函数与极限重点知识归纳
各类极限知识点总结

各类极限知识点总结一、函数的极限1. 定义:给定函数f(x),当x趋近于某一点a时,如果函数值f(x)无论怎么接近a都会趋于一个确定的值L,则称L为函数f(x)当x趋于a时的极限,记作lim(x→a)f(x)=L。
通常情况下,我们也会将x趋近于a的这一过程称为x趋近于a时的极限,即x→a。
2. 性质:函数的极限有一些基本的性质,这些性质有助于我们计算和理解函数的极限。
比如极限的唯一性、极限的局部有界性、函数的连续性等。
3. 一些特殊函数的极限:(1)常数函数的极限;(2)幂函数的极限;(3)指数函数和对数函数的极限;(4)三角函数的极限;(5)复合函数的极限等。
二、无穷大和无穷小1. 定义:在极限的理论中,无穷大和无穷小是两个非常重要的概念。
当x趋近于某一点a 时,如果函数值f(x)可以任意增大,并且没有上界,则称f(x)是当x趋近于a时的无穷大。
反之,如果函数值f(x)可以任意接近于0,并且没有下界,则称f(x)是当x趋近于a时的无穷小。
2. 性质:无穷大和无穷小也有一些基本的性质,包括无穷大和无穷小的性质、无穷大与有界性的关系、无穷小的运算规律等。
3. 一些特殊函数的无穷大和无穷小:(1)常数函数的无穷大和无穷小;(2)幂函数的无穷大和无穷小;(3)指数函数和对数函数的无穷大和无穷小;(4)三角函数的无穷大和无穷小;(5)复合函数的无穷大和无穷小等。
三、极限的运算规律1. 四则运算的极限性质:加减乘除都有着相应的极限运算规律。
比如两个函数的极限之和等于它们的极限之和、两个函数的极限之积等于它们的极限之积等。
2. 复合函数的极限性质:当函数与另一个函数进行复合时,它们的极限也满足一定的规律。
比如复合函数的极限等于内函数的极限等。
3. 一些特殊函数的极限运算:(1)三角函数的加减角极限性质;(2)指数函数和对数函数的极限性质;(3)特殊组合函数的极限性质等。
四、常见的极限形式1. 0/0型:在计算函数的极限时,经常会遇到0/0型的不定式形式。
函数的极限知识点总结

函数的极限知识点总结一、函数极限的定义1. 函数的极限定义:设函数f(x)在点x0的某一去心邻域内有定义。
如果对于任意给定的正数ε,总存在正数δ,使得当0<|x-x0|<δ时,总有|f(x)-A|<ε成立,则称当x自变量趋于x0时,函数f(x)以A为极限(或者以A收敛),记作lim(x→x0)f(x)=A。
2. 函数极限概念解释:函数的极限就是描述了当自变量趋于某一特定的常数时,函数的值随之趋于的一个确定的常数。
3. 极限的图像解释:函数f(x)的极限lim(x→x0)f(x)=A,表示当x自变量在点x0的邻域内取值时,函数图像与直线y=A的距离可以任意小。
即对于任意小的正数ε,总存在正数δ,使得当0<|x-x0|<δ时,总有|f(x)-A|<ε成立。
二、函数极限的性质1. 唯一性:若函数f(x)的极限存在,那么它的极限值是唯一的。
即如果lim(x→x0)f(x)=A1,又有lim(x→x0)f(x)=A2,那么A1=A2。
2. 有界性:若函数f(x)在x0附近有极限,那么它在x0附近是有界的。
即存在一个正数M>0,使得当x自变量在点x0的邻域内取值时,总有|f(x)|<M。
3. 保序性:若函数f(x)的极限存在,那么它的极限值保持不变。
即如果lim(x→x0)f(x)=A,且f(x)≤g(x),那么lim(x→x0)g(x)也存在,并且lim(x→x0)g(x)≤A。
4. 逼近性:如果函数f(x)的极限存在,那么函数f(x)在x0附近与它的极限可以任意接近。
即对于任意小的正数ε,总存在正数δ,使得当0<|x-x0|<δ时,总有|f(x)-A|<ε成立。
三、函数极限的运算规律1. 四则运算法则:设lim(x→x0)f(x)=A,lim(x→x0)g(x)=B,且A,B存在,那么有lim(x→x0)[f(x)± g(x)]=A±B,lim(x→x0)[f(x)·g(x)]=A·B,lim(x→x0)[f(x)/g(x)]=A/B(B≠0)。
函数和极限知识点总结

函数和极限知识点总结一、函数1. 函数的定义函数是一个映射,它将一个或多个输入值映射到一个输出值。
函数通常用f(x)来表示,其中x是输入变量,f(x)是输出变量。
函数可以有不同的定义域和值域,通常用来描述输入和输出之间的关系。
2. 函数的性质函数有以下性质:- 一一对应性:如果一个函数的每一个输入值对应唯一的输出值,则该函数是一一对应的。
- 奇偶性:如果f(-x) = f(x),则该函数是偶函数;如果f(-x) = -f(x),则该函数是奇函数。
- 增减性:如果对于任意的x1 < x2,有f(x1) < f(x2),则该函数是增函数;如果f(x1) >f(x2),则该函数是减函数。
3. 常见的函数类型常见的函数类型包括:- 多项式函数:f(x) = ax^n + bx^(n-1) + ... + c,其中a、b、c为常数,n为自然数。
- 指数函数:f(x) = a^x,其中a为大于0且不等于1的常数。
- 对数函数:f(x) = log_a(x),其中a为大于0且不等于1的常数。
- 三角函数:包括sin(x)、cos(x)、tan(x)等。
4. 函数的图像函数的图像通过将输入值和输出值构成的点在坐标系中连接起来得到。
函数的图像可以用来表示函数的性质和特征,如增减性、奇偶性等。
5. 复合函数复合函数是将一个函数作为另一个函数的输入。
如果f(x)和g(x)都是函数,那么f(g(x))就是一个复合函数。
复合函数可以用来描述多个函数之间的复杂关系。
6. 反函数如果一个函数f(x)满足f(f^(-1)(x)) = x,则f^(-1)(x)称为f(x)的反函数。
反函数可以用来描述函数的逆关系。
二、极限1. 极限的定义设函数f(x)在点x=a的邻域内有定义,若对于任意给定的正数ε,总存在正数δ,使得当0 < |x-a| < δ时,对应的函数值f(x)满足|f(x)-L| < ε,那么称函数f(x)当x趋向于a时的极限为L,记作lim(f(x),x->a) = L。
函数极限相关知识点总结

函数极限相关知识点总结一、函数极限的定义1. 函数极限的定义在数学中,函数极限是描述函数在某一点附近的行为的概念。
具体来说,对于给定的函数f(x),当自变量x趋于某一点a时,如果函数值f(x)无限接近某个确定的数L,那么我们就称函数f(x)在点a处的极限为L,记作lim_{x→a}f(x) = L。
换句话说,当x在逼近a时,f(x)的取值会趋于L。
这一定义可以用数学符号严格表述为:对于任意正数ε,存在一个正数δ,使得当0< |x-a| <δ时,都有 |f(x)-L| <ε成立。
2. 函数极限的右极限和左极限如果函数f(x)在点a的左侧和右侧分别有极限,则称这两个极限为函数f(x)在点a处的左极限和右极限。
左极限记作lim_{x→a^-}f(x),右极限记作lim_{x→a^+}f(x)。
当左极限、右极限和函数值在点a处都存在且相等时,我们称函数f(x)在点a处存在极限,且极限为此值。
3. 函数极限的无穷极限当自变量x趋于无穷大时,函数f(x)的极限称为无穷极限。
具体来说,若对于任意正数M,存在一个正数N,使得当|x|>N时,都有|f(x)|>M成立,则我们称lim_{x→∞}f(x) = ∞。
类似地,若对于任意正数M,存在一个正数N,使得当|x|>N时,都有|f(x)|<M成立,则我们称lim_{x→∞}f(x) = -∞。
4. 函数极限的存在性函数极限在很多情况下是存在的,但也有一些特殊的函数,它们在某些点处的极限并不一定存在。
比如,当函数在某一点的左右极限不相等时,该点处的极限可能不存在;当函数在某一点的极限为无穷大时,该点处的极限也可能不存在。
因此,在研究函数极限时,我们需要考虑函数在极限点处的性质,以确定函数极限是否存在。
二、函数极限的求解方法1. 用极限的定义求解函数极限函数极限的定义是要求对任意给定的ε>0,存在一个δ>0,使得当0<|x-a|<δ时,都有|f(x)-L|<ε成立。
高等数学(函数与极限)完全归纳笔记

目录:函数与极限 (1)1、集合的概念 (1)2、常量与变量 (2)2、函数 (3)3、函数的简单性态 (4)4、反函数 (4)5、复合函数 (5)6、初等函数 (6)7、双曲函数及反双曲函数 (7)8、数列的极限 (8)9、函数的极限 (9)10、函数极限的运算规则 (11)一、函数与极限1、集合的概念一般地我们把研究对線统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互界性(给定集合中的元素是互不相同的)。
比如“身材较商的人”不能构成集合•因为它的元素不是确定的。
我们通常用大字拉丁字母爪B. C、……表示集合.用小写拉丁字母也b. c……表示集合中的元素。
如果a 是集合A中的元素,就说a属于A,记作:aGA-否则就说a不属于A,记作:a 2(IX全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N(2).所有正整数组成的集合叫做正整数集。
记作N宇或N“(3人全体整数组成的集合叫做整数集。
记作Z。
(4八全体有理数组成的集合叫做有理数集。
记作Q。
<5).全体实数组成的集合叫做实数集。
记作R,集合的表示方法(1八列举法:把集合的元素一一列举出來,并用“”括起來表示集合(2入描述法:用集合所有元素的共同特征來表示集合。
集合间的基本关系(1八子集:一般地,对于两个集合A. B.如果集合A中的任总:一个元素都是集合B的元素,我们就说A. B有包含关系,称集合A为集合B的子集.记作A B (或B A) °。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集.此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B.(3人真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
(4八空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
(5入由上述集合之间的基木关系,可以得到下面的结论①.任何一个集合是它木身的子集。
《高等数学》各章知识点总结——第1章(五篇)

《高等数学》各章知识点总结——第1章(五篇)第一篇:《高等数学》各章知识点总结——第1章第1章函数与极限总结1、极限的概念(1)数列极限的定义给定数列{xn},若存在常数a,对于任意给定的正数ε(不论它多么小),总存在正整数N ,使得对于n >N 时的一切n,恒有|xn-a |<ε 则称a 是数列{xn}的极限,或者称数列{xn}收敛于a ,记为n→∞limxn=a或xn→a(n→∞).(2)函数极限的定义设函数f(x)在点x0的某一去心邻域内(或当x>M>0)有定义,如果存在常数A,对于任意给定的正数ε(不论它多么小),总存在正数δ,(或存在X)使得当x满足不等式0<|x-x0|<δ 时,(或当x>X时)恒有|f(x)-A|<ε,那么常数A就叫做函数f(x)当x→x0(或x→∞)时的极限,记为x→x0limf(x)=A或f(x)→A(当x→x0).(或limf(x)=A)x→∞类似的有:如果存在常数A,对∀ε>0,∃δ>0,当x:x0-δ<x<x0(x0<x<x0-δ)时,恒有f(x)-A<ε,则称A为f(x)当x→x0时的左极限(或右极限)记作x→x0-limf(x)=A(或lim+f(x)=A)x→x0x→x0x→x0x→x0显然有limf(x)=A⇔lim-f(x)=lim+f(x)=A) 如果存在常数A,对∀ε>0,∃X>0,当x<-X(或x>X)时,恒有f(x)-A<ε,则称A为f(x)当x→-∞(或当x→+∞)时的极限记作limf(x)=A(或limf(x)=A)x→-∞x→+∞显然有limf(x)=A⇔limf(x)=limf(x)=A)x→∞x→-∞x→+∞2、极限的性质(1)唯一性若limxn=a,limxn=b,则a=bn→∞n→∞若limf(x)=Alimf(x)=B,则A=Bx→∞(x→x0)x→∞(x→x0)(2)有界性(i)若limxn=a,则∃M>0使得对∀n∈Nn→∞+,恒有xn≤M(ii)若limf(x)=A,则∃M>0当x:0<x-x0<δ时,有f(x)≤Mx→x0(iii)若limf(x)=A,则∃M>0,X>0当x>X时,有f(x)≤Mx→∞(3)局部保号性(i)若limxn=a且a>0(或a<0)则∃N∈N+,当n>N时,恒有xn>0(或xn<0)n→∞)=A,且A>0(或A<0),则∃δ>0当x:0<x-x0<δ时,有(ii)若limf(xx→x0f(x)>0(或f(x)<0)3、极限存在的准则(i)夹逼准则给定数列{xn},{yn},{zn}若①∃n0∈N,当n>n0时有yn≤xn≤zn ②limyn=limzn=a,n→∞n→∞+则limxn=an→∞ 给定函数f(x),g(x),h(x), 若①当x∈U(x0,r)(或x>X)时,有g(x)≤f(x)≤h(x)②limg(x)=limh(x)=A,x→∞(x→x0)x→∞(x→x0)0则limf(x)=A x→∞(x→x0)(ii)单调有界准则给定数列{xn},若①对∀n∈N+有xn≤xn+1(或xn≥xn+1)②∃M(m)使对∀n∈N+有xn≤M(或xn≥m)则limxn存在n→∞若f(x)在点x0的左侧邻域(或右侧邻域)单调有界,则lim-f(x)(或lim+f(x))x→x0x→x0存在4、极限的运算法则(1)若limf(x)=A,limg(x)=Bx→∞(x→x0)x→∞(x→x0)则(i)lim[f(x)±g(x)]=A±Bx→∞(x→x0)(ii)lim[f(x)⋅g(x)]=A⋅Bx→∞(x→x0)(iii)limx→∞(x→x0)f(x)A=⋅(B≠0)g(x)B0(2)设(i)u=g(x)且limg(x)=u0(ii)当x∈U(x0,δ)时g(x)≠u0x→x0(iii)limf(u)=Au→u0则limf[g(x)]=limf(u)=Ax→x0u→u05、两个重要极限(1)limsinx=1x→0xsinu(x)=1u(x)→0u(x)limlimsinx11=0,limxsin=1,limxsin=0x→∞x→∞x→0xxxxu(x)⎛1⎫1⎫⎛lim1+(2)lim 1+⎪=e ⎪u(x)→∞x→∞u(x)⎭x⎭⎝⎝=e;lim(1+x)=ex→01xv(x)→0lim(1+v(x))1v(x)=e;6、无穷小量与无穷大量的概念(1)若limα(x)=0,即对∀ε>0,∃δ>0,当x:0<x-x0<δ(或x→∞(x→x0)x>X)时有α(x)<ε,则称当x→x0(或x→∞),α(x)无穷小量(2)或X>0),若limf(x)=∞即对∀M>0,∃δ>0(当x:0<x-x0<δx→∞(x→x0)(或x>X)时有f(x)>M则称当x→x0(或x→∞),f(x)无穷大量7、无穷小量与有极限的量及无穷大量的关系,无穷小量的运算法则(1)limf(x)=A⇔f(x)=A+α(x),其中limx→∞(x→x0)x→∞(x→x0)α(x)=0(f(x)≠0)⇒lim(2)limf(x)=0x→∞(x→x0)x→∞(x→x0)1=∞f(x)(3)limg(x)=∞⇒limx→∞(x→x0)x→∞(x→x01=0 g(x))(4)limf(x)=∞且∃M>0,当x:0<x-x0<δ(或x>X)时有g(x)≤M,x→∞(x→x0)则lim[f(x)+g(x)]=∞x→∞(x→x0)(5)limf(x)=0且∃M>0,当x:0<x-x0<δ(或x>X)时有g(x)≤M,x→∞(x→x0)则lim[f(x)⋅g(x)]=0x→∞(x→x0)nn(6)limfk(x)=0(k=1,2,Λ,n)则limx→∞(x→x0)x→∞(x→x0)k=1∑fk(x)=0,limx→∞(x→x0)k=1∏fk(x)= 0,8、无穷小量的比较x→∞(x→x0)limf(x)=0,limg(x)=0,limα(x)=0x→∞(x→x0)x→∞(x→x0)若(1)lim小。
函数与极限知识总结

函数与极限知识总结1、定义极限(Limit)又称微积分的基本概念,它是指当函数f(x)的一些变量x逐渐靠近但又不等于一些特定的常数a时,函数f(x)的值一定要逐渐接近于一个特定的实数L,而接近的程度可以任意接近,即变量x靠近常数a时,函数f(x)的值即靠近常数L,记作$$\lim_{x \to a}f(x)=L$$这就是极限的定义,a称作极限点,L称作极限值。
2、性质(1)不等式极限性质若$f(x)≥0,a>0$,当x靠近$a^{+}$时,则有$$f(x)≥\lim_{x \to a^{+}}f(x)≥0$$当x靠近$a^{-}$时,则有$$f(x)≤\lim_{x \to a^{-}}f(x)≤0$$(2)加法极限性质设$\lim_{x \to a}f(x)=A,\lim_{x \to a}g(x)=B$当x靠近a时,有$$\lim_{x \to a}[f(x)+g(x)]=A+B$$(3)乘法极限性质设$\lim_{x \to a}f(x)=A,\lim_{x \to a}g(x)=B$,当x靠近a时,有$$\lim_{x \to a}[f(x)g(x)]=AB$$(4)恒等式极限性质设$\lim_{x \to a}f(x)=A,\lim_{x \to a}g(x)=B,f(a)=B,g(a)=A $当x靠近a时,有$$\lim_{x \to a}[f(x)=g(x)]=A=B$$(5)极限连续性设$\lim_{x \to a}f(x)=L$当x靠近a时,有$$f(a)=L$$这就是极限连续性性质。
3、极限的计算(1)无穷小除以无穷大当$\frac{1}{x}\to 0$时,有$$\lim_{x\to \infty}\frac{1}{x}=0$$(2)无穷大除以无穷大当$\frac{x}{y}\to 0$时,有。
高中数学重点知识归纳2024

高中数学重点知识归纳2024一、函数与极限1. 函数的定义与性质(1)函数的定义:在某一变化过程中,如果有两个变量x和y,并且对于x在某一范围内的每一个值,按照对应法则f,都有唯一确定的y值与之对应,那么就称y是x的函数,记作y=f(x)。
(2)函数的性质:单调性、奇偶性、周期性、有界性。
2. 函数的图像与变换(1)函数图像:函数的图像是所有函数值对应的点在坐标系中的集合。
(2)函数变换:函数图像的平移、伸缩、对称等变换。
3. 初等函数(1)幂函数:y=x^α(α为实数)。
(2)指数函数:y=a^x(a为正常数)。
(3)对数函数:y=log_a x(a为正常数)。
(4)三角函数:y=sin x、y=cos x、y=tan x等。
4. 函数极限(1)数列极限:当n趋向于无穷大时,数列{a_n}的极限是A,记作lim(n→∞)a_n=A。
(2)函数极限:当x趋向于x_0时,函数f(x)的极限是A,记作lim(x→x_0)f(x)=A。
二、导数与微分1. 导数的定义与计算(1)导数的定义:函数在某一点x_0的导数是自变量在该点的增量与函数值增量的比值在增量趋向于0时的极限。
(2)导数的计算:利用导数的四则运算法则、复合函数的导数法则、隐函数的导数法则等。
2. 导数的应用(1)切线斜率:函数在某一点x_0的导数表示该点切线的斜率。
(2)函数的单调性:利用导数的符号判断函数的单调性。
(3)函数的极值:利用导数为0的点判断函数的极值。
(4)函数的最值:利用导数和单调性判断函数的最值。
3. 微分(1)微分的定义:函数在某一点x_0的微分是自变量在该点的增量与函数值增量的比值乘以自变量的增量。
(2)微分的计算:利用微分的四则运算法则、复合函数的微分法则等。
三、积分与级数1. 定积分(1)定积分的定义:函数在区间[a, b]上的定积分是自变量在该区间上的积分和的极限。
(2)定积分的计算:利用定积分的基本性质、牛顿-莱布尼茨公式等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常量与变量变量的定义我们在观察某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起变化,我们把其称之为常量;有的量在过程中是变化的,也就是可以取不同的数值,我们则把其称之为变量。
注:在过程中还有一种量,它虽然是变化的,但是它的变化相对于所研究的对象是极其微小的,我们则把它看作常量。
变量的表示如果变量的变化是连续的,则常用区间来表示其变化范围。
在数轴上来说,区间是指介于某两点之间的线段上点的全体。
区间的名区间的满足的不等式区间的记号区间在数轴上的表示称闭区间a≤x≤b[a,b]开区间a<x<b(a,b)半开区间a<x≤b或a≤x<b(a,b]或[a,b)以上我们所述的都是有限区间,除此之外,还有无限区间:[a,+∞):表示不小于a的实数的全体,也可记为:a≤x<+∞;(-∞,b):表示小于b的实数的全体,也可记为:-∞<x<b;(-∞,+∞):表示全体实数R,也可记为:-∞<x<+∞注:其中-∞和+∞,分别读作"负无穷大"和"正无穷大",它们不是数,仅仅是记号。
邻域设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。
函数函数的定义如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则总有确定的数值与它对应,则称y是x的函数。
变量x的变化范围叫做这个函数的定义域。
通常x叫做自变量,y叫做因变量。
注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示.这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的.注:如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。
这里我们只讨论单值函数。
函数的有界性如果对属于某一区间I的所有x值总有│f(x)│≤M成立,其中M是一个与x无关的常数,那么我们就称f(x)在区间I有界,否则便称无界。
注意:一个函数,如果在其整个定义域内有界,则称为有界函数例题:函数cosx在(-∞,+∞)内是有界的.函数的单调性如果函数在区间(a,b)内随着x增大而增大,即:对于(a,b)内任意两点x1及x2,当x1<x2时,有,则称函数在区间(a,b)内是单调增加的。
如果函数在区间(a,b)内随着x增大而减小,即:对于(a,b)内任意两点x1及x2,当x1<x2时,有,则称函数在区间(a,b)内是单调减小的。
例题:函数=x2在区间(-∞,0)上是单调减小的,在区间(0,+∞)上是单调增加的。
函数的奇偶性如果函数对于定义域内的任意x都满足=,则叫做偶函数;如果函数对于定义域内的任意x都满足=-,则叫做奇函数。
注意:偶函数的图形关于y轴对称,奇函数的图形关于原点对称。
函数的周期性对于函数,若存在一个不为零的数l,使得关系式对于定义域内任何x值都成立,则叫做周期函数,l是的周期。
注:我们说的周期函数的周期是指最小正周期。
例题:函数是以2π为周期的周期函数;函数tgx是以π为周期的周期函数。
反函数反函数的定义设有函数,若变量y在函数的值域内任取一值y0时,变量x在函数的定义域内必有一值x0与之对应,即,那末变量x是变量y的函数.这个函数用来表示,称为函数的反函数.注:由此定义可知,函数也是函数的反函数。
反函数的存在定理若在(a,b)上严格增(减),其值域为R,则它的反函数必然在R上确定,且严格增(减).注:严格增(减)即是单调增(减)例题:y=x2,其定义域为(-∞,+∞),值域为[0,+∞).对于y取定的非负值,可求得x=±.若我们不加条件,由y的值就不能唯一确定x的值,也就是在区间(-∞,+∞)上,函数不是严格增(减),故其没有反函数。
如果我们加上条件,要求x≥0,则对y≥0、x=就是y=x2在要求x≥0时的反函数。
即是:函数在此要求下严格增(减).反函数的性质在同一坐标平面内,与的图形是关于直线y=x对称的。
例题:函数与函数互为反函数,则它们的图形在同一直角坐标系中是关于直线y=x对称的。
如右图所示:复合函数的定义若y是u的函数:,而u又是x的函数:,且的函数值的全部或部分在的定义域内,那末,y通过u的联系也是x的函数,我们称后一个函数是由函数及复合而成的函数,简称复合函数,记作,其中u叫做中间变量。
注:并不是任意两个函数就能复合;复合函数还可以由更多函数构成。
例题:函数与函数是不能复合成一个函数的。
因为对于的定义域(-∞,+∞)中的任何x值所对应的u值(都大于或等于2),使都没有定义。
初等函数函数名称函数的记号函数的图形函数的性质指数函数a):不论x为何值,y总为正数;b):当x=0时,y=1.对数函数a):其图形总位于y轴右侧,并过(1,0)点b):当a>1时,在区间(0,1)的值为负;在区间(-,+∞)的值为正;在定义域内单调增.幂函数a为任意实数这里只画出部分函数图形的一部分。
令a=m/na):当m为偶数n为奇数时,y是偶函数; b):当m,n都是奇数时,y是奇函数;c):当m奇n偶时,y在(-∞,0)无意义.三角函数(正弦函数)这里只写出了正弦函数a):正弦函数是以2π为周期的周期函数b):正弦函数是奇函数且反三角函数(反正弦函数)这里只写出了反正弦函数a):由于此函数为多值函数,因此我们此函数值限制在[-π/2,π/2]上,并称其为反正弦函数的主值.初等函数由基本初等函数与常数经过有限次的有理运算及有限次的函数复合所产生并且能用一个解析式表出的函数称为初等函数.例题:是初等函数。
双曲函数及反双曲函数函数的名称函数的表达式函数的图形函数的性质双曲正弦a):其定义域为:(-∞,+∞);b):是奇函数;c):在定义域内是单调增双曲余弦a):其定义域为:(-∞,+∞);b):是偶函数;c):其图像过点(0,1);双曲正切a):其定义域为:(-∞,+∞);b):是奇函数;c):其图形夹在水平直线y=1及y=-1之间;在定域内单调增;双曲函数的性质三角函数的性质shx与thx是奇函数,chx是偶函数sinx与tanx是奇函数,cosx是偶函数它们都不是周期函数都是周期函数双曲函数也有和差公式:反双曲函数双曲函数的反函数称为反双曲函数.a):反双曲正弦函数其定义域为:(-∞,+∞);b):反双曲余弦函数其定义域为:[1,+∞);c):反双曲正切函数其定义域为:(-1,+1);数列的极限数列若按照一定的法则,有第一个数a1,第二个数a2,…,依次排列下去,使得任何一个正整数n对应着一个确定的数a n,那末,我们称这列有次序的数a1,a2,…,a n,…为数列.数列中的每一个数叫做数列的项。
第n项a n叫做数列的一般项或通项.注:我们也可以把数列a n看作自变量为正整数n的函数,即:a n=,它的定义域是全体正整数数列的极限一般地,对于数列来说,若存在任意给定的正数ε(不论其多么小),总存在正整数N,使得对于n>N时的一切不等式都成立,那末就称常数a是数列的极限,或者称数列收敛于a .记作:或注:此定义中的正数ε只有任意给定,不等式才能表达出与a无限接近的意思。
且定义中的正整数N与任意给定的正数ε是有关的,它是随着ε的给定而选定的。
注:在此我们可能不易理解这个概念,下面我们再给出它的一个几何解释,以使我们能理解它。
数列极限为a的一个几何解释:将常数a及数列在数轴上用它们的对应点表示出来,再在数轴上作点a 的ε邻域即开区间(a-ε,a+ε),如下图所示:因不等式与不等式等价,故当n>N 时,所有的点都落在开区间(a-ε,a+ε)内,而只有有限个(至多只有N个)在此区间以外。
数列的有界性对于数列,若存在着正数M ,使得一切都满足不等式││≤M,则称数列是有界的,若正数M 不存在,则可说数列是无界的。
定理:若数列收敛,那末数列一定有界。
注:有界的数列不一定收敛,即:数列有界是数列收敛的必要条件,但不是充分条件。
例:数列 1,-1,1,-1,…,(-1)n+1,…是有界的,但它是发散的。
函数的极限函数的极值有两种情况:a):自变量无限增大;b):自变量无限接近某一定点x0,如果在这时,函数值无限接近于某一常数A,就叫做函数存在极值。
函数的极限(分两种情况)a):自变量趋向无穷大时函数的极限定义:设函数,若对于任意给定的正数ε(不论其多么小),总存在着正数X,使得对于适合不等式的一切x ,所对应的函数值都满足不等式那末常数A就叫做函数当x→∞时的极限,记作:数列的极限的定义函数的极限的定义存在数列与常数A任给一正数ε>0总可找到一正整数N对于n>N的所有都满足<ε则称数列当x→∞时收敛于A 记:存在函数与常数A任给一正数ε>0总可找到一正数X对于适合的一切x都满足函数当x→∞时的极限为A 记:b):自变量趋向有限值时函数的极限我们先来看一个例子.例:函数,当x→1时函数值的变化趋势如何?函数在x=1处无定义.我们知道对实数来讲,在数轴上任何一个有限的范围内,都有无穷多个点,为此我们把x→1时函数值的变化趋势用表列出,如下图:从中我们可以看出x→1时,→2.而且只要x与1有多接近,就与2有多接近.或说:只要与2只差一个微量ε,就一定可以找到一个δ,当<δ时满足<δ定义:设函数在某点x0的某个去心邻域内有定义,且存在数A,如果对任意给定的ε(不论其多么小),总存在正数δ,当0<<δ时,<ε则称函数当x→x0时存在极限,且极限为A,记:注:在定义中为什么是在去心邻域内呢?这是因为我们只讨论x→x0的过程,与x=x0出的情况无关。
此定义的核心问题是:对给出的ε,是否存在正数δ,使其在去心邻域内的x均满足不等式。
用此极限的定义来证明函数的极限为 A,其证明方法是:a):先任取ε>0;b):写出不等式<ε;c):解不等式能否得出去心邻域0<<δ,若能;d):则对于任给的ε>0,总能找出δ,当0<<δ时,<ε成立,因此函数极限的运算规则若已知x→x0(或x→∞)时,.则:推论:在求函数的极限时,利用上述规则就可把一个复杂的函数化为若干个简单的函数来求极限。
例题:求解答:例题:求此题如果像上题那样求解,则会发现此函数的极限不存在.我们通过观察可以发现此分式的分子和分母都没有极限,像这种情况怎么办呢?下面我们把它解出来。
解答:注:通过此例题我们可以发现:当分式的分子和分母都没有极限时就不能运用商的极限的运算规则了,应先把分式的分子分母转化为存在极限的情形,然后运用规则求之。
无穷大量和无穷小量无穷大量我们先来看一个例子:已知函数,当x→0时,可知,我们把这种情况称为趋向无穷大。