加权最小二乘法(WLS)
加权最小二乘法详细推导

加权最小二乘法(Weighted Least Squares,WLS)是一种用于线性回归模型的优化方法,它给予不同的数据点不同的权重,以便更好地拟合模型并减少误差。
假设我们有一个线性回归模型y = Xβ,其中y 是目标变量,X 是特征矩阵,β是要估计的参数。
我们还有一个与X 大小相同的权重矩阵W。
加权最小二乘法的目标是最小化损失函数:J(β) = ∑w_i(y_i - x_iβ)^2,其中i 是数据点的索引,w_i 是与第i 个数据点相关的权重。
对J(β) 求关于β的偏导数,并令其为0,得到:
∂J(β)/∂β= 0 = 2∑w_iy_i - 2x_iβ
由于这是一个线性方程,我们可以将其表示为矩阵形式:
X^TWXβ= X^TWy
其中,X^T 是X 的转置,W 是权重矩阵,y 是目标变量。
通过解这个方程,我们可以得到β的估计值:
β= (X^TWX)^(-1)X^TWy
这就是加权最小二乘法的推导。
这种方法考虑了每个数据点的权重,因此可以更好地处理不同大小和分布的数据点。
加权最小二乘法的基本思想即大残差平方

加权最小二乘法的基本思想即大残
差平方
和最小法
加权最小二乘法(Weighted Least Squares Method, WLSM)是统计学中进行参数估计的一种重要方法。
它的基本思想是使用极小化大残差平方和最小法(Large Residual Sum of Squares)对参数进行估计或拟合。
其中,每个观测值都有一个不同的权重,即观测值的可信度,权重可以是固定的,也可以是可变的。
该方法在处理有限样本数据时,特别适用于满足正态分布的数据。
WLSM的基本步骤如下:
(1)确定权重w:可以手动指定,也可以从数据分布中自动求出。
(2)根据观测值和权重,构造误差平方和函数S
(x1,x2,…,xn),其中x1,x2,…,xn为待估计参数。
(3)求取S(x1,x2,…,xn)在各个参数上的偏导数,当这些偏导数全为0时,即为参数的最小值。
(4)使用梯度下降法等数值方法求解上述参数的最小值。
加权最小二乘法 拟合多项式 matlab

加权最小二乘法(Weighted Least Squares, WLS)是一种经典的拟合方法,用于处理数据中的噪声和异常值。
在拟合多项式的过程中,加权最小二乘法能够更好地适应不同的数据权重,从而得到更准确、更可靠的拟合结果。
结合Matlab强大的数学计算和可视化工具,我们可以更方便、更高效地实现加权最小二乘法拟合多项式。
一、加权最小二乘法的基本原理1. 加权最小二乘法的概念在拟合多项式过程中,常常会遇到数据噪声较大或者部分数据异常值较大的情况。
此时,普通的最小二乘法可能无法有效地拟合数据,因此需要引入加权最小二乘法。
加权最小二乘法通过为每个数据点赋予不同的权重,对异常值和噪声进行更有效的处理。
2. 加权最小二乘法的数学原理加权最小二乘法的数学原理主要是在最小化误差的基础上,引入权重矩阵来调整不同数据点的重要性。
通过优化残差的加权和,可以得到适应不同权重的拟合结果。
二、Matlab中的加权最小二乘法1. Matlab工具Matlab提供了丰富的数学计算和拟合工具,通过内置的polyfit函数和curve fitting工具箱,可以方便地实现加权最小二乘法拟合多项式。
Matlab还提供了丰富的可视化工具,可以直观展示加权最小二乘法的拟合效果。
2. 加权最小二乘法的实现在Matlab中,可以通过指定权重向量来调用polyfit函数,实现加权最小二乘法拟合多项式。
利用Matlab内置的拟合评估工具,可以对拟合效果进行全面评估和优化。
三、实例分析以实际数据为例,我们可以在Matlab环境下进行加权最小二乘法的拟合多项式实例分析。
通过构建数据模型、指定权重、调用polyfit函数并结合可视化工具,可以全面了解加权最小二乘法在拟合多项式中的应用效果。
四、个人观点和总结在实际工程和科学研究中,加权最小二乘法拟合多项式是一种非常有效和重要的数据处理方法。
结合Matlab强大的数学计算和可视化工具,可以更方便、更高效地实现加权最小二乘法拟合多项式。
加权最小二乘

异方差的类型
• • 同方差:i2 = 常数 f(Xi) 异方差: i2 = f(Xi)(注:方差与x有关)
异方差一般可归结为三种类型: (1)单调递增型: i2随X的增大而增大 (2)单调递减型: i2随X的增大而减小 (3)复 杂 型: i2与X的变化呈复杂形式
异方差产生原因
1、模型中缺少某些解释变量(即自变量);从而干 扰项产生系统模式。 2、样本数据观测误差;随着数据采集技术的改进, 干扰项的方差可能减少。 3、模型设置不正确。 4、经济结构发生了变化,但模型参数没作相应调整 。比如按照边错边改学习模型,人们在学习的过 程中,其行为误差随时间而减少。 5、异常值的出现也会产生。异常值可以通过查看图 形或检查原始数据找到。
• 标准的线性回归模型中,假设所研究总体中方差恒定, 即因变量的变异不随其自身预测值或其他自变量值得变 化而变动。 • 但在有的研究问题中,这一假设可能被违反,可能是因 变量的变异随其自身数值增大而增大,也可能是随其他 变量值而改变。例如:以地区为观察单位调查某种疾病 的发生率,由于率的标准差本身就和样本量有关,显然 该地区的人数越多,所得到的发生率就会越稳定,即变 异度越低。在这些情况下,如果采用普通最小二乘法( OLS)来分析,可能产生偏差,如果能够根据变异的大 小对相应数据给予不同的权重,在拟合时对变异较小的 测量值赋予较大权重,则能够提高模型的精度。
实际问题的异方差性
• 在实际经济问题中,随机扰动项往往是异方差的,但主要在截 面数据分析中出现。
加权最小二乘法的基本思想
• 加权最小二乘法是对原模型加权,使之变成一个新的不存在异方 差性的的概念
在讲到加权最小二乘法的时候需要引入一个重要的概 念——异方差。那么什么是异方差呢? 对于模型
计量经济学重点知识归纳整理

1.一般最小二乘法(Ordinary Least Squares,OLS):已知一组样本观测值{}n i Y X i i ,2,1:),(⋯=,一般最小二乘法要求样本回来函数尽可以好地拟合这组值,即样本回来线上的点∧i Y 及真实观测点Yt 的“总体误差”尽可能地小。
一般最小二乘法给出的推断标准是:被说明变量的估计值及实际观测值之差的平方和最小。
2.广义最小二乘法GLS :加权最小二乘法具有比一般最小二乘法更普遍的意义,或者说一般最小二乘法只是加权最小二乘法中权恒取1时的一种特别状况。
从今意义看,加权最小二乘法也称为广义最小二乘法。
3.加权最小二乘法WLS :加权最小二乘法是对原模型加权,使之变成一个新的不存在异方差性的模型,然后采纳一般最小二乘法估计其参数。
4.工具变量法IV :工具变量法是克服说明变量及随机干扰项相关影响的一种参数估计方法。
5.两阶段最小二乘法2SLS, Two Stage Least Squares :两阶段最小二乘法是一种既适用于恰好识别的结构方程,以适用于过度识别的结构方程的单方程估计方法。
6.间接最小二乘法ILS :间接最小二乘法是先对关于内生说明变量的简化式方程采纳一般小最二乘法估计简化式参数,得到简化式参数估计量,然后过通参数关系体系,计算得到结构式参数的估计量的一种方法。
7.异方差性Heteroskedasticity :对于不同的样本点,随机干扰项的方差不再是常数,而是互不相同,则认为出现了异方差性。
8.序列相关性Serial Correlation :多元线性回来模型的基本假设之一是模型的随机干扰项相互独立或不相关。
假如模型的随机干扰项违反了相互独立的基本假设,称为存在序列相关性。
9.多重共线性Multicollinearity :对于模型i k i i X X X Y μββββ++⋯+++=i k 22110i ,其基本假设之一是说明变量X 1,X 2,…,Xk 是相互独立的。
计量经济学gls和wls方法

计量经济学gls和wls方法
计量经济学中的GLS和WLS是两种重要的回归分析方法,用于处理模型中的异方差性和序列相关性问题。
广义最小二乘法(GLS)通过对原始模型的变换,解释了误差方差的已知结构(异方差性)、误差中的序列相关形式或同时解释二者的估计量。
它通过一个线性变换来处理异方差性和序列相关性。
在GLS中,被解释变量、解释变量和干扰项都进行相同的线性变换,使得新的干扰项满足球形假设,从而使得高斯马尔可夫定理重新成立,即对参数的估计重新变为最佳线性无偏估计。
加权最小二乘法(WLS)是GLS的一个特例,用于处理异方差性。
在WLS 中,每个残差的平方都用一个等于误差的(估计的)方差的倒数作为权数,从而对异方差性进行调整。
当误差的方差矩阵V(X)为对角矩阵时,WLS成立。
WLS的线性变换也是一个对角矩阵,使得最小化新的残差和过程相当于最小化加权后的旧的残差和过程。
以上内容仅供参考,如需更多信息,建议查阅计量经济学相关的专业书籍或咨询该领域的专家。
异方差加权最小二乘法修正(精)

第五章 案例分析一、问题的提出和模型设定根据本章引子提出的问题,为了给制定医疗机构的规划提供依据,分析比较医疗机构与人口数量的关系,建立卫生医疗机构数与人口数的回归模型。
假定医疗机构数与人口数之间满足线性约束,则理论模型设定为i i i u X Y ++=21ββ (5.31)其中i Y 表示卫生医疗机构数,i X 表示人口数。
由2001年《四川统计年鉴》得到如下数据。
表5.1 四川省2000年各地区医疗机构数与人口数地区人口数(万人) X医疗机构数(个)Y地区人口数(万人) X医疗机构数(个)Y成都 1013.3 6304 眉山 339.9 827 自贡 315 911 宜宾 508.5 1530 攀枝花 103 934 广安 438.6 1589 泸州 463.7 1297 达州 620.1 2403 德阳 379.3 1085 雅安 149.8 866 绵阳 518.4 1616 巴中 346.7 1223 广元 302.6 1021 资阳 488.4 1361 遂宁 371 1375 阿坝 82.9 536 内江 419.9 1212 甘孜 88.9 594 乐山345.91132 凉山 402.41471 南充 709.24064二、参数估计进入EViews 软件包,确定时间范围;编辑输入数据;选择估计方程菜单,估计样本回归函数如下表5.2估计结果为56.69,2665.508..,7855.0)3403.8()9311.1(3735.50548.563ˆ2===-+-=F e s R X Y ii (5.32) 括号内为t 统计量值。
三、检验模型的异方差本例用的是四川省2000年各地市州的医疗机构数和人口数,由于地区之间存在的不同人口数,因此,对各种医疗机构的设置数量会存在不同的需求,这种差异使得模型很容易产生异方差,从而影响模型的估计和运用。
为此,必须对该模型是否存在异方差进行检验。
(完整版)计量经济学重点知识归纳整理

1.普通最小二乘法(Ordinary Least Squares,OLS):已知一组样本观测值{}n i Y X i i ,2,1:),(⋯=,普通最小二乘法要求样本回归函数尽可以好地拟合这组值,即样本回归线上的点∧i Y 与真实观测点Yt 的“总体误差”尽可能地小。
普通最小二乘法给出的判断标准是:被解释变量的估计值与实际观测值之差的平方和最小。
2.广义最小二乘法GLS :加权最小二乘法具有比普通最小二乘法更普遍的意义,或者说普通最小二乘法只是加权最小二乘法中权恒取1时的一种特殊情况。
从此意义看,加权最小二乘法也称为广义最小二乘法。
3.加权最小二乘法WLS :加权最小二乘法是对原模型加权,使之变成一个新的不存在异方差性的模型,然后采用普通最小二乘法估计其参数。
4.工具变量法IV :工具变量法是克服解释变量与随机干扰项相关影响的一种参数估计方法。
5.两阶段最小二乘法2SLS, Two Stage Least Squares :两阶段最小二乘法是一种既适用于恰好识别的结构方程,以适用于过度识别的结构方程的单方程估计方法。
6.间接最小二乘法ILS :间接最小二乘法是先对关于内生解释变量的简化式方程采用普通小最二乘法估计简化式参数,得到简化式参数估计量,然后过通参数关系体系,计算得到结构式参数的估计量的一种方法。
7.异方差性Heteroskedasticity :对于不同的样本点,随机干扰项的方差不再是常数,而是互不相同,则认为出现了异方差性。
8.序列相关性Serial Correlation :多元线性回归模型的基本假设之一是模型的随机干扰项相互独立或不相关。
如果模型的随机干扰项违背了相互独立的基本假设,称为存在序列相关性。
9.多重共线性Multicollinearity :对于模型i k i i X X X Y μββββ++⋯+++=i k 22110i ,其基本假设之一是解释变量X 1,X 2,…,Xk 是相互独立的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一般情况下,对于模型
Y X
若存在:
E( ) 0
2
Cov( , ) E( ) u W
W 1
W 2
W
(4.2.2)
(4.2.3)
W n
则原模型存在 异方差性。
设
即随机误差项的方差与解释变量
1 .f (X 2i ) ¥|
.f (X 2i )
1
.f(X 2i )
X 2i
k
X
ki
.f(X 2i )
.f (X 2i ) Ui
i
1,2,
,n
Si)
U i )
-^E(U i 2
) f (X 2i )
(4・即同方差性。
于是可以用普通最小二乘法估计其参数, 得到关于参数
0, 1 >
的无偏的、
有效的估计量。
这就是加权最小二乘法,在这里权就是 .f(X 2i )
加权最小二乘法(WLS)
如果模型被检验证明存在异方差性, 则需要发展新的方法估计模型, 最常用的方法是加
权最小二乘法。
加权最小二乘法是对原模型加权, 使之变成一个新的不存在异方差性的模型, 然后采用
普通最小二乘法估计其参数。
下面先看一个例子。
原模型:y
i
0 1X
1i
2X
2i
,
k X ki
U
i 1,2, ,n
如果在检验过程中已经知道:
D(U i ) E(U i 2
)
i 2
f (X>i ) J
,
i 1,2, ,n
X 2之间存在相关性,模型存在异方差。
那么可以用... f(X 2)
去除原模型,使之变成如下形式的
新模型:
在该模型中,存在
W DD T
W i
W n
D 1Y
D 1X
(4.2.4)
Cov(N , N )
E(
*T
)
E(D 1
T
)D
1
:WD 1T
1u 2
DD D
u
2
I
于是,可以用普通最小二乘法估计模型
T *
1
. ?WLS
(X X ) 1X Y
1
E(
i
T
(4.2.4),得到参数估计量为:
* T *
用D 1
左乘(422)两边,得到一个新的模型:
* X
该模型具有同方差性。
因为
T 1T
1 1 T 1T 1
(X T
D 1
D 1
X) 1X T
D 1
D "
T 1 1 T 1
(4
25)
(X W X) X W Y
这就是原模型(2.6.2)的加权最小二乘估计量,是无偏的、有效的估计量。
如何得到权矩阵 W ?仍然是对原模型首先采用普通最小二乘法,得到随机误差项的近 似估计量,以此构成权矩阵的估计量,即
2 0
2
W
e2
(4.2.6)
2
e n
当我们应用计量经济学软件包时,只要选择加权最小二乘法,将上述权矩阵输入,估 计过程即告完成。
这样,就引出了人们通常采用的经验方法, 即并不对原模型进行异方差性
检验,而是直接选择加权最小二乘法,
尤其是采用截面数据作样本时。
如果确实存在异方差
性,则被有效地消除了;如果不存在异方差性,则加权最小二乘法等价于普通最小二乘法。