集合与函数的知识点

合集下载

集合与函数概念知识点总结

集合与函数概念知识点总结

集合与函数概念知识点总结集合是由一些元素组成的整体,元素之间无序且互不相同。

常用的集合符号有大括号{}表示,元素之间用逗号隔开。

例如,集合A={1, 2, 3}表示有元素1、2、3的集合A。

函数是一个特殊的关系,它规定了每个输入值都对应唯一一个输出值。

函数由输入集合、输出集合和映射关系构成。

例如,函数f(x) = x^2 表示输入值x经过平方运算得到对应的输出值f(x)。

1. 集合的性质:- 互异性:集合中元素互不相同。

- 无序性:集合中元素之间没有顺序。

- 没有重复元素:集合中不会包含相同的元素。

- 元素的个数:可以用集合的基数表示,用 |A| 表示集合A的元素个数。

2. 常见的集合表示法:- 列举法:用大括号{}将元素列举出来。

- 描述法:利用一个条件式来描述集合中的元素。

- 空集:不包含任何元素的集合,用∅表示。

3. 集合的运算:- 交集:两个集合中共有的元素构成的集合,用符号∩ 表示。

- 并集:两个集合中所有的元素构成的集合,用符号∪表示。

- 差集:从一个集合中去掉与另一个集合相同的元素构成的集合,用符号 - 表示。

- 补集:对于某个给定的全集,该全集中不属于某个集合的元素构成的集合,用符号 ' 表示。

4. 函数的性质:- 单射:对于函数中的每一个输出值,对应的输入值是唯一的。

- 满射:对于函数中的每一个输出值,都有对应的输入值。

- 双射:既是单射又是满射的函数。

5. 函数的表示法:- 函数箭头:用箭头来表示函数的映射关系,如f: A → B 表示函数f从集合A到集合B的映射。

- 函数图像:用图形表示函数的映射关系。

- 函数表达式:使用数学表达式来表示函数的运算规则,如f(x) = x^2 表示函数f对输入值x进行平方运算。

6. 函数的运算:- 复合函数:将一个函数的输出值作为另一个函数的输入值,依次进行运算。

- 反函数:将函数的输入值和输出值互换,得到新的函数。

以上是集合与函数概念的基础知识点总结。

集合与函数概念知识点总结

集合与函数概念知识点总结

第一章集合与函数概念一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法和自然语言法。

注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a ∈A ,相反,a不属于集合A 记作aÏA列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{xÎR| x-3>2}或{x| x-3>2}4、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A2.“相等”关系(5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B 的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B①任何一个集合是它本身的子集。

高中数学集合与函数知识点总结_

高中数学集合与函数知识点总结_

高中数学集合与函数知识点总结_第一部分集合1.理解集合中元素的意义是解决集合问题的关键:元素是函数关系中自变量的取值?还是因变量的取值?还是曲线上的点?;2.数形结合是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决;3.(1)含n个元素的集合的子集数为2n,真子集数为2n -1;非空真子集的数为2n-2;(2)注意:讨论的时候不要遗忘了的情况。

4.是任何集合的子集,是任何非空集合的真子集。

第二部分函数与导数1.映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。

2.函数值域的求法:①分析法;②配方法;③判别式法;④利用函数单调性;⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(、、等);⑨导数法3.复合函数的有关问题(1)复合函数定义域求法:① 若f(x)的定义域为[a,b],则复合函数f[g(x)]的定义域由不等式a g(x) b解出② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x [a,b]时,求g(x)的值域。

(2)复合函数单调性的判定:①首先将原函数分解为基本函数:内函数与外函数;②分别研究内、外函数在各自定义域内的单调性;③根据同性则增,异性则减来判断原函数在其定义域内的单调性。

4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。

5.函数的奇偶性⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;⑵是奇函数f(-x)=-f(x);是偶函数f(-x)= f(x)⑶奇函数在原点有定义,则;⑷在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;⑸若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;6.函数的单调性⑴单调性的定义:①在区间上是增函数当时有;②在区间上是减函数当时有;⑵单调性的判定定义法:一般要将式子化为几个因式作积或作商的形式,以利于判断符号;②导数法(见导数部分);③复合函数法;④图像法。

集合函数知识点

集合函数知识点

一、集合1、 集合:某些具有共同属性的对象集在一起就形成一个集合,简称集。

元素:集合中的每个对象叫做这个集合的元素。

2、集合的表示方法⎧⎪⎪⎨⎪⎪⎩列举法描述法图示法区间法集合的分类⎪⎩⎪⎨⎧空集:无限集:有限集:3、子集:对于两个集合A 与B ,如果集合A 的任意元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A 。

也说集合A 是集合B 的子集。

即:若“B x A x ∈⇒∈”则B A ⊆。

子集性质:(1)任何一个集合是本身的子集;(2)空集是任何集合的子集;(3) 若B A ⊆,C B ⊆,则A C ⊆。

4、集合相等:对于两个集合A 与B ,如果集合A 的任意元素都是集合B 的元素,同时集合B 的任意元素都是集合A 的元素,我们就说A =B 。

即:若A ⊆B ,同时B ⊆A ,那么B A =。

5、真子集:对于两个集合A 与B ,如果A ⊆B ,并且A ≠B ,我们就说集合A 是集合B6、易混符号: ①“∈”与“⊆”:元素与集合之间是属于关系;集合与集合之间是包含关系 ②{0}与Φ:{0}是含有一个元素0的集合,Φ是不含任何元素的集合7、子集的个数:(1)空集的所有子集的个数是 1 个 (2)集合{a}的所有子集的个数是 2个 (3)集合{a,b}的所有子集的个数是4个 (4)集合{a,b,c}的所有子集的个数是8 个猜想: (1){a,b,c,d}的所有子集的个数是多少? (2){}n a a a ,,21 的所有子集的个数是多少?结论:含n 个元素的集合{}n a a a ,,21 的所有子集的个数是 2n,所有真子集的个数是2n-1,非空子集数为 2n-1 ,非空真子集数为 2n-2 。

8、交集定义:由所有属于集合A 且属于集合B 的元素所组成的集合,叫做A 与B 的交集。

即:=B A {}x B x x A ∈∈且 。

9、并集定义:由所有属于集合A 或属于集合B 的元素所组成的集合,叫做A 与B 的并集。

01第一章:集合与函数概念知识点总结

01第一章:集合与函数概念知识点总结

01第⼀章:集合与函数概念知识点总结第⼀章:集合与函数概念本章知识结构图:本章知识点梳理:1、集合①空集:不含有任何元素的集合,记作Φ(1)集合的分类⑤有限集:含有有限个元素的集合;⽆限集:含有⽆穷多个元素的集合(2)集合元素的特性②有:确定性、互异性、⽆序性。

(3)常⽤数集的专⽤符号⑥:⾃然数集:N ,正整数集:N +或N*,整数集:Z ,有理数集:Q ,实数集:R 。

(4)集合的表⽰⽅法④:①列举法:把集合中的元素⼀⼀列举出来,写在⼤括号内表⽰集合的⽅法;②描述法:把集合中元素的公共属性描述出来,写在⼤括号内表⽰集合的⽅法。

2、⼦集、交集、并集、补集(1)⼦集⑧定义:设集合A 与B ,如果集合A 中的任何⼀个元素都是集合B 的元素,那么集合A 叫做集合B 的⼦集记作B A ?(或A B );如果A 是B 的⼦集,并且B 中⾄少有⼀个元素不属于A ,那么集合A 叫做集合B 的真⼦集,记作B A≠(或A B ≠)(2)交集○14定义:由所有属于集合A 且属于集合B 的元素组成的集合,叫做A 、B 的交集,记作B A (如右图),即A x xB A ∈=|{ 且}B x ∈(3)并集○13定义:由所有属于集合A 或属于集合B 的元素组成的集合,叫做A 、B 的并集,记作A B ,即A a B A ∈={ 或}B a ∈(4)补集○15定义:设I 是⼀个集合,A 是I 的⼀个⼦集,由I 中所有不属于A的元素组成的集合,叫做I 中⼦集A 的补集(或余集),记作A C I ,即I x x A C I ∈=|{,且}A x ?如右图所⽰。

3、(1)函数的概念○16①设A 、B 是两个⾮空的数集,如果按照某种对应法则f ,对于集合A 中任何⼀个数x ,在集合B 中都有唯⼀确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的⼀个函数,记作:f A B →.②函数的三要素○17:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同⼀函数.(2)区间的概念○19及表⽰法①设,a b 是两个实数,且a b <,满⾜a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满⾜a x b<<的实数x 的集合叫做开区间,记做(,)a b ;满⾜a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满⾜,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以⼤于或等于b ,⽽后者必须a b <.(3)函数的表⽰⽅法○20表⽰函数的⽅法,常⽤的有解析法、列表法、图象法三种.解析法:就是⽤数学表达式表⽰两个变量之间的对应关系.列表法:就是列出表格来表⽰两个变量之间的对应关系.图象法:就是⽤图象表⽰两个变量之间的对应关系.(4)映射的概念○23①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何⼀个元素,在集合B 中都有唯⼀的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定⼀个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象. 4、函数的基本性质(1)函数的单调性○25函数为增函数,减函数减去⼀个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)函数的最⼤(⼩)值定义○26①⼀般地,设函数()y f x =的定义域为I ,如果存在实数M 满⾜:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最⼤值,记作m ax ()f x M =.②⼀般地,设函数()y f x =的定义域为I ,如果存在实数m 满⾜:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最⼩值,记作m a x ()f x m=.(3)函数的奇偶性②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,⼀个偶函数与⼀个奇函数的积(或商)是奇函数. 5、函数的图象的作法(1)利⽤描点法作图:①确定函数的定义域;②化解函数解析式;③讨论函数的性质(奇偶性、单调性);④画出函数的图象.(2)利⽤基本函数图象的变换作图:要准确记忆⼀次函数、⼆次函数、反⽐例函数、指数函数、对数函数、幂函数、三⾓函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k><=→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=→=伸缩 01,1,()()A A y f x y Af x <<>=→=缩伸③对称变换()()x y f x y f x =→=-轴()()y y f x y f x =→=-轴()()y f x y f x =→=--原点 1()()y xy f x y f x -==→=直线()(||)y y y y f x y f x =→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =→=保留轴上⽅图象将轴下⽅图象翻折上去知识点1:集合与元素知识点2:集合中元素的三个特性知识点3:元素与集合的两种关系知识点4:集合的三种表⽰法知识点5:有限集和⽆限集知识点6:特定集合的表⽰知识点7:Venn 图与数轴法表⽰集合知识点8:⼦集知识点9:集合相等知识点10:真⼦集知识点11:空集知识点12:集合的⼦集的数⽬知识点13:并集知识点14:交集知识点15:补集知识点16:函数的概念知识点17:函数的两个要素知识点18:函数的值域及其求法知识点19:区间的概念知识点20:函数的三种表达⽅法知识点21:函数图象知识点22、分段函数知识点23:映射的定义知识点24:增函数与减函数的定义知识点25:单调性与单调区间知识点26:函数的最⼤(⼩)值知识点27:奇函数与偶函数的概念知识点28:利⽤定义判断函数奇偶性的⼀般步骤知识点29:奇偶函数的图象的性质知识点30:奇偶函数的单调性部分知识点详细解释:知识点1:集合与元素1、元素:⼀般地,我们把研究对象统称为元素(element ),元素常⽤⼩写字母 c b a ,,表⽰。

高一数学集合及函数知识点

高一数学集合及函数知识点

高一数学集合及函数知识点高一数学集合及函数学问点一.学问归纳:1.集合的有关概念。

1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素留意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。

③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必需符号条件2)集合的表示〔方法〕:常用的有列举法、描述法和图文法3)集合的分类:有限集,无限集,空集。

4)常用数集:N,Z,Q,R,N2.子集、交集、并集、补集、空集、全集等概念。

1)子集:若对x∈A都有x∈B,则AB(或AB);2)真子集:AB且存在x0∈B但x0A;记为AB(或,且)3)交集:A∩B={x|x∈A且x∈B}4)并集:A∪B={x|x∈A或x∈B}5)补集:CUA={x|xA但x∈U}留意:①?A,若A≠?,则?A;②若,,则;③若且,则A=B(等集)3.弄清集合与元素、集合与集合的关系,把握有关的术语和符号,特殊要留意以下的符号:(1)与、?的区分;(2)与的区分;(3)与的区分。

4.有关子集的几个等价关系①A∩B=AAB;②A∪B=BAB;③ABCuACuB;④A∩CuB=空集CuAB;⑤CuA∪B=IAB。

5.交、并集运算的性质①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n1个非空子集,2n2个非空真子集。

二.例题讲解:【例1】已知集合M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},则M,N,P满意关系A)M=NPB)MN=PC)MNPD)NPM分析一:从推断元素的共性与区分入手。

高中数学知识点总结之集合与函数篇

高中数学知识点总结之集合与函数篇

1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么?2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。

∅ 注重借助于数轴和文氏图解集合问题。

空集是一切集合的子集,是一切非空集合的真子集。

{}{}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为B A a ⊂(答:,,)-⎧⎨⎩⎫⎬⎭1013 3. 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n ()若,;2A B A B A A B B ⊆⇔== (3)德摩根定律:()()()()()()C C C C C C U U U U U U A B A B A B A B ==,4. 你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于的不等式的解集为,若且,求实数x ax x aM M M a --<∈∉50352的取值范围。

()(∵,∴·∵,∴·,,)335305555015392522∈--<∉--≥⇒∈⎡⎣⎢⎫⎭⎪M a a M a aa5. 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和()()∨∧若为真,当且仅当、均为真p q p q ∧若为真,当且仅当、至少有一个为真p q p q ∨ 若为真,当且仅当为假⌝p p 6. 命题的四种形式及其相互关系是什么?).(⌝“非”(互为逆否关系的命题是等价命题。

)原命题与逆否命题同真、同假;逆命题与否命题同真同假。

7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B 中有元素无原象。

集合与函数概念知识点归纳

集合与函数概念知识点归纳

集合与函数概念知识点归纳
一、集合
1、定义:集合是一种特殊的数学概念,由一组无序的、相互独立的、具有相同特征的对象构成的。

2、术语:元素是集合中的每一个成员,例如:集合{1,2,3}中1,2,3
都是它的元素。

一个集合的元素称为它的子集,可以用一对大括号表示:{x,y,z}。

3、集合的关系:
(1)子集:如果一个集合包含另一个集合中的全部元素,称前者是
后者的子集。

(2)真子集:如果一个集合中包含另一个集合中的其中一元素,称
前者是后者的真子集。

(3)并集:并集是指两个集合中元素的总和,称为两个集合的并集。

(4)交集:交集是指两个集合中都包含的元素,称为两个集合的交集。

(5)补集:补集是指一个集合之外的其他元素,称为另一个集合的
补集。

4、集合的操作:
(1)加法:将元素加入到一些集合中,使得其包含的元素增加。

(2)减法:从一些集合中删除元素,使其包含的元素减少。

(3)求幂:将一些集合中的元素以其中一种方式考虑,得到一个新
的集合。

(4)合并操作:将两个集合中的元素合并成一个集合。

二、函数
1、定义:函数是一种特殊的数学概念,它表示两个变量之间的关系,当给定一个输入时,它可以将输入映射到一个输出。

2、术语:函数由函数表达式组成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合与函数教学重点:掌握知识之间的联系,洞悉问题的考察点,能选择合适的知识与方法解决问题.教学难点:含参问题的讨论,函数性质之间的关系.学生应掌握以下几点:1.了解集合的含义与表示,理解集合间的基本关系,集合的基本运算.A:能从集合间的运算分析出集合的基本关系.B:对于分类讨论问题,能区分取交还是取并.2.理解函数的定义,掌握函数的基本性质,会运用函数的图象理解和研究函数的性质.A:会用定义证明函数的单调性、奇偶性.B:会分析函数的单调性、奇偶性、对称性的关系.3.通过自主知识梳理,了解自己学习的不足,明确知识的来龙去脉,把学习的内容网络化、系统化.4.在解决问题的过程中,通过自主探究、合作交流,领悟知识的横、纵向联系,体会集合与函数的本质5.用集合语言可以简洁准确表达数学内容.6.运用集合与对应进一步描述了函数的概念,与初中的函数的定义比较,突出了函数的本质函数是描述变量之间依赖关系的重要数学模型.7.掌握函数的三种表示方法,这三种表示方法有各自的适用范围,要根据具体情况选用.8.研究函数的性质时,一般先从几何直观观察图象入手,然后运用自然语言描述函数的图象特征,最后抽象到用数学符号刻画相应的数量特征,也是数学学习和研究中经常使用的方法.9.交集与并集的区分,即何时取交,何时取并,特别是含参的分类讨论问题.10.函数的单调性与奇偶性的证明.知识框架“集合与函数概念”知识点一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。

注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

{x R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:BA⊆有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。

A A②真子集:如果A B,且A B那就说集合A是集合B的真子集,记作A B(或B A)③如果 A B, B C ,那么 A C④如果A B 同时 B A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n-1个真子集运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x∈A,且x∈B}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x∈A,或x∈B}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作ACS,即C S A=},|{AxSxx∉∈且韦恩图示A B图1A B图2SA1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域.注意:1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)(见课本21页相关例2)2.值域 : 先考虑其定义域(1)观察法(2)配方法(3)代换法3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x) ,(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .(2) 画法A、描点法:B、图象变换法常用变换方法有三种1)平移变换2)伸缩变换3)对称变换4.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.5.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。

记作“f(对应关系):A(原象)→B (象)”对于映射f:A→B来说,则应满足:(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中对应的象可以是同一个;(3)不要求集合B中的每一个元素在集合A中都有原象。

6.分段函数(1)在定义域的不同部分上有不同的解析表达式的函数。

(2)各部分的自变量的取值情况.(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.补充:复合函数如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A) 称为f、g的复合函数。

二.函数的性质1.函数的单调性(局部性质)(1)增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间.如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2 时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质;(2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(A) 定义法:○1任取x1,x2∈D,且x1<x2;○2作差f(x1)-f(x2);○3变形(通常是因式分解和配方);○4定号(即判断差f(x1)-f(x2)的正负);○5下结论(指出函数f(x)在给定的区间D上的单调性).(B)图象法(从图象上看升降)(C)复合函数的单调性复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.8.函数的奇偶性(整体性质)(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2).奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.利用定义判断函数奇偶性的步骤:○1首先确定函数的定义域,并判断其是否关于原点对称;○2确定f(-x)与f(x)的关系;○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .9、函数的解析表达式(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)求函数的解析式的主要方法有:1)凑配法2)待定系数法3)换元法4)消参法10.函数最大(小)值(定义见课本p36页)○1利用二次函数的性质(配方法)求函数的最大(小)值○2利用图象求函数的最大(小)值○3利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);.(注:本资料素材和资料部分来自网络,仅供参考。

请预览后才下载,期待您的好评与关注!)。

相关文档
最新文档