机器学习与模式识别-第4章_线性判别
[数学]模式识别方法总结
![[数学]模式识别方法总结](https://img.taocdn.com/s3/m/9bfe35a6a0116c175f0e484a.png)
假定有m个类别ω1, ω2, …, ωm的模式识别问题,
每类有Ni(i=1, 2, …, m)个样本, 规定类ωi的判别函数
为
gi (x) min x xik
i
k 1, 2,
, Ni
其中, xki表示第i类的第k个元素。 判决准则: gi (x) ,则x∈ω 若 g j (x) i min j 1,2, , m
定义Fisher线性判决函数为
( 1 2 )2 J F (w ) S1 S2
分子反映了映射后两类中心的距离平方,
该值越大, 类间可
分性越好;
分母反映了两类的类内离散度,
从总体上来讲,
其值越小越好;
JF(w)的值越大越好。 使JF(w)达到最大值的w即为最
在这种可分性评价标准下,
如果P(ω1|x)<P(ω2|x), 则判决x属于ω2;
如果P(ω1|x)=P(ω2|x), 则判决x属于ω1或属于ω2。
这种决策称为最大后验概率判决准则, 也称为贝叶斯 (Bayes)判决准则。 假设已知P(ωi)和p(x|ωi)(i=1, 2, …, m), 最大后验概率判 决准则就是把样本x归入后验概率最大的类别中, 也就是,
0
Sigmoid (a) 取值在(0, 1)内; (b) 取值在(-1, 1)内
神经网络结构 神经网络是由大量的人工神经元广泛互连而成 的网络。 根据网络的拓扑结构不同, 神经网络可分
R( j | x) ( j , i ) P(i | x)
i 1 m
最小风险贝叶斯判决准则: 如果
R( k | x) min R( j | x)
j 1, 2 ,, m
【线性判别】Fisher线性判别(转)

【线性判别】Fisher线性判别(转)今天读paper遇到了Fisher线性判别的变体,所以来学习⼀下,所以到时候⼀定要把PRMl刷⼀遍呀在前⽂《贝叶斯决策理论》中已经提到,很多情况下,准确地估计概率密度模型并⾮易事,在特征空间维数较⾼和样本数量较少的情况下尤为如此。
实际上,模式识别的⽬的是在特征空间中设法找到两类(或多类)的分类⾯,估计概率密度函数并不是我们的⽬的。
前⽂已经提到,正态分布情况下,贝叶斯决策的最优分类⾯是线性的或者是⼆次函数形式的,本⽂则着重讨论线性情况下的⼀类判别准则——Fisher判别准则。
为了避免陷⼊复杂的概率的计算,我们直接估计判别函数式中的参数(因为我们已经知道判别函数式是线性的)。
⾸先我们来回顾⼀下线性判别函数的基本概念:应⽤统计⽅法解决模式识别问题时,⼀再碰到的问题之⼀就是维数问题。
在低维空间⾥解析上或计算上⾏得通的⽅法,在⾼维空间⾥往往⾏不通。
因此,降低维数有时就会成为处理实际问题的关键。
问题描述:如何根据实际情况找到⼀条最好的、最易于分类的投影线,这就是Fisher判别⽅法所要解决的基本问题。
考虑把d维空间的样本投影到⼀条直线上,形成⼀维空间,即把维数压缩到⼀维。
然⽽,即使样本在d维空间⾥形成若⼲紧凑的互相分得开的集群,当把它们投影到⼀条直线上时,也可能会是⼏类样本混在⼀起⽽变得⽆法识别。
但是,在⼀般情况下,总可以找到某个⽅向,使在这个⽅向的直线上,样本的投影能分得开。
下图可能会更加直观⼀点:从d维空间到⼀维空间的⼀般数学变换⽅法:假设有⼀集合Г包含N个d维样本x1, x2, …, xN,其中N1个属于ω1类的样本记为⼦集Г1, N2个属于ω2类的样本记为⼦集Г2 。
若对xn的分量做线性组合可得标量:yn = wTxn, n=1,2,…,N这样便得到N个⼀维样本yn组成的集合,并可分为两个⼦集Г1’和Г2’ 。
实际上,w的值是⽆关紧要的,它仅是yn乘上⼀个⽐例因⼦,重要的是选择w的⽅向。
模式识别第二版答案完整版

模式识别(第二版)习题解答
目录
1 绪论
2
2 贝叶斯决策理论
2
j=1,...,c
类条件概率相联系的形式,即 如果 p(x|wi)P (wi) = max p(x|wj)P (wj),则x ∈ wi。
j=1,...,c
• 2.6 对两类问题,证明最小风险贝叶斯决策规则可表示为,若
p(x|w1) > (λ12 − λ22)P (w2) , p(x|w2) (λ21 − λ11)P (w1)
max P (wj|x),则x ∈ wj∗。另外一种形式为j∗ = max p(x|wj)P (wj),则x ∈ wj∗。
j=1,...,c
j=1,...,c
考虑两类问题的分类决策面为:P (w1|x) = P (w2|x),与p(x|w1)P (w1) = p(x|w2)P (w2)
是相同的。
• 2.9 写出两类和多类情况下最小风险贝叶斯决策判别函数和决策面方程。
λ11P (w1|x) + λ12P (w2|x) < λ21P (w1|x) + λ22P (w2|x) (λ21 − λ11)P (w1|x) > (λ12 − λ22)P (w2|x)
(λ21 − λ11)P (w1)p(x|w1) > (λ12 − λ22)P (w2)p(x|w2) p(x|w1) > (λ12 − λ22)P (w2) p(x|w2) (λ21 − λ11)P (w1)
线性判别分析(LinearDiscriminantAnalysis,LDA)

线性判别分析(LinearDiscriminantAnalysis,LDA)⼀、LDA的基本思想线性判别式分析(Linear Discriminant Analysis, LDA),也叫做Fisher线性判别(Fisher Linear Discriminant ,FLD),是模式识别的经典算法,它是在1996年由Belhumeur引⼊模式识别和⼈⼯智能领域的。
线性鉴别分析的基本思想是将⾼维的模式样本投影到最佳鉴别⽮量空间,以达到抽取分类信息和压缩特征空间维数的效果,投影后保证模式样本在新的⼦空间有最⼤的类间距离和最⼩的类内距离,即模式在该空间中有最佳的可分离性。
如下图所⽰,根据肤⾊和⿐⼦⾼低将⼈分为⽩⼈和⿊⼈,样本中⽩⼈的⿐⼦⾼低和⽪肤颜⾊主要集中A组区域,⿊⼈的⿐⼦⾼低和⽪肤颜⾊主要集中在B组区域,很显然A组合B组在空间上明显分离的,将A组和B组上的点都投影到直线L上,分别落在直线L的不同区域,这样就线性的将⿊⼈和⽩⼈分开了。
⼀旦有未知样本需要区分,只需将⽪肤颜⾊和⿐⼦⾼低代⼊直线L的⽅程,即可判断出未知样本的所属的分类。
因此,LDA的关键步骤是选择合适的投影⽅向,即建⽴合适的线性判别函数(⾮线性不是本⽂的重点)。
⼆、LDA的计算过程1、代数表⽰的计算过程设已知两个总体A和B,在A、B两总体分别提出m个特征,然后从A、B两总体中分别抽取出、个样本,得到A、B两总体的样本数据如下:和假设存在这样的线性函数(投影平⾯),可以将A、B两类样本投影到该平⾯上,使得A、B两样本在该直线上的投影满⾜以下两点:(1)两类样本的中⼼距离最远;(2)同⼀样本内的所有投影距离最近。
我们将该线性函数表达如下:将A总体的第个样本点投影到平⾯上得到投影点,即A总体的样本在平⾯投影的重⼼为其中同理可以得到B在平⾯上的投影点以及B总体样本在平⾯投影的重⼼为其中按照Fisher的思想,不同总体A、B的投影点应尽量分开,⽤数学表达式表⽰为,⽽同⼀总体的投影点的距离应尽可能的⼩,⽤数学表达式表⽰为,,合并得到求从⽽使得得到最⼤值,分别对进⾏求导即可,详细步骤不表。
模式识别第4章 线性判别函数

w1。
44
4.3 判别函数值的鉴别意义、权空间及解空间 4.3.2 权空间、解矢量与解空间
(3) 解空间
w1
先看一个简
单的情况。设一
维数据1,2属于
w0
1, -1,-2属
于2 求将1和
2区分开的w0 ,
w1。
45
4.3 判别函数值的鉴别意义、权空间及解空间 4.3.2 权空间、解矢量与解空间
(3) 解空间
53
第四章 线性判别方法
4.1 用判别域界面方程分类的概念
有 4.2 线性判别函数 监 4.3 判别函数值的鉴别意义、权空间及解空间 督 4.4 Fisher线性判别 分 4.5 一次准则函数及梯度下降法 类 4.6 二次准则函数及其解法
4.7 广义线性判别函数
54
4.4 Fisher线性判别
这一工作是由R.A.Fisher在1936年的论文中 所提出的,因此称为Fisher线性判别方法。
0123456789
x1
d23(x)为正
d32(x)为正 d12(x)为正 d21(x)为正
i j两分法例题图示
24
25
3、第三种情况(续)
d1(xr) d2(xr)
1
2
d1(xr ) d3(xr )
3
d2 (xr ) d3(xr )
多类问题图例(第三种情况)
26
27
上述三种方法小结:
8
4.2 线性判别函数
9
10
11
d3(xr) 0
不确定区域
r
xr xrxr xr xr
x2
?
d1(x) 0
1
2
3
x1 d2(xr ) 0
机器学习与模式识别-教学大纲

机器学习与模式识别》教学大纲课程编号: 071243B课程类型:□通识教育必修课□通识教育选修课■专业必修课□专业选修课□学科基础课总学时: 48 讲课学时: 32 实验(上机)学时: 16 学分: 3适用对象:计算机科学与技术专业先修课程:程序设计基础与应用、数据结构、高等数学、算法导论一、教学目标《机器学习与算法导论》是计算机科学技术专业的一门专业选修课程。
本课程是面向计算机技术开设的专业选修课。
其教学重点是使学生掌握常见机器学习算法,包括算法的主要思想和基本步骤,并通过编程练习和典型应用实例加深了解;同时对机器学习的一般理论,如假设空间、采样理论、计算学习理论,以及无监督学习和强化学习有所了解。
模式识别部分是研究计算机模式识别的基本理论、方法和应用。
通过本课程的学习,使学生掌握模式识别的基本概念、基本原理、基本分析方法和算法,培养学生利用模式识别方法,运用技能解决本专业和相关领域的实际问题的能力。
学生通过本门课程的学习,能够对机器学习和模式识别的内容有一个较为全面的了解和认识,更深刻地理解机器学习的实质内容,使学生具备前沿的计算机技术必要的专业知识。
从而,为学生今后从事计算机技术应用与计算机技术前沿研究,以及相关领域的科学研究做好理论和技术上的准备。
目标1:通过对机器学习与模式识别基本概念、原理、和基本方法的讲解,让学生理解并掌握机器学习和模式识别的基本技术。
目标2:培养学生利用模式识别方法,运用技能解决本专业和相关领域的实际问题的能力。
目标3:鼓励学生运用知识解决各自学科的实际问题,培养他们的独立科研的能力和理论联系实际的能力。
二、教学内容及其与毕业要求的对应关系(黑体,小四号字)本课程主要介绍决策论与信息论基础、概率分布、回归的线性模型、分类的线性模型、核方法、支持向量机、图模型、混合模型和期望最大化、隐Markov 模型和条件随机场模型、统计决策方法、概率密度函数的估计、线性分类器、非线性分类器、其他分类方法、特征选择、特征提取、非监督模式识别、模式识别系统的评价等。
模式识别课件第四章线性判别函数

详细描述
语音识别系统使用线性判别函数来分析语音信号的特征,并将其映射到相应的 文本或命令。通过训练,线性判别函数能够学习将语音特征与对应的文本或命 令关联起来,从而实现语音识别。
自然语言处理
总结词
线性判别函数在自然语言处理中用于文本分类和情感分析。
偏置项。
线性判别函数具有线性性质 ,即输出与输入特征向量之 间是线性关系,可以通过权
重矩阵和偏置项来调整。
线性判别函数对于解决分类 问题具有高效性和简洁性, 尤其在特征之间线性可分的 情况下。
线性判别函数与分类问题
线性判别函数广泛应用于分类问题,如二分类、多分类等。
在分类问题中,线性判别函数将输入特征向量映射到类别标签上,通过设置阈值或使用优化算法来确定 分类边界。
THANKS
感谢观看
深度学习在模式识别中的应用
卷积神经网络
01
卷积神经网络特别适合处理图像数据,通过卷积层和池化层自
动提取图像中的特征。循环神网络02循环神经网络适合处理序列数据,如文本和语音,通过捕捉序
列中的时间依赖性关系来提高分类性能。
自编码器
03
自编码器是一种无监督的神经网络,通过学习数据的有效编码
来提高分类性能。
详细描述
自然语言处理任务中,线性判别函数被用于训练分类器,以将文本分类到不同的 主题或情感类别中。通过训练,线性判别函数能够学习将文本特征映射到相应的 类别上,从而实现对文本的分类和情感分析。
生物特征识别
总结词
线性判别函数在生物特征识别中用于身份验证和安全应用。
详细描述
生物特征识别技术利用个体的生物特征进行身份验证。线性判别函数在生物特征识别中用于分析和比较个体的生 物特征数据,以确定个体的身份。这种技术广泛应用于安全和隐私保护领域,如指纹识别、虹膜识别和人脸识别 等。
模式识别:线性分类器

模式识别:线性分类器一、实验目的和要求目的:了解线性分类器,对分类器的参数做一定的了解,理解参数设置对算法的影响。
要求:1. 产生两类样本2. 采用线性分类器生成出两类样本的分类面3. 对比线性分类器的性能,对比参数设置的结果二、实验环境、内容和方法环境:windows 7,matlab R2010a内容:通过实验,对生成的实验数据样本进行分类。
三、实验基本原理感知器基本原理:1.感知器的学习过程是不断改变权向量的输入,更新结构中的可变参数,最后实现在有限次迭代之后的收敛。
感知器的基本模型结构如图1所示:图1 感知器基本模型其中,X输入,Xi表示的是第i个输入;Y表示输出;W表示权向量;w0是阈值,f是一个阶跃函数。
感知器实现样本的线性分类主要过程是:特征向量的元素x1,x2,……,xk是网络的输入元素,每一个元素与相应的权wi相乘。
,乘积相加后再与阈值w0相加,结果通过f函数执行激活功能,f为系统的激活函数。
因为f是一个阶跃函数,故当自变量小于0时,f= -1;当自变量大于0时,f= 1。
这样,根据输出信号Y,把相应的特征向量分到为两类。
然而,权向量w并不是一个已知的参数,故感知器算法很重要的一个步骤即是寻找一个合理的决策超平面。
故设这个超平面为w,满足:(1)引入一个代价函数,定义为:(2)其中,Y是权向量w定义的超平面错误分类的训练向量的子集。
变量定义为:当时,= -1;当时,= +1。
显然,J(w)≥0。
当代价函数J(w)达到最小值0时,所有的训练向量分类都全部正确。
为了计算代价函数的最小迭代值,可以采用梯度下降法设计迭代算法,即:(3)其中,w(n)是第n次迭代的权向量,有多种取值方法,在本设计中采用固定非负值。
由J(w)的定义,可以进一步简化(3)得到:(4)通过(4)来不断更新w,这种算法就称为感知器算法(perceptron algorithm)。
可以证明,这种算法在经过有限次迭代之后是收敛的,也就是说,根据(4)规则修正权向量w,可以让所有的特征向量都正确分类。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选择最佳准则
训练样本集
另一类是非线性判别函数
6
线性判别函数
• d维空间中的线性判别函 数的一般形式:
g (x) w x w0
T
T
• x是样本向量:样本在d维特征空间中的描述, w是权向量, w0是一个常数(阈值权)。
x x1, x2 ,... xd
w w1, w2 ,...wd
T
• 两类问题的分类决策规则:
30
31
4.3 感知准则函数
感知准则函数是五十年代由Rosenblatt提 出的一种自学习判别函数生成方法,由于 Rosenblatt企图将其用于脑模型感知器, 因此被称为感知准则函数。其特点是随意 确定的判别函数初始值,在对样本分类训 练过程中逐步修正直至最终确定。
32
感知器的原理结构为:
x3
W区间
3
5
4
2 x2 H
H
H2
1
x1
39
梯度下降算法
感知器算法:
1.错误分类修正wk 如wkTx≤0并且x∈ω1 wk+1= wk+ρkx 如wkTx≥0并且x∈ω2 wk+1= wk-ρkx 2.正确分类 ,wk不修正 如wkTx>0并且x∈ω1 如wkTx<0并且x∈ω2 wk+1= wk
8
线性判别函数
这是二维情况下判别由判别边界分类。 情况如图:
x2
1
g ( x) w1x1 w2 x2 w3
2
x1
9
线性判别函数 的基本概念
10
广义线性判别函数
11
广义线性判别函数
• 线性判别函数是形式最为简单的判别函数,但是 它不能用于复杂情况。
– 例:设计一个一维分类器,使其功能为:
g1 g2
. . .
x2
. . .
MAX
a(x)
xn
gc
训练样本集
– 最一般情况下适用的“最 优”分类器:错误率最小, 对分类器设计在理论上有 指导意义。 决策规则: – 获取统计分布及其参数很 判别函数 困难,实际问题中并不一 定具备获取准确统计分布 决策面方程 的条件。
3
直接确定判别函数
• 基于样本的直接确定判别函数方法:
• 线性判别函数的齐次简化:
g (x) w x w0 a y
T T
• 增广样本向量使特征空间增加了一维,但保持了样本间的 欧氏距离不变,对于分类效果也与原决策面相同,只是在 Y空间中决策面是通过坐标原点的。
13
设计线性分类器的主要步骤:
1) 有一组具有类别标志的样本集 2) 根据实际情况确定一个准则函数J,满足: J是样本集和w,wo,a的函数 J的值能反映分类器的性能,它的极值解对应 于“最好”的决策.
X X 0 由J(W)经第K+1次迭代时,J(W)趋于0,收敛于所求的W值。
即感知器迭代公式:Wk 1 Wk k
X
37
梯度下降算法
• 梯度下降算法:对(迭代)向量沿某函数的负 梯度方向修正,可较快到达该函数极小值。
J p ( a) J p (a) (y) a yY
第四章 线性判别函数
1
• •
4.1 引言 4.2 Fisher线性判别
• 4.3 感知准则函数 • 4.4 最小平方误差准则函数 • 4.5 多类问题 • 4.6 讨论
2
引言
分类器 功能结构
基于样本的Bayes分类 器:通过估计类条件 概率密度函数,设计 相应的判别函数
样本分布的 统计特征:
概率密度函数 x1
如果 y 1 , 则aT y 0 如果 y 2 , 则aT y 0
• 规范化样本向量 :将第二类样本取其反向向量
y 如果 y 1 y= y 如果 y 2
a y i 0 i 1,..., N
T
34
解向量与解区
35
基本思路:通过对W的调整,可实现判别函数: g(x) =WTX > RT 其中RT为响应阈值 定义感知准则函数准则:只考虑错分样本 定义: J (W ) W T X ,其中X0为错分样本
决策规则: 判别函数 决策面方程
4
判别函数
假设对一模式X已抽取n个特征, 表示为:
X ( x1 , x2 , x3 ,..., xn )T X是n维空间的一个向量
x2
2
1
x1
边界
模式识别问题就是根据模式X的 n个特征来判别模式属于
ω1 ,ω2 , … , ωm类中的
那一类。 例如右上图:三类的分类问题,它 们的边界线就是一个判别函数
所有样本 正确分类
Y
N
得到合理的a 完成 分类器设计
38
梯度下降算法
W的训练过程:例如: x1, x2, x3∈ω1 作 x1, x3的垂直线可得解区(如图) 。假
设起始权向量w1=0 ,步长ρ k = 1: 1. x1, x2, x3三个矢量相加得矢量2,垂直于矢量2的超平面H将x3错分; 2. x3与矢量2相加得矢量3,垂直于矢量3的超平面H1,将x1错分; 3. 依上法得矢量4,垂直于矢量4做超平面, H2将x3错分; 4. x3与矢量4相加得矢量5,矢量5在解区内,垂直于矢量5的超平面可以把 x1, x2, x3分成一类 。
3) 利用最优化方法求出准则函数的极值解和
w,wo,a,进而得到g(x)
14
4.2 Fisher线性判别
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
至此,我们还没有解决分类问题, 只是将d维映射到1维,将d维 分类问题转划为1维分类问题, 如何分类? 确定阈值
k
任意给定一向量 初始值a(1) a(k+1)= a(k)+ rk×Sum (被错分类的所有样本)
a( k 1) a( k ) rk J p (a) a( k ) rk
yY k
y
• 算法(step by step):
1. 初值: 任意给定一向量初始值a(1) 2. 迭代: 第k+1次迭代时的权向量a(k+1) 等于第k次的权向量a(k)加上被错分类的 所有样本之和与rk的乘积 3. 终止: 对所有样本正确分类
• 固定增量法与可变增量法 • 批量样本修正法与单样本 修正法
– 单样本修正法:样本集视为 不断重复出现的序列,逐个 样本检查,修正权向量 – 批量样本修正法:样本成批 或全部检查后,修正权向量
56
感知器方法小结
• 感知准则函数方法的思路是:先随意找一个 初始向量a(1),然后用训练样本集中的每个 样本来计算。若发现一个y出现aTy<0,则只 要a(k+1) = a(k) + rky,rk为正(步长系数), 则必有a(k+1)Ty = a(k)Ty + rkyTy,就有趋势 做到使a(k+1)Ty >0。当然,修改后的a(k+1) 还可以使某些y出现a(k+1)Ty <0的情况,理 论证明,只要训练样本集线性可分,无论 a(1)的初值是什么,经过有限次叠代,都可 收敛。
| wT x | x x | wT x | x x
T T
③
部分修正规则 ρk=λ
0<λ≤2
41
梯度下降算法
例题:有两类样本:
ω1=(x1,x2)={(1,0,1),(0,1,1)},ω2=(x3,x4)={(1,1,0),(0,1,0)} 解:先求四个样本的增值模式 x1=(1,0,1,1) x2=(0,1,1,1) x3=(1,1,0,1) x4=(0,1,0,1) 假设初始权向量 w1=(1,1,1,1) ρk=1 第一次迭代: w1Tx1=(1,1,1,1) (1,0,1,1)T=3>0 所以不修正 w1Tx2=(1,1,1,1) (0,1,1,1)T=3>0 所以不修正 w1Tx3=(1,1,1,1) (1,1,0,1)T=3>0 所以修正w1 w2=w1-x3=(0,0,1,0) w2Tx4=(0,0,1,0)T (0,1,0,1) =0 所以修正w2 w3=w2-x4=(0,-1,1,-1) 第一次迭代后,权向量w3=(0,-1,1,-1),再进行第2,3,…次迭代, 42 如下表:
1 1 1 1 0 0 0 –1 1 1 1 1 1 1 0 -1
迭代次数
1
1011 0111 1101 0101
1011 0111 1101 0101 1011 0111 1101 0101 1011 0111 1101 0101
1 –1 2 0 1 –1 2 0 0 –2 2 –1 0 –2 2 -1 0 –2 2 –1 0 –1 3 0 0 –1 3 0 0 –1 3 0 0 0 0 0 –1 –1 –1 –1 3 3 3 3 0 0 0 0
X X 0
当分类发生错误时就有WTX <0,或-WTX >0, 所以J(W) 总是正值,错误分类愈少, J(W)就愈 小。理想情况为 J (W ) 0 ,即求最小值的问题。
36
求最小值,对W求梯度 J
J (W ) X W -ρk▽J
3
5
用判别函数进行模式分类,取决两个因素:
判别函数的几何性质:线性与非线性 判别函数的参数确定:判别函数形式+参数