第二章、相交线与平行线_全章知识点归纳及典型题目练习(含答案)
最新北师大版七年级下册数学第二章相交线和平行线第1章节两条直线的位置关系知识点+测试试题以及答案

七年级下册第二章 第一小节两条直线的位置关系测试试题1、在同一平面内,两条直线的位置关系分为相交和平行两种。
平行线:在同一平面内,不相交的两条直线叫做平行线。
若两条直线只有一个公共点,我们称这两条直线为相交线。
2、一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。
3、对顶角的性质:对顶角相等。
5、对顶角是从位置上定义的,对顶角一定相等,但相等的角不一定是对顶角。
6、如果两个角的和是直角,那么称这两个角互为余角,简称为互余,称其中一个角是另一个角的余角。
7、如果两个角的和是平角,那么称这两个角互为补角,简称为互补,称其中一个角是另一个角的补角。
8、互余和互补是指两角和为直角或两角和为平角,它们只与角的度数有关,与角的位置无关。
9、余角和补角的性质:同角或等角的余角相等,同角或等角的补角相等。
10、余角和补角的性质用数学语言可表示为:(1)则(同角的余角(或补角)相等)。
00001290(180),1390(180),∠+∠=∠+∠=23∠=∠(2)且则(等角的余角(或补角)相等)。
1、下列说法正确的是 。
A 、不相交的两条直线是平行线 B 、同一个平面内,不相交的两条射线叫平行线C 、同一平面内,两条直线不相交就重合 D 、同一平面内,没有公共点的两条直线是平行线2、如图所示,直线a ,b ,c 两两相交,∠1=2∠3,∠2=68°,则∠1= ,∠4= 。
(2题) (3题)3、下面四个图形中,∠1与∠2是对顶角的图形有( )A .0个B .1个C .2个D .3个 4、如图所示,已知O 是直线AB 上一点,∠1=40°,OD 平分∠BOC,则∠2= 。
.(4题) (8题) (9题)5、下面角的图示中,能与30°角互补的是 。
A .B .C .D .6、下列语句错误的有( )个.00001290(180),3490(180),∠+∠=∠+∠=14,∠=∠23∠=∠(1)两个角的两边分别在同一条直线上,这两个角互为对顶角(2)有公共顶点并且相等的两个角是对顶角(3)如果两个角相等,那么这两个角互补(4)如果两个角不相等,那么这两个角不是对顶角A.1 B.2 C.3 D.47、小明做了四道练习题:①有公共顶点的两个角是对顶角②两个直角互为补角③一个三角板中两个锐角互为余角④一个角的两边与另一个角的两边分别在同一直线上,这两个角是对顶角,其中正确的有。
北师大版七年级下册第二单元相交线与平行线单元——平行线的性质(知识梳理与考点分类讲解)

北师大版七年级下册第二单元相交线与平行线单元——平行线的性质(全章知识梳理与考点分类讲解)【知识点一】平行线的判定方法11.方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称为:同位角相等,两直线平行.2.表达方式:因为∠1=∠2,(已知)所以a//b(同位角相等,两直线平行)特别提醒:“同位角相等,两直线平行”是通过两个同位角的大小关系(相等)推导出两直线的位置关系(平行).它是构建起角的大小关系与直线的位置关系的桥梁.【知识点二】平行线的画法过直线外一点画已知的直线平行线的步骤一落:把三角尺的一边落在一直的直线上;二靠:紧靠三角尺的另一边放一直尺;三移:把三角尺沿着直尺移动使其经过已知点;四画:沿三角尺的一边画直线.此直线即为已知直线的平行线.特别提醒:1.经过直线上一点不可以作已知直线的平行线.2.画线段或射线的平行线是画它们所在直线的平行线.3.移动是要始终保持紧靠.【知识点三】平行线的性质及其推论1.平行线的性质:过直线外一点有且只有一条直线与这条直线平行.2.表达方式:如果a//b,b//c,那么a//b.特别提醒:平行线的性质的前提是“过直线外一点”,若点在直线上,则不可能有平行线.【考点目录】【平行线性质求角的等量关系】【考点1】同位角相等两直线平行;【考点2】内错角相等两直线平行;【考点3】同旁内角互补两直线平行;【平行线性质探究角的关系】【考点4】平行线判探究角的关系或求角度;【平行线性质性质与判定综合】【考点5】平行线判定与性质求角度;【考点6】平行线判定与性质证明;【平行线间的距离】【考点7】平行线间的距离(应用).【平行线性质求角的等量关系】【考点1】同位角相等两直线平行【答案】相等;理由见分析【分析】根据平行投影可得∠B=∠E,再根据垂直可得∠C=∠F=90°,然后利用“角边角”证明△ABC 和△DEF全等,根据全等三角形对应边相等即可得证.解:两根旗杆的高度相等.理由如下:∵太阳光线AB与DE是平行,∴∠B=∠E,∵两根旗杆都垂直于地面放置,∴∠C=∠F=90°,∵两根旗杆在太阳光下的影子一样长,∴BC =EF ,∵在△ABC 和△DEF 中B E BC EF C F ∠∠⎧⎪⎨⎪∠∠⎩===∴△ABC ≌△DEF (ASA ),∴AC =DF ,即两根旗杆的高度相等.【点拨】本题考查了全等三角形的应用,根据题意找出三角形全等的条件,然后证明两三角形全等是解题的关键.【变式1】(2023·黑龙江齐齐哈尔·统考中考真题)如图,把一块三角板的30︒角顶点A 放在直尺的一边BC 上,若1:23:7∠∠=,则2∠=()A .126︒B .118︒C .105︒D .94︒【答案】C 【分析】根据平行线的性质和平角的定义即可得到结论.解:如图,由题意知:DE BC ∥,∴31∠=∠,∵1:23:7∠∠=,∴3:23:7∠∠=,∴3327∠=∠,∵2330180∠+∠+︒=︒,∴322301807∠+∠+︒=︒,∴2105∠=︒.故选:C .【点拨】本题考查的是平行线的性质和平角的定义.熟练掌握两直线平行,同位角相等是解题的关键.【变式2】(2022·甘肃嘉峪关·校考一模)如图两平行线a、b被直线l所截,且∠1=60°,则∠2的度数为.【答案】60°/60度【分析】由a∥b,根据两直线平行,同位角相等,即可求得∠3=∠1=60°,又由对顶角相等,即可求得答案.解:∵a∥b,∴∠3=∠1=60°,∴∠2=∠3=60°.故答案为:60°.【点拨】此题考查了平行线的性质.此题比较简单,注意掌握数形结合思想的应用.【考点2】内错角相等两直线平行【例2】(2014下·贵州铜仁·七年级统考期末)已知:如图,点D、E分别在AB、BC上,DE AC∥,165∠=︒,265∠=︒,请说明:F CBF ∠=∠.(不必注明依据)【答案】证明见分析【分析】根据平行线的性质得出165C ∠=∠=︒,得出2C ∠=∠,根据平行线的判定得出AF BC ∥,再根据平行线的性质即可得证.解:∵DE AC ∥,165∠=︒,265∠=︒,∴165C ∠=∠=︒,∴2C ∠=∠,∴AF BC ∥,∴F CBF ∠=∠.【点拨】本题考查平行线的判定和性质,能灵活运用平行线的性质和判定定理进行推理是解题的关键.【变式1】(2023·吉林白城·校联考三模)已知,如图,AB ∥CD ,∠A=70°,∠B=40°,则∠ACD=()A .55°B .70°C .40°D .110°【答案】B解:AB CD ∥.A ACD ∴∠=∠70.A ∠=︒ 70.ACD ∠=︒故选B.【点拨】两直线平行,内错角相等.【变式2】(2023·辽宁阜新·统考中考真题)如图,直线a b ,直线l 与直线a 相交于点P ,直线l 与直线b 相交于点Q ,PM l ⊥于点P ,若155∠=︒,则2∠=.︒【答案】35【分析】本题主要考查平行线性质以及垂线的性质.根据平行线性质得3155∠=∠=︒,利用垂线性质即可求得2∠.解:直线a b ,3155∴∠=∠=︒,又PM l ⊥ 于点P ,90MPQ ∴∠=︒,2903905535∴∠=︒-∠=︒-︒=︒.故答案为:35.【考点3】同旁内角互补两直线平行【例3】(2023下·山东烟台·六年级统考期末)如图,ABD ∠和BDC ∠的角平分线交于点E ,BE 交CD 于点F ,1290∠+∠=︒.(1)试说明://AB CD .(2)若228∠=︒,求3∠的度数.【答案】(1)见分析;(2)62︒【分析】(1)根据角平分线的定义,结合1290∠+∠=︒,可得180ABD BDC ∠+∠︒=,进而即可得到结论;(2)由228∠=︒,得162∠=︒,进而得62ABF ∠=︒,结合//AB CD ,即可得到答案.解:(1)∵ABD ∠和BDC ∠的角平分线交于点E ,∴21ABD ∠∠=,22BDC ∠∠=,又∵1290∠+∠=︒,∴2(12)180ABD BDC ∠+∠∠+∠=︒=,∴//AB CD ;(2)∵228∠=︒,1290∠+∠=︒,∴162∠=︒,又∵BF 平分ABD ∠,∴162ABF ∠=∠=︒,又∵//AB CD ,∴362ABF ∠=∠=︒.【点拨】本题主要考查角平分线的定义,平行线的判定和性质定理,掌握“同旁内角互补,两直线平行”,“两直线平行,内错角相等”,是解题的关键.【变式1】(2012下·广东茂名·七年级统考期中)两条平行线被第三条直线所截,一对同旁内角的比为4:5,则这两个角中较小的角的度数为()A .20︒B .80︒C .100︒D .120︒【答案】B【分析】根据比例设两个角为4x 、5x ,再根据两直线平行,同旁内角互补列式求解即可.解:设两个角分别为4x 、5x ,∵这两个角是两平行线被截所得到的同旁内角,∴45180x x +=︒,解得20x =︒,480x =︒,5100x =︒,所以较小的角的度数等于80︒.故选:B .【点拨】本题考查了平行线的性质,主要利用了两直线平行,同旁内角互补的性质,熟记性质是解题的关键.【变式2】(2023下·辽宁大连·七年级统考期末)如图,AB ∥CD ,射线AE 交CD 于点F ,若∠1=116°,则∠2的度数等于.【答案】64°【分析】根据两直线平行,同旁内角互补可求出∠AFD 的度数,然后根据对顶角相等求出∠2的度数.解:∵AB ∥CD ,∴∠1+∠AFD =180°.∵∠1=116°,∴∠AFD =64°.∵∠2和∠AFD 是对顶角,∴∠2=∠AFD =64°.故答案为64°.【点拨】本题考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补.【平行线性质探究角的关系】【考点4】平行线判探究角的关系或求角度【例4】(2017下·北京东城·七年级统考期中)已知:直线AB CD ,点M 、N 分别在直线AB 、直线CD 上,点E 为平面内一点,(1)如图1,请写出AME ∠,E ∠,ENC ∠之间的数量关系,并给出证明;(2)如图2,利用(1)的结论解决问题,若30AME ∠=︒,EF 平分MEN ∠,NP 平分ENC ∠,EQ NP ∥,求FEQ ∠的度数;(3)如图3,点G 为CD 上一点,AMN m EMN ∠=∠,GEK m GEM ∠=∠,EH MN 交AB 于点H ,GEK ∠,BMN ∠,GEH ∠之间的数量关系(用含m 的式子表示)是.【答案】(1)MEN AME ENC ∠=∠+∠,证明见分析;(2)15︒;(3)180GEK BMN m GEH ∠+∠-∠=︒.【分析】(1)过点E 作EE AB ' ,根据平行线的性质进行证明即可;(2)利用EF 平分MEN ∠,NP 平分ENC ∠,可得11,22NEF MEN ENP ENC ∠=∠∠=∠,再根据MEN AME ENC ∠=∠+∠,进行等量代换进行计算即可;(3)由已知条件可得11,22NEF MEN ENP ENC ∠=∠∠=∠,1EMN HEM AMN m∠=∠=∠,再根据平行线的性质进行各角的等量转换即可.解:(1)MEN AME ∠=∠+∠,证明如下:如图1所示,过点E 作EE AB ' ,∵AB CD ,∴AB CD EE 'P P ,∴1,2AME ENC ∠=∠∠=∠,∵12MEN ∠=∠+∠,∴MEN AME ENC ∠=∠+∠.(2)∵EF 平分MEN ∠,NP 平分ENC ∠,∴11,22NEF MEN ENP ENC ∠=∠∠=∠.∵EQ NP ∥,30AME ∠=︒,∴12QEN ENP ENC ∠=∠=∠.∵MEN AME ENC ∠=∠+∠,∴30MEN ENC AME ∠-∠=∠=︒,∴111130152222FEQ FEN QEN MEN ENC AME ∠=∠-∠=∠-∠=∠=⨯︒=︒.(3)180GEK BMN m GEH ∠+∠-∠=︒.证明如下:∵AMN m EMN ∠=∠,GEK m GEM ∠=∠,∴1EMN AMN m ∠=∠,1GEM GEK m∠=∠.∵EH MN ,∴1EMN HEM AMN m∠=∠=∠,∵11GEH GEM HEM GEK AMN m m ∠=∠-∠=∠-∠,∴m GEH GEK AMN ∠=∠-∠,∵180AMN BMN ∠=︒-∠,∴()180m GEH GEK BMN ∠=∠-︒-∠,180GEK BMN m GEH ∠+∠-∠=︒.故答案为:180GEK BMN m GEH ∠+∠-∠=︒.【点拨】本题考查了平行线的判定和性质,角的平分线,熟练掌握平行线的判定和性质是解题的关键.【变式1】(2022下·贵州黔南·七年级统考期中)如图,在五边形ABCDE 中,AE BC ∥,则C D E ∠+∠+∠=()A .540︒B .360︒C .270︒D .180︒【答案】B 【分析】首先过点D 作DF AE ∥,交AB 于点F ,由AE BC ∥,可证得AE DF BC ∥∥,然后由两直线平行,同旁内角互补可知180E EDF Ð+Ð=°,180CDF C Ð+Ð=°,继而证得结论.解:过点D 作DF AE ∥,交AB 于点F ,AE BC ∥,AE DF BC ∴∥∥,180E EDF ∴∠+∠=︒,180CDF C Ð+Ð=°,360C CDE E \Ð+Ð+Ð=°.故选:B .【点拨】此题考查了平行线的性质,注意掌握辅助线的作法,注意数形结合思想的应用.【变式2】(2023下·广东江门·七年级统考期末)如图,AB ∥CD ,∠ABF =23∠ABE ,∠CDF =23∠CDE ,则∠E :∠F 等于【答案】3:2解:如图,过点E、F分别作EG∥AB、FH∥AB,又因AB∥CD,根据平行线的传递性可得AB∥EG∥FH∥CD,∵AB∥FH,∴∠ABF=∠BFH,∵FH∥CD,∴∠CDF=∠DFH,∴∠BFD=∠DFH+∠BFH=∠CDF+∠ABF;同理可得∠BED=∠DEG+∠BEG=∠ABE+∠CDE;∵∠ABF=23∠ABE,∠CDF=23∠CDE,∴∠BFD=∠DFH+∠BFH=∠CDF+∠ABF=23(∠ABE+∠CDE)=23∠BED,∴∠BED:∠BFD=3:2.故答案为:3:2.【点拨】本题主要考查了平行线的性质,解决这类题目要常作的辅助线(平行线),充分运用平行线的性质探求角之间的关系是解题的关键.【平行线性质性质与判定综合】【考点5】平行线判定与性质求角度【例5】(2023上·广东潮州·八年级校考阶段练习)如图,A B、两处是灯塔,船只在C处,B处在A 处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,求船只与两灯塔的视角ACB的度数.【答案】85°【分析】根据方向角的定义,可得∠BAE=45°,∠CAE=15°,∠DBC=80°,然后根据平行线的性质与三角形内角和定理即可求解.解:如图,根据方向角的定义,可得∠BAE=45°,∠CAE=15°,∠DBC=80°.∵∠BAE=45°,∠EAC=15°,∴∠BAC=∠BAE+∠EAC=45°+15°=60°.∵AE ,DB 是正南正北方向,∴BD ∥AE ,∵∠DBA=∠BAE=45°,又∵∠DBC=80°,∴∠ABC=80°-45°=35°,∴∠ACB=180°-∠ABC-∠BAC=180°-60°-35°=85°.题的关键.【变式1】(2023下·甘肃白银·八年级统考期末)如图所示,已知AB EF ∥,那么BAC ACE CEF ∠+∠+∠=()A .180°B .270°C .360°D .540°【答案】C 【分析】先根据平行线的性质得出180180BAC ACD DCE CEF ∠+∠=︒∠+∠=︒,,进而可得出结论.解:过点C 作CD EF ∥,∥Q AB EF ,AB CD EF \∥∥,∴180180BAC ACD DCE CEF ∠+∠=︒∠+∠=︒①,②,由①②+得,360BAC ACD DCE CEF ∠+∠+∠+∠=︒,即360BAC ACE CEF Ð+Ð+Ð=°.故选:C .【点拨】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.【变式2】(四川省成都市金牛区2020-2021学年七年级下学期期末数学试题)一副直角三角板如图放在直线m 、n 之间,且//m n ,则图中1∠=度.【答案】15【分析】如图,过点A 作AC ∥m ,则有////AC m n ,然后可得,45BAC CAD CAD ADE ∠=∠∠=∠=︒,进而问题可求解.解:如图所示,过点A 作AC ∥m ,∵//m n ,∴////AC m n ,∴1,45BAC CAD ADE ∠=∠∠=∠=︒,∵60BAC CAD ∠+∠=︒,∴115BAD CAD ∠=∠-∠=︒;故答案为15.【点拨】本题主要考查平行线的性质与判定,熟练掌握平行线的性质与判定是解题的关键.【考点6】平行线判定与性质证明【例6】(2023下·七年级课时练习)如图,BD 平分ABC ∠,ED BC ∥,130∠=︒,4120∠=︒.(1)求2∠,3∠的度数;(2)证明:DF AB .【答案】(1)230∠=︒,360∠=︒;(2)见详解【分析】(1)根据BD 平分ABC ∠,112ABD ABC ∠=∠=∠,即有130ABD ∠=∠=︒,60ABC ∠=︒,再结合ED BC ∥,即可求解;(2)由60ABC ∠=︒,4120∠=︒可得ABC ∠4=180+∠︒,则DF AB ,问题得解.解:(1)∵BD 平分ABC ∠,130∠=︒,∴112ABD ABC ∠=∠=∠,∴130ABD ∠=∠=︒,60ABC ∠=︒,∵ED BC ∥,∴2130∠=∠=︒,360ABC ∠=∠=︒,即:230∠=︒,360∠=︒;(2)∵60ABC ∠=︒,4120∠=︒,∴ABC ∠4=180+∠︒,∴DF AB .【点拨】本题主要考查了角平分线的定义,平行线的判定与性质等知识,掌握两直线平行同位角相等;两直线平行同位角相等;两直线平行,同旁内角互补是解答本题的关键.【变式1】(2020上·河南洛阳·七年级统考期末)如图,若12∠=∠,DE BC ∥,则下列结论:①FG DC ;②AED ACB ∠=∠;③CD 平分ACB ∠;④190B ∠+∠=︒;⑤BFG BDC ∠=∠.其中,正确结论的个数为()A .2个B .3个C .4个D .5个【答案】B 【分析】由平行线的性质得出内错角相等、同位角相等,得出②正确;再由已知条件证出2DCB =∠∠,得出FG DC ,①正确;由平行线的性质得出⑤正确;即可得出结果.解:DE BC ∥,1DCB ∴∠=∠,AED ACB ∠=∠,故②正确;12∠=∠ ,2DCB ∴∠=∠,FG DC ∴∥,故①正确;BFG BDC ∴∠=∠,故⑤正确;而CD 不一定平分ACB ∠,1B ∠+∠不一定等于90︒,故③,④错误;故选:B .【点拨】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质,并能进行推理论证是解决问题的关键.【变式2】(2021下·江苏盐城·七年级统考期中)如图a b ,c 与a 相交,d 与b 相交,下列说法:①若12∠=∠,则3=4∠∠;②若14180∠+∠=︒,则c d ∥;③4231∠-∠=∠-∠;④1234360∠+∠+∠+∠=︒正确的有(填序号)【答案】①②③【分析】根据平行线的性质和判定逐一进行判断即可.解:如图,①若∠1=∠2,则b ∥e ,则∠3=∠4,故原说法正确;②若∠1+∠4=180°,则c ∥d ;故原说法正确;③由a ∥b 得到∠1=∠6,∠5+∠4=180°,由∠2+∠3+∠5+180°-∠6=360°得,∠2+∠3+180°-∠4+180°-∠1=360°,则∠4-∠2=∠3-∠1,故原说法正确;④由③得,只有∠1+∠4=∠2+∠3=180°时,∠1+∠2+∠3+∠4=360°.故原说法错误.正确的有①②③,故答案为:①②③.【点拨】本题考查了平行线的判定与性质,熟练掌握平行线的性质与判定是解题的关键.【平行线间的距离】【考点7】平行线间的距离(应用)【例7】(2022下·贵州遵义·七年级校考阶段练习)如图,直线a b ∥,AB 与a ,b 分别交于点A ,B ,且AC AB ⊥,AC 交直线b 于点C .(1)若160∠= ,求2∠的度数;(2)若6,8AC AB ==,10BC =,求直线a 与b 的距离.【答案】(1)30︒;(2)245【分析】(1)由直线a b ∥,根据平行线的性质得出3160∠=∠=︒,再由AC AB ⊥,根据垂直的定义即可得到结果;(2)过A 作AD BC ⊥于D ,根据1122ABC S AB AC BC AD =⨯⨯=⨯⨯ ,即可求解.解:(1)∵a b∥∴3160∠=∠=︒又∵AC AB⊥∴290330∠=︒-∠=︒(2)如图,过A 作AD BC ⊥于D ,则AD 的长即为直线a 与b 的距离∵6,8AC AB ==,10BC =,ABC 是直角三角形∵1122ABC S AB AC BC AD =⨯⨯=⨯⨯ ∴8624105AB AC AD BC ⨯⨯===∴直线a 与b 的距离245【点拨】本题考查了平行线的性质及三角形的面积,解题的关键是掌握:从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离.【变式1】(2021下·安徽合肥·八年级统考期末)如图,123////l l l ,且相邻两条直线间的距离都是2,A ,B ,C 分别为1l ,2l ,3l 上的动点,连接AB 、AC 、BC ,AC 与2l 交于点D ,90ABC ∠=︒,则BD 的最小值为()A.2B.3C.4D.5【答案】A【分析】求BD的最小值可以转化为求点B到直线AC的距离,当BD⊥AC时,BD有最小值,根据题意求解即可.解:由题意可知当BD⊥AC时,BD有最小值,此时,AD=CD,∠ABC=90°,∴BD=AD=BD=12AC=2,∴BD的最小值为2.故选:A.【点拨】本题考查平行线的性质,需结合图形,根据平行线的性质推出相关角的关系从而进行求解.【变式2】(2019下·上海金山·七年级统考期中)已知直线a∥b∥c,a与b的距离是5cm,b与c的距离是3cm,则a与c的距离是.【答案】8cm或2cm【分析】直线c的位置不确定,可分情况讨论.(1)直线c在直线b的上方,直线a和直线c之间的距离为5cm+3cm=8cm;(2)直线c在直线a、b的之间,直线a和直线c之间的距离为5cm-3cm=2cm.解:(1)直线c在直线b1:直线a和直线c之间的距离为5cm+3cm=8cm;(2)直线c在直线a、b的之间,如图2:直线a和直线c之间的距离为5cm-3cm=2cm;所以a与c的距离是8cm或2cm,故答案为8cm或2cm.【点拨】此题考查两线间的距离,本题需注意直线c的位置不确定,需分情况讨论.。
第二章-相交线与平行线练习题(带解析)

第二章 相交线与平行线练习题(带解析)1、如图,直线a 、b 、c 、d ,已知c⊥a,c⊥b,直线b 、c 、d 交于一点,若∠1=500,则∠2等于【 】(1)(2)(5)(6)(7) 2、如图,AB⊥BC,BC⊥CD,∠EBC=∠BCF,那么,∠ABE 与∠DCF 的位置与大小关系是 ( ) 3、如果两个角的一边在同一直线上,另一边互相平行,那么这两个角只能( )A .相等B .互补C .相等或互补D .相等且互补4、下列说法中,为平行线特征的是( )①两条直线平行,同旁内角互补; ②同位角相等, 两条直线平行;③内错角相等, 两条直线平行; ④垂直于同一条直线的两条直线平行.A .①B .②③C .④D .②和④5、如图,AB∥CD∥EF,若∠ABC=50°,∠CEF=150°,则∠BCE=( )A .60°B .50°C .30°D .20°6、如图,如果AB∥CD,则角α、β、γ之间的关系为( )A .α+β+γ=360°B .α-β+γ=180°C .α+β-γ=180°D .α+β+γ=180°7、如图,由A 到B 的方向是( )8、如图,由AC∥ED,可知相等的角有( )(8) (9)A .6对B .5对C .4对D .3对9、如图,直线AB 、CD 交于O ,EO⊥AB 于O ,∠1与∠2的关系是( )A.互余B.对顶角C.互补 D.相等10、若∠1和∠2互余,∠1与∠3互补,∠3=120°,则∠1与∠2的度数分别为( )A .50°、40°B .60°、30°C .50°、130°D .60°、120°11、下列语句正确的是( )A .一个角小于它的补角B .相等的角是对顶角C .同位角互补,两直线平行D .同旁内角互补,两直线平行12、图中与∠1是内错角的角的个数是( )A .600B .500C .400D .300A .是同位角且相等B .不是同位角但相等;C .是同位角但不等D .不是同位角也不等 A .南偏东30° B .南偏东60° C .北偏西30° D .北偏西60°A.2个B.3个C.4个D.5个13、如图,直线AB和CD相交于点O,∠AOD和∠BOC的和为202°,那么∠AOC的度数为( )A.89°B.101°C.79°D.110°14、如图,∠1和∠2是对顶角的图形的个数有( )A.1个B.2个C.3个D.0个15、如图,直线a、b被直线c所截,现给出下列四个条件:①∠1=∠5,②∠1=∠7,③∠2+∠3=180°,④∠4=∠7,其中能判定a∥b的条件的序号是( )A.①②B.①③C.①④D.③④分卷II分卷II 注释评卷人得分二、填空题(注释)16、如图,∠ACD=∠BCD,DE∥BC交AC于E,若∠ACB=60°,∠B=74°,则∠EDC=___°,∠CDB=____°。
初一相交线与平行线所有知识点总结和常考题提高难题压轴题练习(含答案解析)

初一相交线与平行线知识点1.两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线,性质是对顶角相等。
2.三线八角:对顶角(相等);邻补角(互补);同位角,内错角,同旁内角。
3.两条直线被第三条直线所截:同位角F(在两条直线的同一旁,第三条直线的同一侧);内错角Z(在两条直线内部,位于第三条直线两侧);同旁内角U(在两条直线内部,位于第三条直线同侧)。
4.两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直,其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。
5.垂直三要素:垂直关系、垂直记号、垂足。
6.垂直公理:过一点有且只有一条直线与已知直线垂直。
7.垂线段最短。
8.点到直线的距离:直线外一点到这条直线的垂线段的长度。
9.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
如果b//a,c//a,那么b//c。
10.平行线的判定:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行。
11.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。
12.平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
13.平面上不相重合的两条直线之间的位置关系为相交或平行。
14.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
平移后前:①两个图形形状大小不变,位置改变;②对应点的连线相等且平行(或在一条直线上)。
15.命题:判断一件事情的语句叫命题。
命题分为题设和结论两部分;题设是“如果”后面的,结论是“那么”后面的。
(完整word版)七年级数学相交线与平行线精选知识点及习题(人教版),推荐文档

七年级数学相交线与平行线精选知识点及习题(人教版)相交线与平行线精选知识点平行线的性质【平行线性质】①两条平行线被第三条直线所截,同位角相等;②两条平行线被第三条直线所截,内错角相等;③两条平行线被第三条直线所截,同旁内角互补.包含知识点平行线的性质,平行线之间的距离,同位角、内错角、同旁内角选择练习题1. 如图:(1)若∠1=∠2,则AB∥CD;(2)若AB∥CD,则∠3=∠4;(3)若∠ABC+∠BCD=180°,则AD∥BC;(4)若∠ABC=∠ADC,∠1=∠2,则AB∥CD上述推理正确的有()A.1个B.2个C.3个D.4个答案:B解析:结合图形分析两角的位置关系,根据平行线的判定和性质判断.解:(1)若∠1=∠2,则AD∥BC,故不对;(2)若AB∥CD,则∠3=∠4,故正确;(3)若∠ABC+∠BCD=180°,则AB∥DC,故不对;(4)若∠ABC=∠ADC,∠1=∠2,可推出∠3=∠4,则AB∥CD,故正确.所以有2个正确.故选B.2. 如图,若∠1=∠2,则下列结论一定成立的是()A.AB∥CDB.∠B=∠DC.AD∥BCD.∠3=∠4答案:C解析:根据平行线的判定定理(内错角相等,两直线平行)作出选择.解:∵∠1=∠2,∴AD∥BC(内错角相等,两直线平行);故选C.3. 下列说法中,正确的有()(1)在同一平面内,两条直线被第三条直线所截,那么同位角相等;(2)两条平行线被第三条直线所截,同位角的平分线平行;(3)两条平行线被第三条直线所截,内错角的平分线平行;(4)两条平行线被第三条直线所截,同旁内角的平分线平行;(5)两条直线被第三条直线所截,形成4对同位角,2对内错角和2对同旁内角.A.2个B.3个C.4个D.5个答案:B解析:根据平行线的性质及平行线的判定定理进行逐一判断即可.解:(1)错误,因为不是两条平行线;(2)正确,因为两条平行线被第三条直线所截,同位角相等,其角平分线所形成的角也相等;(3)正确,因为两条平行线被第三条直线所截,内错角相等,其角平分线所形成的角也相等;(4)错误,因为两条平行线被第三条直线所截,同旁内角互补,其角的平分线必相交,且夹角等于90°;(5)正确,两条直线被第三条直线所截,形成4对同位角,2对内错角和2对同旁内角.故选B.4. 如图,直线a,b与直线c,d相交,若∠1=∠2,∠3=70°,则∠4的度数是()A.35°B.70°C.90°D.110°答案:D解析:解:∵∠1=∠2,∴a∥b,∴∠3=∠5,∵∠3=70°,∴∠5=70°,∴∠4=180°-70°=110°,故选:D.5. 如图,点D在直线AE上,量得∠CDE=∠A=∠C,有以下三个结论:①AB∥CD;②AD∥BC;③∠B=∠CDA.则正确的结论是()A.①②③B.①②C.①D.②③答案:A解析:根据平行线的判定推出AD∥BC,AB∥CD,根据平行线的性质得出∠B+∠A=180°,∠A+∠CDA=180°,即可得出答案.解:∵∠C=∠CDE,∴AD∥BC(内错角相等,两直线平行),(故①正确)∵∠A=∠CDE,∴AB∥CD(同位角相等,两直线平行),(故②正确)∴∠B+∠A=180°,∠A+∠CDA=180°,∴∠B=∠CDA(等量代换),(故③正确)即正确的结论有①②③,故选:A.解答练习题如图,已知AB∥CD,BE平分∠ABC,且交CD于D点,∠CDE=160°,求∠C的度数.答案:解:∵∠CDE=160°,∴∠CDB=180°-∠CDE=180°-160°=20°,∵AB∥CD,∴∠ABD=∠CDB=20°,∵BE平分∠ABC,∴∠ABC=2∠ABD=2×20°=40°,∴∠C=180°-∠ABC=180°-40°=140°.解析:先根据邻补角的定义求出∠CDB的度数,再根据平行线的性质及角平分线的定义得出∠ADB 及∠ABC的度数,由平行线的性质可得出∠C的度数.如图AE∥BD,∠CBD=57°,∠AEF=125°,求∠C的度数,并说明理由.答案:解:∵∠AEF=125,∴∠CEA=55°∵AE∥BD,∠CDB=∠CEA=55°,在△BCD中,∵∠CBD=57°,∴∠C=68°.解析:要求∠C的度数,在△BCD中,由三角形内角和定理可知,求出另外两角即可.3. 如图1,是大众汽车的图标,图2反映其中直线间的关系,并且AC∥BD,AE∥BF.∠A 与∠B的关系如何?解:∵AC∥BD,∴∠A=∠DOE,∵AE∥BF,∴∠DOE=∠B,∴∠A=∠B.解析:根据两直线平行同位角相等,可判断∠A=∠B.如图1,四边形ABCD中,AD∥BC,DE平分∠ADB,∠BDC=∠BCD,(1)求证:∠EDC=90°.(2)若∠ABD的平分线与CD的延长线交于F(图2),且∠F=55°,求∠ABC.答案:(1)证明:在△BCD中,∠CBD+∠BDC+∠BCD=180°,∵∠BDC=∠BCD,∴∠CBD+2∠BDC=180°,∵AD∥BC,∴∠CBD=∠ADB,∵DE平分∠ADB,∴∠BDE=∠ADB,∴∠EDC=∠BDE+∠BDC=(∠CBD+2∠BDC)=×180°=90°,故:∠EDC=90°;(2)解:设BF、DE相交于点O,∵∠EDC=90°,∴∠FDO=90°,∴∠DOF=90°-∠F=90°-55°=35°,由三角形的外角性质,∠OBD+∠ODB=∠DOF=35°,∵DE平分∠ADB,BF平分∠ABD,∴∠ABD+∠ADB=2(∠OBD+∠ODB)=2×35°=70°,在△ABD中,∠A=180°-(∠ABD+∠ADB)=180°-70°=110°,∵AD∥BC,∴∠ABC=180°-∠A=180°-110°=70°.解析:(1)根据三角形的内角和定理列式求出∠CBD+2∠BDC=180°,根据两直线平行,内错角相等可得∠CBD=∠ADB,再根据角平分线的定义可得∠BDE=∠ADB,然后求出∠EDC=90°;(2)设BF、DE相交于点O,根据直角三角形两锐角互余求出∠DOF,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠OBD+∠ODB,然后根据角平分线的定义求出∠ABD+∠ADB,再根据三角形的内角和定理求出∠A,然后根据两直线平行,同旁内角互补解答.(1)如图(1),AB∥EF.求证:∠BCF=∠B+∠F.(2)当点C在直线BF的右侧时,如图(2),若AB∥EF,则∠BCF与∠B、∠F的关系如何?请说明理由.答案:(1)证明:过C作CD∥AB,∵AB∥EF,∴CD∥AB∥EF,∴∠B=∠BCD,∠F=∠FCD,∴∠B+∠F=∠BCF.(2)∠B+∠F+∠BCF=360°,理由是:过C作CD∥AB,则∠B+∠BCD=180°,又∵AB∥EF,AB∥CD,∴CD∥EF∥AB,∴∠F+∠FCD=180°,∴∠B+∠F+∠BCF=360°.解析:(1)过C作CD∥AB,推出AB∥CD∥EF,根据平行线性质得出∠B=∠BCD,∠F=∠FCD,即可得出答案;(2)过C作CD∥AB,推出AB∥CD∥EF,根据平行线性质得出∠B+∠BCD=180°,∠F+∠FCD=180°,即可得出答案.。
七年级下册第二章相交线与平行线复习总结(全)

第二章 相交线与平行线考点一、余角与补角:1、 如果两个角的和是直角,称这两个角互为余角.2、 如果两个角的和是平角,称这两个角互为补角. 典型例题:例1:如图所示,点A 、O 、B 在一条直线上,OC 垂直于AB 垂足是O ,若∠1=∠2,则图互余、互补的角有哪些?3、性质:(1)同角或等角的余角相等;(2)同角或等角的补角相等。
例2:如图CD 垂直于AB ,且∠1=∠2. (1) 求∠DCF 与∠DCE 有什么关系,为什么? (2) 求∠BCF 与∠DCE 有什么关系,为什么?3、 两个角有公共顶点,且它们的两边互为反向延长线,这样的两个角叫做对顶角,对顶角的性质:对顶角相等。
例3:下面四个图形中,∠1与∠2是对顶角的图形的个数是( )12121212A .0B .1C .2D .3 例4:已知一个角的余角比它的补角的135还少4°求这个角。
例5:如图所示,三条直线AB 、CD 、EF 相交于点O ,∠AOF =3∠FOB ,∠AOC=90°,求∠EOC 的度数。
技巧总结:要注意什么是互补,什么是互余;同角的余角和补角相等;对应的课堂练习:一、填空题1.如图1,直线l1与l2相交,∠1=50°,则∠2=_________,∠3=_________.图1 图22.如图2,直线AB与CD相交于O点,且∠AOD=90°,则∠AOC=_________=_________ =_________=_________.3.如图3,若AO⊥CO,BO⊥DO,∠BOC=150°,则∠DOC=________,∠AOD=________.图3 图44.如图4,直线AB与CD相交于O,∠EOD=90°,正确填写下列两角关系的名称.∠1与∠2:______________________________________________________∠2与∠3:______________________________________________________∠2与∠4:______________________________________________________∠1与∠4:______________________________________________________三、选择题1.两条直线相交于一点,则共有对顶角的对数为()A.1对B.2对C.3对D.4对2.下面说法正确的个数为()①对顶角相等②相等的角是对顶角③若两个角不相等,则这两个角一定不是对顶角④若两个角不是对顶角,则这两个角不相等A.1个B.2个C.3个D.4个3.若∠1和∠2互余,∠2与∠3互余,∠1=40°,则∠3等于( ) A.40°B.130°C.50°D.140°4.如图,∠1和∠2是对顶角的图形有( )A.(1)(3)B.(2)(3)C.(3)D.(3)(4)一、判断题1.若∠1+∠2=90°,则∠1与∠2互余.( )2.若∠A 与∠B 互补,则∠A +∠B =180°.( )3.若∠1与∠2互补,∠2与∠3互补,则∠1与∠3互补.( )4.若∠AOB +∠BOC =180°,则点A 、O 、C 必在同一直线上.( )5.若∠α+∠β+∠γ=90°,则∠α、∠β、∠γ互余.( ) 四、解答题1.如图,AO ⊥BO ,直线CD 经过点O ,∠AOC =30°,求∠BOD 的度数.考点二、探索直线平行的条件同位角的特征:(1)在被截两直线的同旁;(2)在截线的两旁 内错角的特征:(1)在被截两直线之间;(2)在截线的两旁 同旁内角的特征:(1)在被截两直线之间;(2)在截线的同旁 例1:如图,写出图中的同位角、内错角和同旁内角。
七年级数学下第二章平行线与相交线知识梳理
七年级数学下第二章平行线与相交线知识梳理班级___________姓名________时间________一、知识要点1. 同一平面内两条直线的位置关系有两种可能:_____(或)______.2. “三线八角”:“三线八角”指的是________被________所截而形成八个角.要清楚那些角是______角,那些角是______角,那些角是______角.3.余角补角对顶角(1)余角定义:如果两个角的和是_____角,那么这两个角互为余角性质:同角或等角的余角______.(2)补角定义:如果两个角的和是_____角,那么这两个角互为余角性质:同角或等角的补角______.(3)对顶角定义:如果两个角有公共______,它们的两边互为______,这样的两个角叫做对顶角.性质:对顶角______.4. 平行线:在_________内,__________的两条直线互相平行.5. 平行线的性质:(1)两条平行线被第三条直线所截,_______相等,________相等,__________互补;(2)过直线外一点_______________和已知直线平行;(3)两条平行线之间的距离是指同时_______两条平行线,并且夹在这两条平行线间的_____________.6. 平行线的判定:_________相等,两直线平行;__________相等,两直线平行;___________互补,两直线平行.也可依据平行线的定义判定.二、典型例题例1如图1,直线a、b被直线所截,若,则________.例2如图2,的大小是().A.30°B.40°C.50°D.60°图2例3如图3,,直线分别交于两点,的平分线交于点.若,则等于().A.36°B.54°C.72°D.108°图3例4如图4,分别交于点分别平分.试说明.图4。
相交线与平行线知识点总结及例题解析
相交线与平行线知识点总结、例题解析知识点1【相交线】在同一平面内,不重合的两条直线的位置关系有两种:平行和相交1、相交线相交线的定义:两条直线交于一点,我们称这两条直线相交.相对的,我们称这两条直线为相交线.知识点2【对顶角和邻补角】两条相交线在形成的角中有对顶角和邻补角两类,它们具有特殊的数量关系和位置关系。
1、邻补角(1)邻补角的概念:两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角叫做互为邻补角.如图,∠1与∠2有一条公共边OD,它们的另一条边OA、OB互为反向延长线,则∠1与∠2互为邻补角(2)邻补角的性质:邻补角互补,即和为180°。
例如:若∠1与∠2互为邻补角,则∠1+∠2=180°注意:①互为邻补角的两个角一定互补,但互补的两个角不一定互为邻补角;②相交的两条直线会产生4对邻补角。
2、对顶角(1)对顶角的概念:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.如图,∠3与∠4有一个公共顶点O,并且∠3的两边OB、OC分别是∠4的两边OA、OD的反向延长线,则∠1与∠2互为对顶角.(2)对顶角的性质:对顶角相等.注意:两条相交的直线,会产生2对对顶角。
3、邻补角、对顶角成对出现,在相交直线中,一个角对顶角只有一个,但邻补角有两个.邻补角、对顶角都是相对与两个角而言,是指的两个角的一种位置关系.它们都是在两直线相交的前提下形成的.注意:如果多条直线相交于同一点,那么产生的邻补角的数量是对顶角的2倍。
【例题1】如图所示,∠1的邻补角是( )A、∠BOCB、∠BOE和∠AOFC、∠AOFD、∠BOC和∠AOF【解析】】据相邻且互补的两个角互为邻补角进行判断,∠1是直线AB、EF相交于点O形成的角,所以它的邻补角与直线CD无关,即它的邻补角是∠BOE和∠AOF,故选B【答案】B【例题2】下面四个图形中,∠1与∠2是邻补角的是( )【答案】D【例题3】如图所示,∠1和∠2是对顶角的图形有( )A、1个B、2个C、3个D、4个【解析】考察对顶角的概念【答案】A【例题4】下列说法中:①因为∠1与∠2是对顶角,所以∠1=∠2;②因为∠1与∠2是邻补角,所以∠1=∠2;③因为∠1与∠2不是对顶角,所以∠1≠∠2;④因为∠1与∠2不是邻补角,所以∠1+∠2≠180,其中正确的有________ (填序号)【解析】对顶角、邻补角【答案】①【例题5】如图1,直线AB、CD、EF都经过点O,图中有几对对顶角?几对邻补角?【解析】考察对顶角的概念。
初一下学期数学第二章平行线与相交线复习资料加答案
第二章:平行线与相交线考点1:余角、补角、对顶角一、考点讲解:1.余角:如果两个角的和是直角,那么称这两个角互为余角.2.补角:如果两个角的和是平角,那.么称这两个角互为补角.3.对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角.4.互为余角的有关性质:①∠1+∠2=90°,则∠1、∠2互余.反过来,若∠1,∠2互余.则∠1+∠2=90○.②同角或等角的余角相等,如果∠l十∠2=90○,∠1+∠3= 90○,则∠2= ∠3.5.互为补角的有关性质:①若∠A +∠B=180○则∠A、∠B互补,反过来,若∠A、∠B互补,则∠A+∠B=180○.②同角或等角的补角相等.如果∠A +∠C=18 0○,∠A+∠B=18 0°,则∠B=∠C.二、经典考题剖析:【考题1-1】(2004、厦门,2分)已知:∠A= 30○,则∠A的补角是________度.解:150○点拨:此题考查了互为补角的性质.【考题1-2】(2004、青海,3分)如图l-2-1,直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15○30’,则下列结论中不正确的是()A.∠2 =45○B.∠1=∠3C.∠AOD与∠1互为补角D.∠1的余角等于75○30′解:D 点拨:此题考查了互为余角,互为补角和对顶角之间的综合运用知识.三、针对性训练:(30 分钟)1._______的余角相等,_______的补角相等.2.∠1和∠2互余,∠2和∠3互补,∠1=63○,∠3=__3.下列说法中正确的是()A.两个互补的角中必有一个是钝角B.一个角的补角一定比这个角大C.互补的两个角中至少有一个角大于或等于直角D.相等的角一定互余4.轮船航行到C处测得小岛A的方向为北偏东32○,那么从A处观测到C处的方向为()A.南偏西32○B.东偏南32○C.南偏西58○D.东偏南58○5.若∠l=2∠2,且∠1+∠2=90○则∠1=___,∠2=___.考点2:同位角、内错角、同旁内角的认识及平行线的性质一、考点讲解:1.同一平面内两条直线的位置关系是:相交或平行.2.“三线八角”的识另:三线八角指的是两条直线被第三条直线所截而成的八个角.正确认识这八个角要抓住:同位角位置相同,即“同旁”和“同规”;内错角要抓住“内部,两旁”;同旁内角要抓住“内部、同旁”.3.平行线的性质:(1)两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.(2)过直线外一点有且只有一条直线和已知直线平行.(3)两条平行线之间的距离是指在一条直线上任意找一点向另一条直线作垂线,垂线段的长度就是两条平行线之间的距离.二、经典考题剖析:【考题2-1】(2007贵阳)如图1―2―4,直线a ∥b,则∠A CB=________解:78○点拨:过点C作CD平行于a,因为a∥b,所以CD∥b.则∠A CD=2 8○,∠DCB=5 0○.所以∠ACB=78○.【考题2-2】(2009、开福)如图1―2―5,AB∥CD,直线EF分别交A B、CD于点E、F,EG平分∠B EF,交CD于点G,∠1=5 0○求∠2的度数.解:65○点拨:由AB∥CD,得∠BEF=180○-∠1=130○,∠BEG=∠2.又因为EG平分∠BEF,所以∠2=∠BEG=12∠BEF=65°(根据平行线的性质)三、针对性训练:( 40分钟)1.如图1-2-6,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.l个B.2个C.3个D.4个2.下列说法中正确的个数是()(1)在同一平面内不相交的两条直线必平行;(2)在同一平面内不平行的两条直线必相交;(3)两条直线被第三条直线所截,所得的同位角相等;(4)两条平行线被第三条直线所截,一对内错角的平分线互相平行。
第二章 相交线与平行线
第二章相交线与平行线2.1两条直线的位置关系第1课时对顶角、余角和补角基础题知识点1相交线与平行线1.在同一平面内两条直线的位置关系可能是( )A.相交B.平行C.平行或相交D.平行且相交2.如果点P在直线a上,也在直线b上,但不在直线c上,且直线a,b,c两两相交,那么符合以上条件的图形是( )A B C D知识点2对顶角3.(2017·西安期中)如图所示,∠1和∠2是对顶角的是( )A B C D4.如图,三条直线相交于点O,已知∠AOE=40°,∠DOE=100°,则∠COB=( )A.140°B.100°C.60°D.40°5.如图是一把剪刀,其中∠1=40°,则∠2=40°,其理由是 .6.如图,直线AB和CD相交于点O,OE平分∠DOB,∠AOC=40°,则∠DOE= .7.直线AB,CD相交于点O,∠1=35°,∠2=75°,求∠EOB的度数.知识点3余角和补角8.如果α与β互为余角,那么( )A.α+β=180°B.α-β=180°C.α-β=90°D.α+β=90°9.如图,∠1+∠2=( )A.60°B.90°C.110°D.180°10.下面角的图示中,可能与34°互补的是( )11.(2016·茂名)已知∠A=100°,那么∠A的补角为 .12.若∠A+∠B=180°,∠B+∠C=180°,则∠A=∠C, _____________13.(2017·西安期中)若一个角的补角是这个角的余角的3倍,则这个角为多少度?中档题14.如图,直线AB,CD,EF相交于点O,则∠1+∠2+∠3的度数等于( )A.90°B.150°C.180°D.210°15.(2016·成都校级期中)∠1与∠2互余,∠1与∠3互补,若∠3=125°,则∠2=( )A.35°B.45°C.55°D.65°16.平面内有两两相交的三条直线,若三条直线最多有m个交点,最少有n个交点,则m+n等于( )A.1B.2C.3D.417.如图所示,直线a,b,c两两相交,∠1=3∠3,∠2=75°,则∠4= .18.如图,将一副三角尺叠放在一起,使直角顶点重合于点O,绕点O任意转动其中一个三角尺,则与∠AOD始终相等的角是19.如图,要测量两堵围墙所形成的∠AOB的度数,但人不能进入围墙内,如何测量?20.如图所示,l1,l2,l3相交于点O,∠1=∠2,∠3∶∠1=8∶1,求∠4的度数.21.如图,直线AB,CD相交于点O,OE是∠COB的平分线,已知∠EOF=90°,∠AOD=70°.(1)求∠BOE的度数;(2)OF平分∠AOC吗?为什么?综合题22.观察如图所示的各角,寻找对顶角(不含平角).(1)图1中有2对对顶角,图6对对顶角,图3中有对对顶角;(2)若有n对对顶角(用含n的式子表示);(3)若有2 018条直线相交于一点,共有对对顶角.第2课时垂直基础题知识点1垂直的定义1.如图,OA⊥OB,若∠1=35°,则∠2的度数是( )A.35°B.45°C.55°D.70°2.如图,平面内三条直线相交于点O,∠1=30°,∠2=60°,直线AB与直线CD的关系是( )A.平行B.垂直C.重合D.以上均有可能3.如图,一棵小树生长时与地面所成的角∠1=80°,它的根深入泥土,如果根和小树在同一条直线上,那么∠2等于 .4.(2016·太原期中)如图,已知OA⊥OB,∠1与∠2互补,试说明:OC⊥OD.知识点2画垂线5.如图,点P是∠AOB的边OB上的一点.(1)过点P画OA的垂线,垂足为H;(2)过点P画OB的垂线,交OA于点C.解:如图所示.知识点3垂线的性质6.如图,在线段PA,PB,PC,PD中,最短的是( )A.PAB.PBC.PCD.PD7.下列说法正确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,可以过任意一点画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个8.(2016·太原期中)如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是知识点4点到直线的距离9.(2016·成都期中)点到直线的距离是( )A.点到直线的垂线段的长度B.点到直线的垂线段C.点到直线的垂线D.点到直线上一点的连线10.下列图形中,线段PQ的长表示点P到直线MN的距离的是( )11.如图,已知AC⊥BC,CD⊥AB于点D,AC=3,BC=4,则点B到直线AC的距离等于4,点C到直线AB的垂线段是线段中档题12.已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形可以是( )A B C D13.如图,在△ABC中,∠C=90°,AC=3,点P是边BC上的动点,则AP的长不可能是( )A.2.5B.3C.4D.514.如图,田径运动会上,七年级二班的小亮同学从C点起跳,假若落地点是D,当AB与CD垂直时,他跳得最远.15.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM.若∠AOM=35°,则∠CON的度数为 .16.如图所示,O 是直线AB 上一点,∠AOC =13∠BOC,OC 是∠AOD 的平分线.(1)求∠COD 的度数;(2)判断OD 与AB 的位置关系,并说明理由..17.如图,直线AB 与CD 相交于点O ,OE ⊥AB ,OF ⊥CD.(1)图中∠AOF 的余角是 把符合条件的角都填出来); (2)图中除直角相等外,还有相等的角,请写出三对:(3)①如果∠AOD=160°.那么根据对顶角相等可得∠BOC= ; ②如果∠AOD=4∠EOF,求∠EOF 的度数.综合题18.在直线AB 上任取一点O ,过点O 作射线OC ,OD ,使OC⊥OD.当∠AOC=30°时,试求∠BOD 的度数. 解:①当OC ,OD 在直线AB 同侧时,如图1,∠BOD =90°-30°=60°;图1 图2②当OC ,OD 在直线AB 异侧时,如图2,∠AOD =90°-30°=60°,∠BOD =180°-∠AOD=120°. 所以∠BOD 的度数是60°或120°.2.2 探索直线平行的条件第1课时利用同位角判定两直线平行及平行公理基础题知识点1认识同位角1.下列图中,∠1与∠2是同位角的是( )A B C D2.如图,直线MN分别交直线AB,CD于点E,F,其中,∠AEF的对顶角是∠BEM,∠BEF的同位角是____.知识点2同位角相等,两直线平行3.(2017·绥化)如图,直线AB,CD被直线EF所截,∠1=55°,下列条件中能判定AB∥CD的是( )A.∠2=35°B.∠2=45°C.∠2=55°D.∠2=125°4.如图,能够判断直线AB∥CD的条件可以是( )A.∠1=∠4B.∠3=∠2C.∠1=∠3D.∠4=∠25.如图所示,用相同直尺和三角尺作直线AB,CD,从图中可知,直线AB与直线CD的位置关系为 .6.如图所示,请你添加一个条件,使得AD∥BC,你添加的条件为7.补全下列推理过程:如图,已知BD平分∠ABC,∠1=25°,∠2=50°.试说明:ED∥BC.知识点3平行公理8.过直线l外一点A作l的平行线,可以作( )A.1条B.2条C.3条D.4条9.如果a∥b,b∥c,那么a∥c,这个推理的依据是( )A.等量代换B.经过直线外一点,有且只有一条直线与已知直线平行C.平行线的定义D.平行于同一直线的两直线平行10.如图,PC∥AB,QC∥AB,则点P,C,Q在一条直线上.理由是11.如图,P,Q分别是直线EF外两点.(1)过点P画直线AB∥EF,过点Q画直线CD∥EF;(2)AB与CD有怎样的位置关系?为什么?中档题12.已知在同一平面内的直线l1,l2,l3,如果l1⊥l2,l2⊥l3,那么l1与l3的位置关系是( )A.平行B.相交C.垂直D.以上全不对13.如图,直线a,b与直线c分别交于点M,N,∠1=120°,∠2=30°.若使直线a平行于直线b,可将直线a绕点M逆时针旋转( )A.120°B.60°C.30°D.无法确定14.下列说法中正确的个数是( )①过一点一定有一条直线与已知直线平行;②一条直线的平行线有无数条;③两条不相交的直线叫做平行线;④与一条直线平行的直线只有一条.A.0B.1C.2D.315.如图,∠1=∠2,∠2=∠C,则图中互相平行的直线有16.如图,直线AB,CD被直线GH所截,且∠AEG=∠CFG,EM,FN分别平分∠AEG和∠CFG.试说明:EM∥FN.17.一辆货车在仓库装满货物准备运往超市,驶出仓库门口后开始向东行驶,途中向右拐了50°角,接着向前行驶,走了一段路程后,又向左拐了50°角,如图所示.(1)此时汽车和原来的行驶方向相同吗?你的根据是什么?(2)如果汽车第二次向右拐的角度是40°或70°,此时汽车和原来的行驶方向相同吗?你的根据是什么?综合题18.(1)若直线a1⊥a2(2)若直线a1⊥a2)(3)现在有2 018a1与a2 018的位置关系.第2课时利用内错角或同旁内角判定两直线平行基础题知识点1认识内错角、同旁内角1.(2017·玉林)如图,直线a,b被直线c所截,则∠1与∠2是( )A.同位角B.内错角C.同旁内角D.邻补角2.下列图形中,∠1与∠2是同旁内角的是( )3.是直线,被直线知识点24.A.∠C C.∠C=∠ABC5.AB∥CD,需要添加一个条件,这个条件可以是6.如图,=∠3.试说明:AB∥CD.知识点3同旁内角互补,两直线平行7.(2016·赤峰)如图,工人师傅在工程施工中,需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则( C )A.AB∥BCB.BC∥CDC.AB∥CDD.AB与CD相交8.如图,已知∠1=120°,要使直线a∥b,则需要具备另一个条件( )A.∠2=60°B.∠2=110°C.∠2=100°D.∠3=100°9.如图,下列说法中,正确的是( )A.∠A+∠D=180°,所以AD∥BCB.∠C+∠D=180°,所以AB∥CDC.∠A+∠D=180°,所以AB∥CDD.∠A+∠C=180°,所以AB∥CD10.如图,装修工人向墙上钉木条.若∠2=100°,要使木条b与a平行,则∠1的度数等于 .11.如图,已知∠ACD=70°,∠ACB=60°,∠ABC=50°.试说明:AB∥CD.中档题12.如图所示,l是l1与l2的截线,找出∠1的同位角,标上∠2,找出∠1的同旁内角,标上∠3,则∠1,∠2,∠3正确的位置图为( )13.(2017·深圳)下列选项中,哪个不可以得到l1∥l2( )(15)A.∠1=∠2B.∠2=∠3C.∠3=∠5D.∠3+∠4=180°14.若∠1与∠2是两直线被第三条直线所截形成的内错角,则∠1与∠2关系是( )A.∠1=∠2B.∠1>∠2C.∠1<∠2D.以上都有可能15.如图,将三个相同的三角尺不重叠不留空隙地拼在一起,观察图形,在线段AB,AC,AE,ED,EC,DB中,相互平行的线段有( )16.如图,给出下列四个条件:①AC=BD;②∠DAC=∠BCA;③∠ABD=∠CDB;④∠ADB=∠CBD,其中能使AD∥BC 成立的条件是( )A.①②B.③④C.②④D.①③④17.(2016·淄博)如图,一个由4条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明理由.18.如图所示,光线从空气射入水中,再射出空气中,如果∠1=∠2,∠3=∠4,请你用所学的知识判断光线a,b 是否平行,并说明理由.综合题19.如图所示,已知∠BED=∠B+∠D,试说明AB与CD的位置关系.周周练(2.1~2.2)一、选择题(每小题3分,共24分)1.下面四个图中,∠1=∠2一定成立的是( )A BC D2.如图,已知点O是直线AB上一点,∠1=65°,则∠2的度数是( )A.25°B.65°C.105°D.115°3.如图,点O在直线AB上,且OC⊥OD.若∠COA=36°,则∠DOB大小为( )A.36°B.54°C.64°D.72°4.如图,下列各语句中,错误的语句是( )A.∠ADE与∠B是同位角B.∠BDE与∠C是同旁内角C.∠BDE与∠AED是内错角D.∠BDE与∠DEC是同旁内角5.(2016·成都期中)下列说法正确的是( )A.a,b,c是直线,且a∥b,b∥c,则a∥cB.a,b,c是直线,且a⊥b,b⊥c,则a⊥cC.a,b,c是直线,且a∥b,b⊥c,则a∥cD.a,b,c是直线,且a∥b,b∥c,则a⊥c6.体育课上,老师测量跳远成绩的依据是( )A.平行线间的距离相等B.两点之间,线段最短C.垂线段最短D.两点确定一条直线7.如图,∠ACB=90°,CD⊥AB,垂足为D,则下面的结论中,不正确的是( )A.点B到AC的垂线段是线段CAB.CD和AB互相垂直C.AC与BC互相垂直D.线段AC的长度是点A到BC的距离8.对于图中标记的各角,下列条件能够推理得到a∥b的是( )A.∠1=∠2B.∠2=∠4C.∠3=∠4D.∠1+∠4=180°二、填空题(每小题4分,共24分)9.已知∠α=35°40′,则∠α的余角为,补角为 .10.如图,AC⊥BC,AC=3,BC=4,AB=5,则点B到AC的距离为 .11.如图,已知∠1+∠2=100°,则∠3= .12.如图,已知OA⊥OB,OC⊥OD,∠AOC=27°,则∠BOD的度数是 .13.如图,在同一平面内,OA⊥l,OB⊥l,垂足为O,则OA与OB重合的理由 _____________________14.已知长方形ABCD中,∠ADB=20°,现将这一长方形纸片沿AF折叠,则当折痕AF与AB的夹角∠BAF为时,AB′∥BD.三、解答题(共52分)15.(8分)一个角的补角比这个角的余角的3倍大10°,求这个角的度数.16.(12分)如图,完成下列推理过程.(1)已知∠1=108°,∠2=72°,由∠1+∠2=108°+72°=180°,可得AB∥CD,根据是同旁内角互补,两直线平行;(2)已知∠1=108°,∠3=108°,由∠1=108°=∠3,可得AB∥CD,根据是同位角相等,两直线平行;17.(10分)(2016·江西)如图,直角三角形ABC中,∠ACB=90°,将直角三角形ABC向下翻折,使点A与点C重合,折痕为DE,试说明:DE∥BC.18.(10分)如图,已知∠1与∠3互余,∠2与∠3的余角互补,问直线l1∥l2吗?为什么?19.(12分)如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=72°,求∠BOD的度数;(2)若∠DOE=2∠AOC,判断射线OE,OD的位置关系并说明理由.2.3平行线的性质第1课时平行线的性质基础题知识点1两直线平行,同位角相等1.(2017·海南)如图,直线a∥b,c⊥a,则c与b相交所形成的∠1的度数为( )A.45°B.60°C.90°D.120°2.(2017·沈阳)如图,AB∥CD,∠1=50°,∠2的度数是( )A.50°B.100°C.130°D.140°3.(2016·济宁)如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=50°,那么∠2的度数是( )A.20°B.30°C.40°D.50°4.如图,AB∥CD,直线EF分别交AB,CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放.若∠EMB=75°,则∠PNM= .知识点2两直线平行,内错角相等5.(2016·桂林)如图,直线a∥b,c是截线,∠1的度数是( )A.55°B.75°C.110°D.125°6.如图,AB∥CD,∠CDE=140°,则∠A的度数为( )A.140°B.60°C.50°D.40°7.(2017·通辽)如图,CD平分∠ECB,且CD∥AB.若∠A=36°,则∠B=°.8.(2016·郑州期末)如图所示,一艘船从A点出发,沿东北方向航行至B点,再从B点出发沿南偏东15°方向航行至C点,则∠ABC等于 .知识点3两直线平行,同旁内角互补9.如图,∠1=65°,CD∥EB,则∠B的度数为( )A.65°B.105°C.110°D.115°10.(2016·成都期中)如图,AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=( )A.180°B.270°C.360°D.540°11.如图,直线AB∥CD,∠1=95°,∠4=70°,则∠3=85°,∠2= .中档题12.如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF=( )A.60°B.120°C.150°D.180°13.(2017·枣庄)如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( ) A.15° B.22.5° C.30° D.45°14.如图,直线AC∥BD,AO,BO分别是∠BAC,∠ABD的平分线,那么∠BAO与∠ABO之间的大小关系一定为( )A.互余B.相等C.互补D.不等15.如图,点A,C,F,B在同一直线上,CD平分∠ECB,FG∥CD,若∠ECA为α度,则∠GFB为度.(用关于α的代数式表示)16.(2016·绥化)如图,AB∥CD∥EF,若∠A=30°,∠AFC=15°,则∠C= .17.(2017·重庆)如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED交AB于点F,求∠AFE的度数.18.如图,在三角形ABC中,DE∥AC,DF∥AB.试问:∠A+∠B+∠C=180°这个结论成立吗?若成立,试写出推理综合题19.如图1,2,3图1中,∠B图2中,∠B图3中,∠B°.通过以上练习和你的发现,依次类推,若AB∥CD,则∠B+∠E1+…+∠E n+∠D=第2课时平行线性质与判定的综合基础题知识点1综合运用平行线的性质与判定进行计算或说理1.如图,直线a,b,c,d,已知c⊥a,c⊥b,直线b,c,d交于一点.若∠1=50°,则∠2等于( )A.60°B.50°C.40°D.30°2.(2017·宿迁)如图,直线a,b被直线c,d所截.若∠1=80°,∠2=100°,∠3=85°,则∠4度数是( )A.80°B.85°C.95°D.100°3.(2017·恩施)如图,若∠A+∠ABC=180°,则下列结论正确的是( )A.∠1=∠2B.∠2=∠3C.∠1=∠3D.∠2=∠44.如图,∠1=∠2,∠A=60°,则∠ADC=5.如图,BC∥DE,∠E+∠B=180°,则AB和EF的位置关系为 .6.(2016·成都期中)已知:如图所示,AB∥DC,∠ABC=∠ADC,BF和DE分别平分∠ABC和∠ADC.试说明:ED∥BF.7.如图,已知∠B+∠BCD=180°,∠B=∠D.请你观察图形,写出∠E和∠DFE满足什么数量关系?并说明理由.知识点2利用平行线的性质与判定解决实际问题8.(2017·邵阳)如图所示,要在一条公路的两侧铺设平行管道,已知一侧铺设的角度为120°,为使管道对接,另一侧铺设的角度大小应为( )A.120°B.100°C.80°D.60°9.如图,在A,B两地挖一条笔直的水渠,从A地测得水渠的走向是北偏西42°,A,B两地同时开工,B地所挖水渠走向应为南偏东 .10.一条建设中的高速公路要穿过一山体开挖一条隧道,甲、乙两工程队分别从山体两侧的A,B两点同时开工,现甲队从A点测得道路的走向是北偏东55°,为了不浪费人力、物力,问乙队在B点处应该按∠β等于多少度开挖,才能够保证隧道准确接通?中档题11.如图所示,下列条件不能判定直线a∥b的是( )A.∠1=∠2B.∠3=∠4C.∠1=∠4D.∠4+∠5=180°12.已知∠1=120°,∠2=60°,∠3+∠4=180°,如图所示,则在结论:①a∥b;②a∥c;③b∥c;④∠3=∠2中,正确的个数是( )A.1B.2C.3D.413.如图,一条公路修到湖边时,需拐弯绕道而过,如果第一次拐的角∠A=120°,第二次拐的角∠B=150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,那么∠C等于( )A.120°B.130°C.140°D.150°14.如图,在三角形ABC中,CD平分∠ACB,∠1=∠2=36°,则∠3= .15.如图,直线l1∥l2,∠α=∠β,∠1=40°,则 .16.如图,按下面方法折纸,然后解答问题:若∠1=40°,你能求出∠2的度数吗?试着做一做.17.如图是潜望镜工作原理示意图,阴影部分是平行放置在潜望镜里的两面镜子.已知光线经过镜子反射时,有∠1=∠2,∠3=∠4,请解释进入潜望镜的光线l为什么和离开潜望镜的光线m是平行的?综合题18.如图所示,已知∠ABC=80°,∠BCD=40°,∠CDE=140°,试确定AB与DE的位置关系,并说明理由.小专题(三) 利用平行线的性质求角度【教材母题】如图,AC∥ED,AB∥FD,∠A=64°,求∠EDF的度数.【利用平行线的性质求角度时,先要找准待求角与已知角之间的位置关系,再利用平行线的性质、角之间的等量代换求出待求角的度数.1.如图,直线a,b被直线c所截,若a∥b,∠1=40°,∠2=70°,求∠3的度数.2.如图,EF∥BC,AC平分∠BAF,∠B=80°,求∠C的度数.3.如图,AB∥CD,EF⊥AB于点E,EF交CD于点F.已知∠2=20°,求∠1的度数.4.如图,已知a∥b,∠1=50°,∠2=90°,试求∠3的度数.5.已知AB∥DE,∠B=60°,且 CM平分∠DCB,CM⊥CN,垂足为C,求∠NCE的度数.6.如图,AB∥CD,∠B=120°,EF是∠CEB的平分线,FG∥HD,求∠EDH的度数.7.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.8.如图,∠B,∠D的两边分别平行.(1)在图1中,∠B与∠D的数量关系是什么?为什么?(2)在图2中,∠B与∠D的数量关系是什么?为什么?(3)由(1)(2)可得结论:(4)应用:若两个角的两边两两互相平行,其中一个角比另一个角的2倍少30°,求这两个角的度数.图1 图22.4 用尺规作角基础题知识点1尺规作图的意义1.尺规作图是指( )A.用直尺规范作图B.用刻度尺和圆规作图C.用没有刻度的直尺和圆规作图D.直尺和圆规是作图工具2.下列关于尺规的功能说法不正确的是( )A.直尺的功能是:在两点间连接一条线段,将线段向两方向延长B.直尺的功能是:可作平角和直角C.圆规的功能是:以任意长为半径,以任意点为圆心作一个圆D.圆规的功能是:以任意长为半径,以任意点为圆心作一段弧3.A.B.C.D.在射线OP知识点24.A.B.C.以∠AOBD.5.(2017·随州)OA,OB于点E,FA.以点FB.以点FC.以点ED.以点E6.求作一个角等于已知角∠AOB,如图,根据图形,写出作法.作法:(1)作射线O′B′;(2)以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D;(3)以点O′为圆心,以OC的长(或OD的长)为半径画弧,交O′B′于点D′;(4)以点D′为圆心,以CD的长为半径画弧,交前面的弧于点C′;(5)过点C′作射线O′A′.∠A′O′B′就是所求作的角.解:作出的∠β如图所示.8.如图,已知∠AOB,点P在OA上,请以P为顶点,PA为一边作∠APC=∠O.(不写作法,但必须保留作图痕迹)解:如图.中档题9.如图,用尺规作图:“过点C作CN∥OA”,其作图依据是( )A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角相等,两直线平行D.同旁内角互补,两直线平行10.已知∠1和∠2如图所示,用尺规作图画出∠AOB=∠1+∠2,保留作图痕迹.11.(2016·太原期中)如图,已知∠α和直角∠AOB,在∠AOB的内部以点O为顶点作∠β,使∠β=90°-∠α.(要求:尺规作图,不写作法,保留作图痕迹)章末复习(二) 相交线与平行线基础题知识点1对顶角、余角、补角1.下列各图中,∠1与∠2互为补角的是( )A B C D2.如图,如果∠AOB=∠COD=90°,那么∠1=∠2,这是根据( )A.直角都相等B.C.D.3.如果∠A=354.如图,直线a, .知识点25.(2016·淄博),垂足分别为点A,D,则图中能表示点到直线距离的线段共有( )A.2条条 D6.(2016·南通),OE⊥AB,∠COE=7.如图所示,想在河堤两岸搭建一座桥,搭建方式最短的是,理由是知识点3平行公理8.如图,直线a∥c,∠1=∠2,那么直线b,c的位置关系是 .知识点4平行线的性质与判定9.如图,∠1=∠B,∠2=25°,则∠D等于( )A.25°B.30°C.45°D.50°10.(2016·百色)如图,直线a,b被直线c所截,下列条件能使a∥b的是( )A.∠1=∠6B.∠2=∠6C.∠1=∠3D.∠5=∠711.如图,给出了过直线外一点画已知直线的平行线方法,其依据是( )A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等12.已知:如图,AD∥BE,∠1=∠2,试说明:∠A=∠E.知识点5尺规作图13.如图,利用尺规,在三角形ABC的边AC上方作∠CAD=∠ACB,并说明:AD∥CB.(尺规作图要求保留作图痕迹,不写作法)解:如图所示.因为∠DAC=∠ACB,所以AD∥CB.中档题14.(2017·安徽)直角三角板和直尺如图放置.若∠1=20°,则∠2的度数为( )A.60°B.50°C.40°D.30°(15)15.如图,已知∠AEF=∠EGH,AB∥CD,则下列判断中不正确的是( )A.∠AEF=∠EFDB.AB∥GHC.∠BEF=∠EGHD.GH∥CD16.(2017·锦州)一小区大门的栏杆如图所示,当栏杆抬起时,BA垂直于地面AE,CD平行于地面AE,则∠ABC+∠BCD 的度数为( )A.180°B.270°C.300°D.360°17.学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的(如图1~4),从图中可知,小敏画平行线的依据有( )①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行.图1 图2 图3 图4A.①②B.②③C.③④D.①④18. 如图所示,AD∥EF∥BC,AC∥EN,则图中与∠1相等的角有个.19.如图,在三角形ABC中,CD⊥AB,垂足为点D,点E在BC上,EF⊥AB,垂足为点F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=105°,求∠ACB的度数.综合题20.已知AB∥CD.(1)如图1,若∠ABE=30°,∠BEC=148°,求∠ECD的度数;(2)如图2,若CF∥EB,CF平分∠ECD,试探究∠ECD与∠ABE之间的数量关系,并说明.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章相交线与平行线(一)知识要点归纳1.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________.2.两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为__________.对顶角的性质:______ _________.3.两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.垂线的性质:⑴过一点______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,_______________.4.直线外一点到这条直线的垂线段的长度,叫做________________________.5.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.6.在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有________与_________两种.7.平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么_____________________.8.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:________________________________________.9. 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ . 10. 平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成: _________________.⑵两条平行直线被第三条直线所截,内错角相等.简单说成:__________________________________.⑶两条平行直线被第三条直线所截,同旁内角互补.简单说成:____________________________________ .(二)熟悉以下各题:11. 如图,,8,6,10,BC AC CB cm AC cm AB cm ⊥===那么点A 到BC 的距离是_____,点B 到AC 的距离是_______,点A 、B 两点的距离是_____,点C 到AB 的距离是________.12. 如图,CD ⊥AB ,垂足为D ,AC ⊥BC ,垂足为C .图中线段的长能表示点到直线(或线段)距离的线段有…………………………………………………………( )(A ) 1条 (B )3条 (C )5条 (D )7条13.设a 、b 、c 为平面上三条不同直线,a) 若//,//a b b c ,则a 与c 的位置关系是_________; b) 若,a b b c ⊥⊥,则a 与c 的位置关系是_________; c) 若//a b ,b c ⊥,则a 与c 的位置关系是________.14.两个角的两边分别平行,其中一个角比另一个角的3倍少20°.则这两个角的度数分别是 .15.如图5所示,AB ⊥CD 于点C ,CE ⊥CF ,则图中共有______对互余的角.①2121②12③12④16.一个角的补角与这个角的余角的和比平角少10°,求这个角.17.若AO ⊥BO ,垂足为O ,∠AOC ︰∠AOB =2︰9,则∠BOC 的度数等于……( )(A )20° (B )70° (C )110° (D )70°或110° .第二章《相交线与平行线》中考经典题一、选择题:1.下列所示的四个图形中,1∠和2∠是同位角...的是( )A. ②③B. ①②③C. ①②④D. ①④2.如右图所示,点E 在AC 的延长线上,下列条件中能判断...CD AB //( )A. 43∠=∠B. 21∠=∠C. DCE D ∠=∠D. ο180=∠+∠ACD D3.一学员练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )A. 第一次向左拐ο30,第二次向右拐ο30 B. 第一次向右拐ο50,第二次向左拐ο130 C. 第一次向右拐ο50,第二次向右拐ο130E DC BA4321DCBAEDCBAD. 第一次向左拐ο50,第二次向左拐ο1304.两条平行直线被第三条直线所截,下列命题中正确..的是( ) A. 同位角相等,但内错角不相等 B. 同位角不相等,但同旁内角互补 C. 内错角相等,且同旁内角不互补 D. 同位角相等,且同旁内角互补 5.下列说法中错误..的个数是( ) (1)过一点有且只有一条直线与已知直线平行。
(2)过一点有且只有一条直线与已知直线垂直。
(3)在同一平面内,两条直线的位置关系只有相交、平行两种。
(4)不相交的两条直线叫做平行线。
(5)有公共顶点且有一条公共边的两个角互为邻补角。
A. 1个B. 2个C. 3个D. 4个 6.下列说法中,正确..的是( ) A. 图形的平移是指把图形沿水平方向移动。
B. 平移前后图形的形状和大小都没有发生改变。
C. “相等的角是对顶角”是一个真命题。
D. “直角都相等”是一个假命题。
7.如图,CD AB //,且ο25=∠A ,ο45=∠C ,则E ∠的度数是( ) A. ο60 B. ο70 C. ο110 D. ο80(第7题) (第8题) (第10题) 8.如图所示,已知BC AC ⊥ ,AB CD ⊥,垂足分别是C 、D ,那么以下线段大小的比较必定成立....的是( ) E DCBAA. AD CD >B. BC AC <C. BD BC >D. BD CD < 9.在一个平面内,任意四条直线相交,交点的个数最多有( ) A. 7个 B. 6个 C. 5个 D. 4个 11.如图,AB ∥DE ,试问∠B 、∠E 、∠BCE 有什么关系.解:∠B +∠E =∠BCE 过点C 作CF ∥AB ,则B ∠=∠____( ) 又∵AB ∥DE ,AB ∥CF ,∴____________( ) ∴∠E =∠____( ) ∴∠B +∠E =∠1+∠2 即∠B +∠E =∠BCE .练习.如图,AB ∥CD ,∠1=115°,∠2=140°,求∠3的度数.12.⑴如图,已知∠1=∠2 求证:a ∥b .⑵直线//a b ,求证:12∠=∠.13.阅读理解并在括号内填注理由:如图,已知AB ∥CD ,∠1=∠2,试说明EP ∥FQ . 证明:∵AB ∥CD ,∴∠MEB =∠MFD ( ) 又∵∠1=∠2,∴∠MEB -∠1=∠MFD -∠2, 即 ∠MEP =∠______∴EP ∥_____.( )(B ) 已知DB ∥FG ∥EC ,A 是FG 上一点,∠ABD =60°,∠ACE =36°,AP 平分∠BAC ,求:⑴∠BAC 的大小;⑵∠P AG 的大小.14.如图,已知ABC ∆,AD BC ⊥于D ,E 为AB 上一点,EF BC ⊥于F ,//DG BA 交CA 于G .求证12∠=∠.15.已知:如图∠1=∠2,∠C =∠D ,问∠A 与∠F 相等吗?试说明理由.专题训练1、如图1,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠EFB =65°,则∠AED ′的度数为 。
2、如图2,直线AB CD 、相交于点E ,DF AB ∥.若100AEC ∠=°,则D ∠等于 。
3、如图3,将三角尺的直角顶点放在直尺的一边上,130250∠=∠=°,°,则3∠的度数等于 。
4、如图4,已知A B ∥CD,若∠A=20°,∠E=35°,则∠C 等于 。
.5、如图5,12//l l ,∠1=120°,∠2=100°,则∠3= 。
6、如图6,已知AC ∥ED ,∠C =26°,∠CBE =37°,则∠BED 的度数是 。
CAE BF D图2EDBC′FCD ′A 图11 23图3图4 图5 图67、如图7,AB ∥CD ,∠ABE =66°,∠D =54°,则∠E 的度数为_______________. 8、如图8,AB//CD,直线EF 与AB 、CD 分别相交于E 、F 两点,EP 平分∠AEF,过点F 作FP ⊥EP,垂足为P ,若∠PEF=300,则∠PFC=__________。
9、如图9,1502110AB CD ∠=∠=∥,°,°,则3∠= . 10、如图10,已知//AE BD ,∠1=130o ,∠2=30o ,则∠C = .图7 图8 图9 图1011.已知AB//CD ,试问∠B+∠BED+∠D=︒360.(用两种以上方法判断)EDCB Al 1l 212 3300 P FEBACDABD C 1 2312.如图2-101,已知∠BED=∠ABE+∠CDE,那么AB//CD吗?为什么?(用四种方法判断)13.如图2-102,在折线ABCDEFG中,已知∠1=∠2=∠3=∠4=∠5,延长AB,GF交于点M.那么,∠AMG=∠3,为什么?14.如图2-103,已知AB//CD,∠1=∠2.试问∠BEF=∠EFC吗?为什么?(提示:作辅助线BC).分解发散15.如图2-104,AB//CD,在直线,AB和CD上分别任取一点E、F.已知有一定点P在AB、CD之间,试问∠EPF=∠AEP+CFP吗?为什么?16.如图2-105,如果AB、CD的外部有一定点P,试问∠EPF=∠CFP-∠AEP吗?为什么?17.如图2-106,AB//CD,BEFGD是折线,那么∠B+∠F+∠D=∠E+∠G吗?简述你的理由.18.判断互为补角的两个角中,较小角的余角等于这两个互为补角的差的一半.- 11 -第十七题N M E A B CD 19.平面上有10条直线,其中任何两条都不平行,而且任何三条都不经过同一点,这10条直线最多分平面为几个区域?20如图2-107,已知∠1=∠2=∠3,∠GFA=︒36,∠ACB=︒60,AQ 平分∠FAC ,求∠HAQ 的度数.21、已知AC ,BD 交与O ,BE ,CE 分别平分ACD ABD ∠∠,且交与E ,o A 50=∠o D 44=∠,求E ∠的度数。