第五章--相交线与平行线复习+知识点+总结
七年级下册第五章相交线与平行线

七年级下册第五章相交线与平行线一、相交线的性质相交线是两条在某一点相遇的直线。
两条相交的直线会在交点处形成锐角和钝角。
在相交线中,如果一个角是锐角,那么它的补角就是钝角;如果一个角是钝角,那么它的补角就是锐角。
这是相交线的性质之一。
因此,我们可以用这种方法来比较两条直线是否垂直。
二、对顶角与邻补角对顶角是两条直线相交形成的相对的两个角。
它们的度数总和为180度。
而邻补角则是相邻的两个角的度数之和为90度。
这些关系对于解决一些几何问题非常有用。
三、平行线的判定平行线是指两条在同一平面内不相交的直线。
我们可以通过以下方法来判定两条直线是否平行:同位角相等、内错角相等、同旁内角互补。
这些方法可以帮助我们确定两条直线是否平行,从而解决一些几何问题。
四、平行线的性质平行线具有以下性质:同位角相等、内错角相等、同旁内角互补。
这些性质都可以用来解决一些几何问题,例如计算角度、证明线段相等等等。
五、平行线与相交线的综合应用在解决几何问题时,我们经常需要将平行线和相交线的知识结合起来使用。
例如,我们可以利用相交线的性质和平行线的性质来判断两条直线是否垂直或平行,或者利用这些性质来计算角度和线段长度等。
六、空间中的平行关系在三维空间中,我们也可以定义平行关系。
例如,两个平面或两条直线可以被定义为平行的,如果它们在三个方向上都相等或成比例。
此外,两个平面或两条直线也可以被定义为垂直的,如果它们在三个方向上都相交于90度的角度。
这些关系在解决一些空间几何问题时非常有用。
七、命题与证明在几何学中,一个命题是由一个或多个已知事实和一个结论所组成。
如果命题的结论是由已知事实经过推理而得出的,那么这个命题就被称为定理。
证明一个命题就是要用逻辑推理的方法证明它是正确的。
证明的方法通常包括使用定义、公理、定理和已知事实等。
通过证明,我们可以确定一个命题是否为真,从而提高我们对数学知识的理解。
八、互逆命题互逆命题是一种特殊的命题形式,它指的是两个命题中的每一个都是另一个的逆命题。
相交线与平行线知识点总结

相交线与平行线知识点总结1.直线的定义:直线是平面上的一组点,这些点的任意两个点都可以用直线上的一段有向线段连接起来。
直线也可以看作没有端点的线段。
2.相交线的性质:(1)相交线:两条直线在平面上的交点。
两条相交的直线不可能平行。
(2)轴:两条相交线的交点称为轴。
(3)垂直交线:两条相交线互相垂直,即交角为90度。
(4)垂线:一条直线与另一条直线垂直,称为垂线。
(5)垂直平分线:两条相交直线的交点到两条直线距离相等的直线,称为垂直平分线。
3.平行线的性质:(1)平行线:在同一个平面内,两条直线不相交,称为平行线。
(2)平行符号:在直线上标记一对箭头表示平行关系。
(3)平行线定理:-同位角定理:两条平行线与同一条横截线相交,所得相对应的内角相等,相对应的外角相等。
-平行线之间的任意一对同位角互相相等。
(4)平行线判定定理:-直线与直线平行判定定理:直线与一条直线平行,则与这条直线平行的所有直线都平行。
-同位角平行判定定理:两条直线被一条横截线所截,使同位角相等,则这两条直线平行。
-垂直线判定定理:两条直线互相垂直,则这两条直线平行于同一直线。
(5)平行线的性质:-平行线之间的距离相等:两条平行线上任意两点之间的距离相等。
-平行线的夹角:两条平行线被一条直线截断所得的内角和为180度。
-平行线的斜率:两条平行线的斜率相等或者其中一条线的斜率不存在。
4.平行四边形:(1)平行四边形定义:有两对对边分别平行的四边形。
(2)平行四边形的性质:-对边相等:平行四边形的对边相等。
-对角线:平行四边形的对角线互相平分。
-同位角:平行四边形的同位角互相相等。
5.直线的倾斜角:(1)倾斜角定义:一条直线倾斜角的正切值等于该直线的斜率。
(2)平行线的倾斜角:平行线具有相同的倾斜角。
(3)垂直线的倾斜角:垂直线的倾斜角之和等于90度。
6.平行线与欧几里得公设:(1)欧几里得公设五:经过点外的一条直线上至少有两条平行线。
相交线与平行线知识点整理

相交线与平行线知识点整理相交线和平行线是几何学中的基本概念,是研究点、直线、平面之间的关系的重要内容。
下面是关于相交线和平行线的详细知识整理。
一、相交线的定义和性质:1.相交线的定义:当两条线或两条线段在空间中共有一个交点时,我们称这两条线或线段为相交的。
2.相交线的性质:(1)两条相交线必有且只有一个交点。
(2)相交线的交点在两条相交线上。
(3)相交线可以分割平面为两个部分。
(4)相交线可以交换位置,即线的交点不变。
(5)相交线的角度和弧度可以相互转化。
二、平行线的定义和性质:1.平行线的定义:在同一个平面上,两条直线如果没有交点,则称这两条直线为平行线。
2.平行线的性质:(1)平行线永不相交。
(2)平行线的夹角为0度。
(3)平行线在任何一点上的垂直线也是平行线。
(4)如果两条直线分别与一条直线相交,且对应的内角或同旁内角互补,则这两条直线是平行线。
(5)平行线与一个截线相交,对应角相等。
三、相交线与平行线之间的关系:1.两条相交线切割出的平行线性质:(1)两条相交线切割出的平行线长度相等。
(2)两条相交线切割出的平行线夹角相等。
(3)两条相交线切割出的平行线互相垂直。
2.平行线夹角关系:(1)两条平行线被一条截线切割,对应角相等。
(2)两条平行线被两条截线交叉切割,对应角互补。
四、平行线的判断方法:1.距离判定法:两条直线上一点到另一直线上的距离相等,则这两条直线平行。
2.角度判定法:如果两条直线上的任意一组对应角相等,则这两条直线平行。
3.线段比较法:两条平行线上两对相交线段的比值相等。
五、相交线和平行线的应用:1.在建筑设计中,平行线用于调整房屋结构的直角度量。
2.在交通规划中,相交线和平行线用于规划道路的交叉口和分隔带。
3.在地理学中,相交线和平行线用于绘制地图上的经纬线和等高线。
4.在数学教学中,相交线和平行线可以帮助学生理解几何概念,并解决相关问题。
总结:相交线和平行线是几何学中的基本概念,对于点、直线、平面的研究具有重要意义。
2023年相交线与平行线知识点归纳总结

《相交线与平行线》知识点总结一: 相交线(1)相交线旳定义两条直线交于一点, 我们称这两条直线相交.相对旳, 我们称这两条直线为相交线.(2)两条相交线在形成旳角中有特殊旳数量关系和位置关系旳有对顶角和邻补角两类.(3)在同一平面内, 两条直线旳位置关系有两种: 平行和相交(4)对顶角: 有一种公共顶点, 并且一种角旳两边分别是另一种角旳两边旳反向延长线, 具有这种位置关系旳两个角, 互为对顶角.∠1和∠3, ∠2和∠4是对顶角.(5)邻补角:只有一条公共边,它们旳另一边互为反向延长线,具有这种关系旳两个角,互为邻补角.如图:∠1和∠2,∠2和∠3是邻补角.(6)对顶角旳性质:对顶角相等.(如图∠1=∠3, ∠2=∠4)(7)邻补角旳性质:邻补角互补, 即和为180°.(如图∠1+∠2=180°)(8)邻补角、对顶角成对出现, 在相交直线中, 一种角旳邻补角有两个. 邻补角、对顶角都是相对与两个角而言, 是指旳两个角旳一种位置关系. 它们都是在两直线相交旳前提下形成旳。
二、垂线(1)、垂线旳定义: 当两条直线相交所成旳四个角中, 有一种角是直角时, 就说这两条直线互相垂直, 其中一条直线叫做另一条直线旳垂线, 它们旳交点叫做垂足.如图, OD⊥AB, 垂足为O(2)、垂线旳性质过一点有且只有一条直线与已知直线垂直.注意: “有且只有”中, “有”指“存在”, “只有”指“唯一”“过一点”旳点在直线上或直线外都可以。
(3)、垂线段: 从直线外一点引一条直线旳垂线, 这点和垂足之间旳线段叫做垂线段.(4)垂线段旳性质: 垂线段最短.对旳理解此性质, 垂线段最短, 指旳是从直线外一点到这条直线所作旳垂线段最短. 它是相对于这点与直线上其他各点旳连线而言.(如图, PA,PB,PC等线段中, PO最短)(4)、点到直线旳距离(如图, PO旳长)(1)点到直线旳距离:直线外一点到直线旳垂线段旳长度, 叫做点到直线旳距离.(2)点到直线旳距离是一种长度, 而不是一种图形, 也就是垂线段旳长度, 而不是垂线段.它只能量出或求出, 而不能说画出, 画出旳是垂线段这个图形.三、平行线1.在同一平面内, 两条直线旳位置关系有两种: 平行和相交.(1)平行线旳定义:在同一平面内,不相交旳两条直线叫平行线.记作: a∥b;读作: 直线a平行于直线b.(2)同一平面内, 两条直线旳位置关系: 平行或相交, 对于这一知识旳理解过程中要注意:①前提是在同一平面内;②对于线段或射线来说, 指旳是它们所在旳直线.(3)平行公理:通过直线外一点, 有且只有一条直线与这条直线平行.如图, 过点P只有直线a 与直线b 平行(4)平行公理中要精确理解“有且只有”旳含义.从作图旳角度说, 它是“能但只能画出一条”旳意思.(5)平行公理旳推论:假如两条直线都与第三条直线平行, 那么这两条直线也互相平行.如图, 假如a∥c, b∥c, 那么a∥c2.同位角、内错角、同旁内角(1)同位角: 两条直线被第三条直线所截形成旳角中, 若两个角都在两直线旳同侧, 并且在第三条直线(截线)旳同旁, 则这样一对角叫做同位角.例如∠1和∠5,∠3和∠7,∠4和∠8,∠2和∠6.(2)内错角: 两条直线被第三条直线所截形成旳角中, 若两个角都在两直线旳之间, 并且在第三条直线(截线)旳两旁, 则这样一对角叫做内错角. 例如∠3和∠5, ∠4和∠6.(3)同旁内角: 两条直线被第三条直线所截形成旳角中, 若两个角都在两直线旳之间, 并且在第三条直线(截线)旳同旁, 则这样一对角叫做同旁内角。
相交线与平行线知识点总结

相交线与平行线知识点总结标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-相交线与平行线一:相交线(1)相交线的定义两条直线交于一点,我们称这两条直线相交.相对的,我们称这两条直线为相交线.(2)两条相交线在形成的角中有特殊的数量关系和位置关系的有对顶角和邻补角两类.(3)在同一平面内,两条直线的位置关系有两种:平行和相交(4)对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.∠1和∠3,∠2和∠4是对顶角.(5)邻补角:只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.如图:∠1和∠2,∠2和∠3是邻补角.(6)对顶角的性质:对顶角相等.(如图∠1=∠3,∠2=∠4)(7)邻补角的性质:邻补角互补,即和为180°.(如图∠1+∠2=180°)(8)邻补角、对顶角成对出现,在相交直线中,一个角的邻补角有两个.邻补角、对顶角都是相对与两个角而言,是指的两个角的一种位置关系.它们都是在两直线相交的前提下形成的。
二、垂线(1)、垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.如图,OD⊥AB,垂足为O(2)、垂线的性质过一点有且只有一条直线与已知直线垂直.注意:“有且只有”中,“有”指“存在”,“只有”指“唯一”“过一点”的点在直线上或直线外都可以。
(3)、垂线段:从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段.(4)垂线段的性质:垂线段最短.正确理解此性质,垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.(如图,PA,PB,PC等线段中,PO最短)(4)、点到直线的距离(如图,PO的长)(1)点到直线的距离:直线外一点到直线的垂线段的长度,叫做点到直线的距离.(2)点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.它只能量出或求出,而不能说画出,画出的是垂线段这个图形.三、平行线1、在同一平面内,两条直线的位置关系有两种:平行和相交.(1)平行线的定义:在同一平面内,不相交的两条直线叫平行线.记作:a∥b;读作:直线a平行于直线b.(2)同一平面内,两条直线的位置关系:平行或相交,对于这一知识的理解过程中要注意:①前提是在同一平面内;②对于线段或射线来说,指的是它们所在的直线.(3)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.如图,过点P只有直线a 与直线 b平行(4)平行公理中要准确理解“有且只有”的含义.从作图的角度说,它是“能但只能画出一条”的意思.(5)平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.如图,如果a∥c,b∥c,那么a∥c2、同位角、内错角、同旁内角(1)同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.例如∠1和∠5,∠3和∠7,∠4和∠8,∠2和∠6.(2)内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.例如∠3和∠5,∠4和∠6.(3)同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角。
初一第五章相交线与平行线知识点整理

相交线与平行线知识点整理摘要:注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;⑵如果αβ∠∠与是对顶角,那么一定有αβ∠=∠;反之如果αβ∠=∠,那么αβ∠∠与不一定是对顶角,⑶如果αβ∠∠与互为邻补角,则一定有180αβ∠+∠=︒;反之如果180αβ∠+∠=︒,则αβ∠∠与不一定是邻补角。
⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。
5.1相交线1、邻补角与对顶角两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。
⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。
2、垂线⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
符号语言记作:如图所示:AB ⊥CD ,垂足为O⑵垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记)⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
简称:垂线段最短。
3、垂线的画法:⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线。
注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上。
AB C D O画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线。
4、点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离记得时候应该结合图形进行记忆。
七年级下册数学第五单元相交线与平行线知识点总结和巩固练习

七年级下册第5章-------相交线与平行线知识总结及典型例题知识点1 :邻补角、对顶角1、邻补角:有一条公共边,且另一条边互为反向延长线的两个角互为邻补角。
2、对顶角:有一个公共顶点,且一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。
3、对顶角的性质:对顶角相等。
【注意:①邻补角、对顶角是具有特殊位置关系的两个角,它们是成对出现的。
②邻补角一定互补,对顶角一定相等;但互补的角不一定是邻补角,相等的角也不一定是对顶角。
③直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。
】例1. 如图所示,直线AB,CD,EF 相交于点O,则∠AOD 的对顶角是_____ ,∠AOC 的邻补角是_______ ;若∠AOC=50°, 则∠BOD=______,∠COB=_______.例2. 如图所示,AB,CD 相交于点O,OE 平分∠AOD,∠AOC=120°,求∠BOD,∠AOE 的度数. 例3.如图所示,L1,L2,L3交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.知识点2:垂线1、垂线:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
符号语言记作: AB ⊥CD ,垂足为O2、垂线性质:①过一点有且只有一条直线与已知直线垂直;②连接直线外一点与直线上各点的所有线段中,垂线段最短。
简称:垂线段最短。
3、垂线的画法:①一靠:用三角尺一条直角边靠在已知直线上,②二移:移动三角尺使一点落在它的另一边直角边上,③三画:沿着这条直角边画直线,不要画成给人的印象是线段的线。
【注意:直线,垂足,直角记号。
】4、点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
例4. 如图,把小河里的水引到田地A 处就作AB⊥l,垂足为B ,沿AB 挖水沟,水沟最短. 理由是 .例5. 如图所示,在公路L 的同侧有两个村庄A 和B ,小明住在A 村,小军住在B 村,一天小明先去找OED C BA 34l 3l 2l 112OFED CB A A B小军,一起到公路L 搭车去县城办事,小明要少走路,应在何处等车?请在图中画出来。
人教版七年级下数学第五章-相交线与平行线-知识点+考点+典型例题

【知识重点】1.两直线订交2.邻补角:有一条公共边,另一条边互为反向延伸线的两个角互为邻补角。
3.对顶角( 1)定义:有一个公共极点,且一个角的两边分别是另一个角的两边的反向延伸线,这样的两个角互为对顶角( 或两条直线订交形成的四个角中,不相邻的两个角叫对顶角)。
( 2)对顶角的性质:对顶角相等。
4.垂直定义:当两条直线订交所形成的四个角中,有一个角是90°那么这两条线相互垂直。
5.垂线性质:①过一点有且只有一条直线与已知直线垂直;②垂线段最短。
6.平行线的定义:在同一平面内,不订交的两条直线叫平行线,“平行”用符号“∥”表示,如直线a,b 是平行线,可记作“a∥ b”7.平行公义及推论(1)平行公义:过已知直线外一点有且只有一条直线与已知直线平行。
(2)推论:假如两条直线都与第三条直线平行,那么这两条直线也相互平行。
注:(1)平行公义中的“有且只有”包括两层意思:一是存在性;二是独一性。
(2)平行拥有传达性,即假如a∥ b,b∥ c,则 a∥ c。
8.两条直线的地点关系:在同一平面内,两条直线的地点关系有订交和平行。
9.平行线的性质:(1)两直线平行,同位角相等(在同一平面内)(2)两直线平行,内错角相等(在同一平面内)(3)两直线平行,同旁内角互补(在同一平面内)10.平行线的判断(1)同位角相等,两直线平行;(在同一平面内)( 2)内错角相等,两直线平行;(在同一平面内)(3)同旁内角互补,两直线平行;(在同一平面内)( 4)假如两条直线都和第三条直线平行,那么这两条直线也相互平行;增补:(5)平行的定义;(在同一平面内)( 6)在同一平面内,垂直于同向来线的两直线平行。
......11.平移的定义及特点定义:将一个图形向某个方向平行挪动,叫做图形的平移。
特点:①平移前后的两个图形形状、大小完整同样;②平移前与平移后两个图形的对应点连线平行且相等。
【典型例题】考点一:对有关观点的理解对顶角的性质,垂直的定义,垂线的性质,点到直线的距离,垂线性质与平行公义的差别等例 1:判断以下说法的正误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 相交线与平行线复习 5.1.1相交线(详见课本第2页)
1、相交线的概念:在同一平面内,如果两条直线只有一个 点,
那么这两条直线叫做相交线,公共点称为两条直线的交点. 如图1所示,直线AB 与直线CD 相交于点O.
2、对顶角的概念:若一个角的两条边分别是另一个角的两条边的 延长线, 那么这两个角叫做对顶角. 如图2所示,∠1与∠
3、∠2与∠4都是对顶角. 3、对顶角的性质:对顶角 .
4、邻补角的概念:如果把一个角的一边 延长,这条反向延长线与这个
角的另一边构成一个角,此时就说这两个角互为邻补角. 如图3所示,∠1与∠2互为邻补角,由平角定义可知∠1+∠2=180°.
5.1.2垂线(详见课本第3-5页)
1、垂线的概念:当两条直线相交所成的四个角中,有一个角是 角时,就说这两条直线互相 ,
其中一条直线叫做另一条直线的 ,它们的交点叫做 .
2、垂线的性质 (1)(垂直公理)性质1:在同一平面内,经过直线外或直线上一点,
有且只有 条直线与已知直线垂直,即过一点有且只有 条直线与已知直线 . (2)(垂直推理)性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短. 即垂线段最 . 3、点到直线的距离:直线外一点到这条直线的 线段的长度,叫做点到直线的 . 如图5所示,l 的垂线段PO 的长度叫做点P 到 直线l 的距离. 4、 垂线的画法(工具:三角板或量角器)
画法指点:⑴一靠:用三角尺一条直角边靠在已知直线上,
⑵二移:移动三角尺使一点落在它的另一边直角边上, ⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线.
5.1.3同位角、内错角、同旁内角(详见课本第6-7页) 1、三线八角
两条直线被第 条直线所截形成 个角,它们构成了同位角、内错角与同旁内角. 如图5,直线b a ,被直线l 所截
①∠1与∠5在截线l 的同侧,同在被截直线b a ,的上方,叫做 角(位置相同)同位角是“F ”型 ②∠5与∠3在截线l 的两旁(交错),在被截直线b a ,之间(内),叫做 角(位置在内且交错)内 错角是“Z ”型
③∠5与∠4在截线l 的同侧,在被截直线b a ,之间(内),叫做 角. 同旁内角是“U ”型 2、如何判别三线八角
判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,
有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把 图形补全. 如上图6 5.2.1平行线(详见课本第11-12页)
1、 平行线的概念:在同一平面内,不 的两条直线叫做平行线.
2、两条直线的位置关系
在同一平面内,两条直线的位置关系只有两种:⑴ ;⑵ .
(通常把 的两直线看成一条直线)
判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:
A
B C
D 1
4
3
21A B
C D
O 图2 O
D C B
A 图1 图5
图6 21
O
C B A
图3
图4 6
2
3 4 5 7
8 9
B
A D E
C
1
3、平行线的表示方法
平行用“ ”表示,如图7所示,直线AB 与直线CD 平行,
记作AB ∥CD ,读作AB 平行于CD .
4、平行线的画法:
5、平行线的基本性质 (1)平行公理:经过直线 一点,有且只有 条直线与已知直线 .
(2)平行推理:如果两条直线都和第 条直线平行,那么这两条直线也 .如上图8所示 5.2.2平行线的判定(详见课本第12-14页)
1、平行线的判定方法:
(1)判定1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.
简称:同位角 ,两直线 .
(2)判定2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.
简称:内错角 ,两直线 .
(3)判定3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.
简称:同旁内角 ,两直线 .
(4)平行线的概念:同一平面内,如果两条直线没有交点(不 ),那么两直线平行.
(5)两条直线都和第三条直线平行,那么这两条直线 .(平行于同一条直线的两条直线也 ) (6)在同一平面内,如果两条直线同时垂直于同一条直线, 那么这两条直线 .(垂直于同一条直线的两条直线 )
5.3.1平行线的性质(详见课本第18-19页) 1、平行线的性质:
(1)两条平行线被第三条直线所截,同位角相等. 简记:两直线 ,同位角 . (2)两条平行线被第三条直线所截,内错角相等. 简记:两直线 ,内错角 .
(3)两条平行线被第三条直线所截,同旁内角互补. 简记:两直线 ,同旁内角 . 2、两条平行线的距离
如图10,直线AB ∥CD ,EF ⊥AB 于E ,EF ⊥CD 于F , 则称线段EF 的长度为两平行线AB 与CD 间的距离. 3.平行线的性质与判定是互逆的关系: ○1两直线平行 同位角相等;
○2两直线平行 内错角相等; ○3两直线平行 同旁内角互补.
5.3.2命题、定理(详见课本第20页) 1、命题的概念: 一件事情的语句,叫做命题.
2、命题的组成:每个命题都是 、 两部分组成. (1)题设是 事项; (2)结论是由已知事项 的事项.
3、命题的表述句式:命题常写成“ ……, ……”的形式. 具有这种形式的命题中,用“如果”开始的部分是 ,用“那么”开始的部分是 . 5.4平移(详见课本第28-29页)
1、平移变换的概念:把一个图形 沿某一 方向移动,会得到一个新图形的平移变换.
2、平移的特征:①大小: ; ②形状: ; ③位置: ; ④对应点的连线: 且 . (1的形状与大小都没有发生变化. (2)经过平移后,对应点所连的线段平行(或在同一直线上)且相等.
A
D E
B
C 1 2
图7 D C B
A a b c 图8
A E
G B C F H D
图10 性质
判定
性质
性质
判定
判定
A D B
E C
F 图12
A B C D
E
F
1 2 3
4
自我检测
1.如果两个角是互为邻补角,那么一个角是锐角,另一个角是钝角.( )
2.同一平面内,一条直线不可能与两条相交直线都平行.( )
3.两条直线被第三条直线所截,内错角的对顶角一定相等.( )
4.互为邻补角的两个角的平分线互相垂直.( )
5.两条直线都与同一条直线相交,这两条直线必相交.( )
6.如右下图,,8,6,10,BC AC CB cm AC cm AB cm ⊥===那么点A 到BC 的距离是_____,点B 到AC 的距离是_______,点A 、B 两点的距离是_____,点C 到AB 的距离是________.
7.设a 、b 、c 为同一平面上三条不同直线,
a) 若//,//a b b c ,则a 与c 的位置关系是_________; b) 若,a
b b
c ⊥⊥,则a 与c 的位置关系是_________; c)
若//a b ,b c ⊥,则a 与c 的位置关系是________.
8.如图,已知AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD =28°,求∠COE 、∠AOE 、∠AOG 的度数.
9.如图,AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与BOC ∠的平分线,试判断OD 与OE 的位置关系,并说明理由.
10.如图,AB ∥DE ,试问∠B 、∠E 、∠BCE 有什么关系.
解:∠B +∠E =∠BCE 过点C 作CF ∥AB ,
则B ∠=∠____( ) 又∵AB ∥DE ,AB ∥CF ,
∴____________( ) ∴∠E =∠____( ) ∴∠B +∠E =∠1+∠2 即∠B +∠E =∠BCE .
11.⑴如图,已知∠1=∠2 求证:a ∥b .⑵直线//a b ,求证:12∠=∠.
12.阅读理解并在括号内填注理由:
如图,已知AB ∥CD ,∠1=∠2,试说明EP ∥FQ . 证明:∵AB ∥CD ,
∴∠MEB =∠MFD ( ) 又∵∠1=∠2, ( )
∴∠MEB -∠1=∠MFD -∠2, ( ) 即 ∠MEP =_______
∴EP ∥_____.( )
13.已知DB ∥FG ∥EC ,A 是FG 上一点,∠ABD =60°,∠ACE =36°,AP 平分∠BAC ,求:⑴∠BAC 的大小;
⑵∠P AG 的大小.
14.如图,已知ABC ∆,AD BC ⊥于D ,E 为AB 上一点,EF BC ⊥于F ,//DG BA 交CA 于G .求证12∠=∠.
15.已知:如图∠1=∠2,∠C=∠D,问∠A与∠F相等吗?试说明理由.。