电磁场有限元分析
Ansoft Maxwell 2D 工程电磁场有限元分析

1.3.1Maxwell 2D 的边界条件
静磁场有以下几种边界条件: 矢量磁位边界条件 对称边界条件 气球边界条件 主边界条件 从边界条件 • 1.3.1.1 Default Boundary Conditions 自然边界条件,也称纽曼边界条件,可以用来描 述两个相接触的物体,在接触面上,磁场强度H 的切向分量和磁感应强度B 的法向分 量保持连续。
Maxwell 2D 基础
1.3 Maxwell 2D 的边界条件和激励源
边界条件和激励源方式按照不同的求解器来设定。 按照计算模型所需的求解器不同,主要可以分为以下 6 大类: 求解器 可计算的执行参数 静磁场 矩阵(电容)、力、转矩 涡流场 矩阵(电感)、力、转矩、磁通量 瞬态磁场 矩阵(阻抗)、力、转矩、磁通量 静电场 导纳、电流 交变电场 电导、电流 直流传导电场 注: 瞬态磁场是指被求解问题随时间做一定有规则的运动, 以及所加载激励是时间、位置、或者速度的函数关系,
软件默认的参数变量为_t,在X、Y、Z 三个方向上都可以设置为_t的函数,而在 Start_t 和End_t 中设置参数_t 的起始和终止范围,通过Points 项可以设置由多少个点 组成该参数曲线,若设置为0 则表示由软件默认的点数组成,此时的曲线较为光滑 ,若该项设置过少则曲线将有多段直线组成。
Maxwell 2D 基础
1.2 Maxwell 2D 的材料管理
1.2.2 常用硅钢片50W600的添加
以硅钢片50W600材料为例,先要了解该材料的特性,找到相应的相对磁化曲线 表,它的磁化曲线是非线性的;电导率在2e+6 S/m 左右。 添加步骤: 1、材料命名:50W600 2、选定坐标系:Cartesian 3、设置相关参数 Relative Permeability --相对磁导率设为 非线性曲线,点击右侧“Bh Curve”,进入 磁化曲线表, 输入相应的数据,点击OK 。 Bulk Conductivity --电导率设为2000000。 后两项默认即可。
电磁场有限元分析

有限元法可以基于变分原理导出,也可以基于加权
余量法导出,本章以加权余量法作为有限元法的基础,
以静电场问题的求解为例介绍有限元法的基本原理与实 施步骤。并介绍有限元法中的一些特殊问题。
第4章 电磁场有限元法(FEM)
1. 有限元基本原理与实施步骤:1D FEM 2. 有限元基本原理与实施步骤:2D FEM 3. 有限元方程组的求解 4. 二维有限元工程应用 5. 三维有限元原理与工程应用 6. 矢量有限元
基函数 Ni 只是一阶可导 的,不能严格满足微分方 程,称为“弱解”。
Ki , j Ni L(N j ) d
(3)方程离散
bi Ni f d
由于基函数 Ni 局域支撑,显见只有 Ki ,i 1 , Ki ,i , Ki ,i 1 不为0。
使用分步积分:
dx d2 N j xj Ni dx 2 xi dx
Ni
d2 N j
2
d
( j i 1)
Ni
dN j dx
xj
xi
xj
xi
dN i dN j dx dx dx
第一项在 xj 处为0,在 xi 处的值 被来自 (i-1) 单元的贡献抵消,故只剩下第二项。
Ki , j Ni L(N j ) d
(3)方程离散
故 Ki , j Ni
强加边界条件:u1 = 0, u6 = 0
1 K 21
0 K 22 K32
K 23 K33 K 43
K34 K 44 K54
K 45 K55 0
《电磁场有限元分析》课件

计算量大
对于大规模问题,有限元分析需要处理大量的 数据和计算,计算成本较高。
对初值和参数敏感
有限元方法对初值和参数的选择比较敏感,可 能会影响求解的稳定性和精度。
数值误差
有限元方法存在一定的数值误差,可能会导致结果的精度损失。
未来发展方向和挑战
高效算法
研究更高效的算法和技术,提高有限 元分析的计算效率和精度。
网格划分的方法
根据实际问题选择合适的网格类型,如四面体网 格、六面体网格等,并确定网格的大小和密度。
数据准备的内容
准备边界条件、初始条件、材料属性等数据,为 后续计算提供必要的数据支持。
有限元方程的求解和后处理
求解方法的选择
根据实际问题选择合适的求解方法,如直接求解法、 迭代求解法等。
求解步骤
将有限元方程组转化为线性方程组,选择合适的求解 器进行求解,得到各节点的数值解。
电磁场有限元分析简介
概述有限元分析的基本原理和方 法,包括离散化、近似函数、变
分原理等。
介绍电磁场有限元分析的基本步 骤,包括前处理、求解和后处理
等。
简要介绍电磁场有限元分析的常 用软件和工具,如ANSYS、 COMSOL Multiphysics等。
02
电磁场理论基础
麦克斯韦方程组
总结词
描述电磁场变化规律的方程组
详细描述
边界条件和初始条件是描述电磁场在边界和初始时刻的状态,对于求解电磁场问 题至关重要。
03
有限元方法基础
有限元方法概述
01
有限元方法是一种数值分析方法,通过将连续的物理域离散化 为有限数量的单元,利用数学近似方法求解复杂的问题。
02
该方法广泛应用于工程领域,如结构分析、流体动力学、电磁
电磁场分析的有限元法

第7章 光波导分析的有限元法
7.1 微分方程边值问题
7.1.3 伽辽金(Galerkin)方法
Galerkin 法选取基函数i为加权函数,效果最好
Ri
S
i
(
2 t
K
2 t
)
dS
0
N
c j j j1
N
Ri
cj
S
i
(
2 t
K
2 t
)
j
dS
0
j1
Kij Sit2jdS S i jdS
7.1 微分方程边值问题 7.2 有限元分析
7.3 光波导模式问题的应用举例
2
第7章 光波导分析的有限元法
分析或设计波导器件时,知道波导模的特性及其场分布 非常重要。光波导精确求解的条件有限,近似分析时精度受 到限制,要高精度求得传播常数和电磁场分布,还要依赖于 数值分析法。
电磁场分析的数值法有很多,如有限元法(FEM)、有限 差分法、模匹配法、横向共振法等,而FEM因其较高的精度 和通用性,是目前使用最广泛、比较公认的精确数值技术方 法之一,并作为各种近似计算的基准。FEM特别适用于复杂 的几何结构和介电特性分布,可以解决几乎任意截面和折射 率分布的介质光波导的模式及场分布问题。
L f
L f 0 为方程的严格解(真解) 设 为方程的近似解,定义余数
r L f 表示近似解接近真解的程度
的最佳近似,应能使余数r在域内所有点有最小值。
余数加权积分
R wrd
其中w为加权函数
满足R=0的解称为微分方程的弱解或近似解。
w的选取方法:点重合, 子域重合, 最小二乘法, 迦辽金法等。
FEM是已发展成熟的数值计算方法。数学理论包括泛函 分析理论和抽象空间理论,应用范围包括土木工程如桥梁、 建筑,机械制造如船舶、飞机设计,计算场分布如应力场、 流体场、电磁场等等。有大量的商品化软件,使用方便。
工程电磁场数值分析(有限元法)解读课件

有限元法在工程电磁场中的应用
在静电场中,电荷分布是确定的,电场强度和电位是求解的目标。有限元法可以将连续的静电场离散化为有限个单元,通过求解离散化的方程组来得到电场强度和电位。
有限元法在静电场问题中能够有效地处理复杂的边界条件和电荷分布,为工程实际中静电场问题的求解提供了有效的数值分析方法。
在静电场问题中,有限元法将连续的求解区域离散化为有限个单元,每个单元内的电荷分布被假设为均匀分布。通过将电场强度和电位表示为单元中心点的插值函数,可以建立离散化的方程组。求解该方程组可以得到每个单元中心点的电场强度和电位,从而得到整个区域的电场分布。
静电场问题
总结词
详细描述
在静磁场中,磁力线是闭合的,磁场强度是确定的。有限元法可以将连续的静磁场离散化为有限个单元,通过求解离散化的方程组来得到磁场强度和磁感应强度。
有限元法在静磁场问题中能够有效地处理复杂的边界条件和磁场分布,为工程实际中静磁场问题的求解提供了有效的数值分析方法。
在静磁场问题中,有限元法将连续的求解区域离散化为有限个单元,每个单元内的磁场分布被假设为均匀分布。通过将磁场强度和磁感应强度表示为单元中心点的插值函数,可以建立离散化的方程组。求解该方程组可以得到每个单元中心点的磁场强度和磁感应强度,从而得到整个区域的磁场分布。
02
诺依曼边界条件
规定电场和磁场在边界处的法向分量,与狄利克雷边界条件一起使用。
STEP 01
STEP 02
ห้องสมุดไป่ตู้
STEP 03
有限元法基础
结构分析
用于分析各种结构的应力、应变、位移等。
流体动力学
用于分析流体流动、传热等问题。
电磁场
用于分析电磁场分布、电磁力、电磁感应等问题。
电磁学有限元分析

电磁学有限元分析
矢量磁势和标量电势:
对于电磁场的计算,为了使问题得到简化,通过定义两个量来把电场和磁场变量分别开来, 分别形成一个独立的电场和磁场的偏微分方程,这样有利于数值求解。
B = N × A E = -VΦ
电磁场中常见的边界条件
狄利克莱边界条件、诺依属边界条件和两者的组合。
狄利克莱边界条件描述的是在狄利克莱边界条件上电势为O或者为某一常数。
狄利克莱边界条件和诺依曼边界条件分别给出了对应边界上的电势。
采用ansys可完成下列电磁场分析
二维和三维静态磁场分析、谐波磁场分析和瞬态磁场分析。
标量位、矢量位、棱边单元法的比较
磁标量位将电流源以基元的方式单独处理,无需为其建立模型和划分有限元网格。
矢量位方法
电磁宏
电磁宏指的就是操作命令。
远场单元及远场单元的使用
使用远场单元可以可以有效地、精确地、敏捷地描述远场耗散问题
二维静态磁场分析。
ac接触器电磁场有限元分析

ac接触器电磁场有限元分析
电磁场有限元分析是一种用于研究电磁场的数值分析方法,它可以用来研究电磁场的分布、强度和特性。
有限元分析可以用来研究各种电磁元件,如电感、电容、变压器、电抗器、接触器等。
本文将介绍接触器的电磁场有限元分析。
接触器是一种电气元件,它的主要功能是控制电路的开关,它可以控制电路的开关,以及
控制电路的电流和电压。
接触器的电磁场有限元分析可以用来研究电磁场的分布、强度和
特性。
首先,需要建立接触器的有限元模型,模型中包括接触器的外形、材料、尺寸等参数。
然后,根据模型,使用有限元分析软件,计算接触器的电磁场分布。
最后,根据计算结果,
可以得到接触器的电磁场强度、分布和特性。
电磁场有限元分析可以用来研究接触器的电磁场,从而更好地了解接触器的工作原理,提高接触器的性能。
此外,有限元分析还可以用来研究其他电磁元件的电磁场,如电感、电容、变压器、电抗器等。
总之,电磁场有限元分析是一种有效的数值分析方法,可以用来研究接触器的电磁场,从而更好地了解接触器的工作原理,提高接触器的性能。
电磁场问题的有限元分析

ANSYS电磁场分析首先求解出电磁场的磁势和电势, 然后经后处理得到其他电磁场物理量,如磁力线分布、磁 通量密度、电场分布、涡流电场、电感、电容以及系统能 量损失等
● 电力发电机 ● 变压器 ● 电动机 ● 天线辐射 ● 等离子体装置
9.1 电磁场基本理论
(4)ANSYS电磁场分析简介 2. ANSYS电磁场分析方法 (2)建立分析模型。 在建立几何模型后,对求解区域用选定的单元进行划分, 并对划分的单元赋予特性和进行编号。 单元划分的疏密程度要根据具体情况来定,即在电磁 场变化大的区域划分较密,而变化不大的区域可划分得稀 疏些。 (3)施加边界条件和载荷。 (4)求解和后处理。
过滤图形用户界面进入电磁场 分析环境。在ANSYS软件的 Multiphysics模块中,执行:Main Menu>Preferences,在弹出的对话 框中选择多选框“Magnetic-Nodal” 后,单击[OK]。
9.2 二维静态磁场分析
(2)二维静态磁场分析实例 (2) 建立模型 ①生成大圆面:Main Menu>Preprocessor>Modeling>Create>Area >Circle>By Dimensions弹出如对话框,在对 话框中输入大圆的半径“6”.然后单击 [OK]。 ②生成小圆: MainMenu>Preprocessor>Modeling>Create>Areas>Ci rcle>Solid Circle,弹出一个对话框,在“WP X”后面 输入“1”,在“Radius”后面输入“2”,单击[OK], 则生成第第二个圆。 ③布尔操作: MainMenu>Preprocessor>Modeling>Cr eate>Booleans>Overlap>Area,在弹出 对话框后,单击[Pick All]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水轮发电机单通风沟三维简化模型温升计算
一、问题分析
近年来,随着水轮发电机单机容量的不断增加,在发电机进行能量转换过程中产生的损耗不断增大,使其运行的温升问题日趋严峻。
根据上述情况,运用有限元分析方法,建立发电机单通风沟三维简化模型进行发电机温升计算。
二、电机单通风沟有限元分析
1.1 水轮发电机单通风沟三维简化模型建立
根据实际水轮发电机结构和通风沟特点,并考虑可接受误差,进行适当简化,以便于简化有限元分析计算得到以下模型,如图1所示。
图1 发电机单通风沟简化物理模型
由图1所示:水轮发电机单风沟简化物理模型三维求解域在轴向上包含发电机一个通风沟以及通风沟两侧各半个轴向铁心段;幅向上包含发电机定子三个槽、转子两个槽。
根据有限元分析特点,对发电机单通风沟简化物理模型进行网格剖分,得到发电机单通风沟简化物理模型剖分图如图2所示。
图2 电机单通风沟简化物理模型网格剖分
由于物理模型较小,可以适当加密剖分进而提高计算精度,故采用楔形和六面体的混合网格进行剖分,总网格数共48万,节点数为30万。
利用有限体积法,将流体场和温度场进行强耦合求解,从而
得到发电机的详细温升分布情况。
1.2 边界条件
在图1中,求解域内的面
S为径向通风沟的进风口,沿径向与面
1
S对应的面2S为径向通风沟的出风口。
由此,根据所研究发电机的实1
际运行工况,可以给定如下发电机单风沟物理模型的边界条件:1)冷却空气的初始基值绝对温度为0K;
2)径向通风沟入口
S风速为5.1m/s的速度入口边界,通风沟出
1
口
S为自由流动边界;
2
3)求解域其它外边界均为绝热面,发电机内部流体与固体的接
触面均为无滑移边界面。
采用有限体积法,利用共轭传热问题的相关求解技术,可以对双馈水轮发电机温升分布情况进行流—热耦合场数值计算。
进入单个径向通风沟内的空气流速为5.1m/s。
三、计算结果
图3 发电机温升计算值
如图3所示:发电机转子温升略高于定子,尤其是绕组位置最为明显,最高温升点出现在转子绕组处,最高温升为56.91K;无论定转子,绕组部分的温升高于铁心部分温升;对于在铁心部分,铁心齿部温升明显高于轭部温升。
取求解域中铁心轴向远风端模型的外表面,即实际发电机单铁心段轴向中心位置处截面为采样面,该采样面为求解域内最高温升所在的轴向截面,提取该采样面温升如图3-a)所示;取通风沟轴向中心截面为另一采样面,该采样面为求解域内最低温升所在位置,如图3-b)所示。
a)铁芯远风端外表面温升计算值b)通风沟轴向中心截面温升计算值
图4 温升极值所在轴向截面计算值
由图4-a)图可知:发电机转子绕组的温升最高,数值为56.91K,并且由数值计算结果可知,其位置位于发电机转子上层绕组径向偏下处,且转子绕组温升上层明显高于下层,而定子绕组温升相对于转子绕组的较低。
如图4-b)可见:在该区域转子绕组的温升依然最高,最高温升同样为55.82K,比最热面转子绕组的最高温升低了1.09K,由于绕组铜有着良好的导热性能,发电机内流体流动以及温升达到稳定状态后,绕组沿轴向的温升变化幅度很小,而通风沟内的绕组受到冷却空气的吹拂作用,散热性能优于铁心槽内绕组,故温升较低;最低温升为0K,在冷却空气入口处。