,B 两点间的距离是.)()()(||233222211b a b a b a AB -+-+-=2.空间向量在立体几何中的应用:(1)直线的方向向量与平面的法向量:①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.②如果直线l ⊥平面α ,取直线l 的方向向量a ,则向量a 叫做平面α 的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定.(2)用空间向量刻画空间中平行与垂直的位置关系:设直线l ,m 的方向向量分别是a ,b ,平面α ,β 的法向量分别是u ,v ,则①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ;②l ⊥m ⇔a ⊥b ⇔a ·b =0;③l ∥α ⇔a ⊥u ⇔a ·u =0;④l ⊥α ⇔a ∥u ⇔a =k u ,k ∈R ;⑤α ∥⇔u ∥v ⇔u =k v ,k ∈R ;⑥α ⊥β ⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题:①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为θ ,显然2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v ②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面α 的法向量是v ,直线a 与平面α 的夹角为θ ,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作α -l-β 在二面角的棱上任取一点O,在两个半平面内分别作射线OA⊥l,OB⊥l,则∠AOB叫做二面角α -l-β 的平面角.利用向量求二面角的平面角有两种方法:方法一:如图,若AB,CD分别是二面角α -l-β 的两个面内与棱l垂直的异面直线,则二面角α -l-β 的大小就是向量与的夹角的大小.方法二:如图,m1,m2分别是二面角的两个半平面α ,β 的法向量,则〈m1,m2〉与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题.【复习要求】1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂直.4.理解直线的方向向量与平面的法向量.5.能用向量语言表述线线、线面、面面的垂直、平行关系.6.能用向量方法解决线线、线面、面面的夹角的计算问题.【例题分析】例1如图,在长方体OAEB-O1A1E1B1中,OA=3,OB=4,OO1=2,点P在棱AA1上,且AP=2PA1,点S在棱BB1上,且B1S=2SB,点Q,R分别是O1B1,AE的中点,求证:PQ∥RS.【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ =解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2PA 1,∴),34,0,0()2,0,0(32321===AA AP ∴⋅34,0,3(P 同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S ,)32,2,3(RS PQ =-=∴//,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤:(1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明.例2已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行.解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4),。

2020全国卷二数学理科立体几何

2020全国卷二数学理科立体几何

2020全国卷二数学理科立体几何
全国卷二数学理科立体几何的内容主要包括:
一、立体几何的基本概念:
1. 空间的概念:空间的维数、空间的直角坐标系、空间的坐标变换、空间的参数方程等。

2. 立体几何的基本概念:点、直线、面、体、立体图形的分类、立体图形的基本性质、立体图形的基本关系等。

二、立体几何的基本公式:
1. 空间的距离公式:点到直线的距离、点到平面的距离、直线到平面的距离、点到点的距离等。

2. 空间的体积公式:正多面体的体积、球体的体积、椎体的体积等。

3. 空间的面积公式:正多面体的表面积、球体的表面积、椎体的表面积等。

三、立体几何的基本定理:
1. 空间三角形的关系:直角三角形的定理、锐角三角形的定理、钝角三角形的定理等。

2. 空间四边形的关系:正方形的定理、矩形的定理、平行四边
形的定理、平行六边形的定理等。

3. 空间多面体的关系:正多面体的定理、正八面体的定理、正十二面体的定理等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间图形的计算与证明一、近几年高考试卷部分立几试题1、(全国8)正六棱柱ABCDEF-A1B1C1D1E1F1底面边长为1,侧棱长为2,则这个棱柱的侧面对角线E1D与BC1所成的角是()A、90°B、60°C、45°D、30°[评注]主要考查正六棱柱的性质,以及异面直线所成角的求法。

2、(全国18)如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直,点M在AC上移动,点N在BF 上移动,若CM=NB=a(0<a<2)(1)求MN的长;(2)当a为何值时,MN的长最小;(3)当MN长最小时,求面MNA与面MNB所成的二面角的大小。

[评注]考查线面关系,二面角函数最值等基础知识,考查空间想象力和推理能力。

3、(全国19)如图,四棱锥P-ABCDC的底面是边长为a的正方形,PB⊥面ABCD。

(1)若面PAD与面ABCD所成的二面角为60°,求这个四棱锥的体积;(2)证明无论四棱锥的高怎样变化,面PAD与面PCD所成的二面角恒大于90°。

[评注]考查线面关系和二面角概念,以及空间想象力和逻辑推理能力。

4、(02全国文22)(一)给出两块面积相同的正三角形纸片,要求用其中一块剪拼成一个正三棱锥模型,使它们的全面积都与原三角形面积相等,请设计一种剪拼法,分别用虚线标示在图(1)(2)中,并作简要说明。

(1)(2)(二)试比较你剪拼的正三棱锥与正三棱柱的体积的大小。

(三)如果给出的是一块任意三角形的纸片,如图(3)要求剪拼成一个直三棱柱模型,使它的全面积与给出的三角形面积相等,请设计一种剪拼方法,用虚线标出在图3中,并作简要说明。

[评注]主要考查空间想象能力,动手操作能力,探究能力和灵活运用所学知识解决现实问题的能力。

5、(年上海14)已知直线l、m、平面α、β,且l⊥α,m β,给出下列四个命题。

(1)α∥β,则l⊥m (2)若l⊥m,则α∥β(3)若α⊥β,则l∥m (4)若l∥m,则α⊥β[评注]主要考查线面关系的判断。

6、(上海4)若正四棱锥的底面边长为23cm,体积为4cm3,则它的侧面与底面所成的二面角的大小是________.[评注]主要考查正棱锥中有关量的计算,以及二面角的求法。

7、(03全国15)在平面几何里,有勾股定理:“设△ABC的两边AB、AC互相垂直,则AB2+AC2=BC2”,拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面积的关系,可以得出正确结论是:“设三棱锥A-BCD的一个侧面ABC、ACD、ADB两两互相垂直,则________”.[评注]主要考查三棱锥基本知识,考查运用联想、类比、猜想的手法进行探索的能力。

8、(03年江苏7)棱长为a的正方体中,连结相邻面的中心,以这些线段为棱的八面体的体积为()A 、33aB 、43aC 、63aD 、123a [评注]考查多面体积的计算方法。

9、(年江苏12)一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为( )A 、3πB 、4πC 、33πD 、6π[评注]考查几何组合体知识以及多面体与球的计算问题。

10、对于四面体ABCD ,给出下列四个命题①若AB=AC ,BD=CD ,则BC ⊥AD ;②若AB=CD ,AC=BD ,则BC ⊥AD ;③若AB ⊥AC ,BD ⊥CD ,则BC ⊥AD ;④AB ⊥CD, BD ⊥AC ,则BC ⊥AD ;其中真命题的序号是_______________.[评注]考查多面体中线线关系的判断。

11、(年江苏19)如图,在直三棱柱ABC -A 1B 1C 1中,底面是等腰直角三角形,∠ACB=90°,侧棱AA 1=2,D 、E 分别是CC 1与A 1B的中点,点E 在平面ABD 上的射影是△ABD 重心G 。

(1)求A 1B 与平面ABD 所成的角大小;B1A1(2)求点A 1到平面AED 的距离。

12、(年上海14)在下列条件中,可判断平面α与β平行的是( )A 、α、β都垂直于平面γB 、α内存在不共线的三点到β的距离相等C 、l 、m 是α内两条直线,且l ∥β,m ∥βD 、l 、m 是两条异面直线,且l ∥α,m ∥α, l ∥β,m ∥β[评注]主要考查线面、面面位置关系等基本知识,考查分析判断能力。

13、(年上海5)在正四棱锥P -ABCD 中,若侧面与底面所成的二面角的大小为60°,则异面直线PA 与BC 所成角的大小等于____________.[评注]主要考查异面直线所成角的度数的求法,正四棱锥的性质等基本知识,考查运算能力。

14、(年上海18)如图,已知平行六面体ABCD -A 1B 1C 1D 1中,A 1A ⊥平面ABCD ,AB=4,AD=2,若B 1D⊥BC ,直线B 1D 与 C'A'平面ABCD 的所成的角等于30°,求平行六面体ABCD -A 1B 1C 1D 1的体积。

[评注]主要考查平行六面体等基本知识。

15、(04年全国理16)已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能的是①两条平行直线②两条互相垂直的直线 ③同一条直线 ④一条直线及其外一点在上面结论中,正确结论的编号是_____________(写出所有正确结论的编号)[评注]主要考查线面关系的判断。

16、(04全国理20)如图,已知四棱锥P -ABCD ,PB ⊥AD ,侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120°.(1)求点P 到平面ABCD 的距离;(2)求面APB 与面CPB 所成二面角的大小.[评注]主要考查线面关系,点面距离及二面角的求法,以及空间CP想象力和逻辑推时能力。

17、(04全国理10)已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H 。

设四面体EFGH 的表面积为T ,则S T 等于( )A 、91B 、94C 、41D 、31[评注]主要考查多面体表面积的求法。

18、(04江苏18)在棱长为4的正方体ABCD -A 1B 1C 1D 1中,O 是正方形A 1B 1C 1D 1的中心,点P 在棱CC 1上,且CC 1=4CP .(1)求直线AP 与平面BCC 1B 所成的角的大小(结果用反三角函数值表示);(2)设O 点在平面D 1AP 上射影是H ,求证:D 1H ⊥AP ;(3)求点P 到平面ABD 1的距离.[评注]本题主要考查线面角求法,线线垂直的判定方法,点面距及逻辑推理能力。

19、(04江苏4)一平面截一球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积是( )A 、cm 3100π 3B 、cm 3208π 3C 、cm 3500π 3 D 、3313416cm π[评注]球的概念及性质,及球的体积计算公式。

二:近几年高考立几试题特点概述。

1,分值及难易程度。

近几年高考立几试题题量往往是两小(或三小)一大,均分在15到20多分之间,分值基本稳定,以容易题和中等题为主,偏难题一般作为选择题,大题都在前三题。

考查方向始终把空间直线与直线、直线与平面、平面下平面的平行与垂直的性质与判定,考查的重点往往在角与距离的计算且算中有证。

(2)立几主客观题概述。

选择、填空题注重符号语言、文字语言、图形语言三种语言的相互转化,表现为对图形的识别,理解和加工。

解答题形成一些规律,一般将几何元素集中于一个几何体中,即以一个多面体为依托,设置几个小问,设问形式以证明或计算为主。

这方面上海高考卷普遍评价较好。

从试卷命题来看,上海卷的立几部分也更体现上述精神,突出表现在:考查内容非常基本,各方面系数很稳定。

选择题基本上考查线面关系的判定,更注重运用符号语言、文字语言、图形语言。

今年取消了题型比例,上海高考卷更有研究的价值。

希望大家更为关注。

(3)在稳定立体几何试题的同时,在创新方面也作了一些有益的尝试。

如年把“平面勾股定理”拓展为“空间勾股定理”是首次出现的“研究性问题”,把平面几何题中的结论用模拟的方法推广到立体几何中,着重考查直觉、以及归纳猜想能力,由于考生平时少见少练这类试题,有利于推动研究性学习的开展,有利于营造公平竞争的环境,也有利于考查考试说明中新增的要求、即个性品质的要求。

特别是在大题上进行了改革,使其更具有综合性、开放性,目的在于激发学生独立思考,从数学角度去发现和提出问题,并加以探索和研究,有利于提高学生的思维能力和创新意识,再者以立体几何题为试验,试图在改变试卷形式上有所突破。

立体几何作为命题者的试验题,基本上每年都会出现。

如2001年的第11题民房问题,年的第18题,综合运用代数函数求最值,年的第19题,借助于空间向量求角与距离,等等。

三、考试说明中立体几何部分解读与2005年命题展望。

1、今年高考说明立几部分与04年相比,有几处小的调整。

①04年“了解三垂线定理及其逆定理”05年改为“掌握三重线定理及逆定理。

”②今年删去了“了解多面体的欧拉公式”。

○3“多面体,棱柱,棱锥,正多面体,球”调为“多面体,正多面体,棱柱,棱锥,球”2、分析考试说明立几部分,命题内容虽有小的调整,但仍保持一定的稳定性与连续性,考查的重点仍是点线面的位置关系及空间距离和空间角,突出空间想象能力,突出突间图形的特点,侧重于空间元素位置关系和定性与定量考查。

3、立体几何第一部分线面关系的内容要求全是“掌握”,而第二部分很多概念只需“了解”,如多面体、凸面体、正多面体的概念,球的概念,要“掌握”的主要是这些几何体的性质以及球的表面积与体积公式。

二轮复习重点仍在第一部分不能动摇。

4、纵观近几年高考立几部分相对比较稳定,高考试题中没有出现运用所学的立体几何知识来分析和解决较为复杂的和综合性的问题。

我认为这种命题的格局今年仍不会改变。

当然,不排除用其他知识来解决立体几何问题,如用代数知识来解决立几中的最值问题,也可综合运用三角、排列组合方法来解决立几中的其它问题等。

5、根据近几年高考立几解答题所选载体看,主要还是以常见的三棱柱,四棱柱,三棱锥,四棱锥为主,但要关注非常规放置问题,也要兼顾非规则多面体模型,由于江苏各所学校所选教材的具体情况不同而且近两年也不是以二选一模式,故解答题应是既能用空间向量知识解也能用传统知识解。

平时在教学时留心三线垂直问题。

6、欧拉公式不会考。

四、二轮复习策略1、二轮复习紧紧抓住立几第一部分不动摇,除了突出知识的主干体系,让学生整体把握好所学知识外,还应突出重点,不必面面俱到。

复习时可安排三课时左右,集中解决三类问题:一是线面、面面关系;二是空间角;三是距离、面积与体积的计算,关注用代数方法解决立几的最值问题。

相关文档
最新文档