集合和函数概念知识点总结

合集下载

集合与函数基本概念例题和知识点总结

集合与函数基本概念例题和知识点总结

集合与函数基本概念例题和知识点总结在数学的学习中,集合与函数是非常重要的基础知识。

它们不仅是后续数学学习的基石,也在实际生活和其他学科中有着广泛的应用。

下面我们将通过一些例题来深入理解集合与函数的基本概念,并对相关知识点进行总结。

一、集合的基本概念集合是把一些确定的、不同的对象作为一个整体来考虑。

集合中的对象称为元素。

例如,“所有小于 10 的正整数”就可以构成一个集合,记为 A ={1, 2, 3, 4, 5, 6, 7, 8, 9} 。

集合的表示方法通常有列举法、描述法和图示法。

列举法就是将集合中的元素一一列举出来,如上面的例子。

描述法是用集合中元素所具有的共同特征来描述集合,比如 B ={x | x 是大于 5 小于 15 的整数} 。

图示法常用的有韦恩图,能直观地表示集合之间的关系。

集合之间的关系有子集、真子集、相等。

如果集合 A 的所有元素都是集合 B 的元素,就说 A 是 B 的子集,记作 A ⊆ B 。

如果 A 是 B 的子集,且 B 中至少有一个元素不属于 A ,则 A 是 B 的真子集,记作 A ⊂ B 。

如果 A 和 B 的元素完全相同,那么 A 和 B 相等,记作 A = B 。

来看一个集合的例题:已知集合 A ={1, 2, 3} ,集合 B ={x |x² 6x + 8 = 0} ,判断 A 和 B 的关系。

首先求解集合 B 中的方程 x² 6x + 8 = 0 ,即(x 2)(x 4) = 0 ,解得 x = 2 或 x = 4 ,所以集合 B ={2, 4} 。

可以看出集合 A 中的元素 1 和 3 不在集合 B 中,集合 B 中的元素 2 和 4 也不在集合 A 中,所以 A 和 B 没有包含关系。

二、函数的基本概念函数是一种特殊的对应关系。

设 A 、 B 是非空的数集,如果按照某个确定的对应关系 f ,使对于集合 A 中的任意一个数 x ,在集合 B 中都有唯一确定的数 f(x) 和它对应,那么就称 f :A → B 为从集合 A 到集合 B 的一个函数。

数学必修一集合与函数概念知识点梳理

数学必修一集合与函数概念知识点梳理

高中数学必修1知识点第一章集合与函数概念〖〗集合【】集合的含义与表示(1) 集合的概念集合中的元素具有确定性、互异性和无序性(2) 常用数集及其记法N表示自然数集,N 或N表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集•(3) 集合与元素间的关系对象a与集合M的关系是a M,或者a M,两者必居其一.(4) 集合的表示法①自然语言法:用文字叙述的形式来描述集合②列举法:把集合中的元素一一列举出来,写在大括号内表示集合③描述法:{X| x具有的性质},其中x为集合的代表元素•④图示法:用数轴或韦恩图来表示集合•(5) 集合的分类①含有有限个元素的集合叫做有限集•②含有无限个元素的集合叫做无限集•③不含有任何元素的集合叫做空集()•【】集合间的基本关系)已知集合有个元素,则它有个子集,它有个真子集,它有个非空子集,它有2n2非空真子集.【】集合的基本运算(1)(2)—元二次不等式的解法〖〗函数及其表示【】函数的概念(1) 函数的概念① 设A、B 是两个非空的数集,如果按照某种对应法则 f ,对于集合A 中任何一个数x , 在集合B 中都有唯一确定的数f(x)和它对应,那么这样的对应(包括集合 A ,B 以及 A 到B 的对应法则f )叫做集合 A 到B 的一个函数,记作 f : A B .② 函数的三要素:定义域、值域和对应法则.③ 只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法①设a,b是两个实数,且a b,满足a x b的实数x的集合叫做闭区间,记做[a,b];满足a x b的实数x的集合叫做开区间,记做(a,b);满足a x b,或a x b 的实数x的集合叫做半开半闭区间,分别记做[a,b) , (a,b];满足x a, x a,x b,x b 的实数x 的集合分别记做[a, ),(a, ),( , b],( , b).注意:对于集合{x|a x b}与区间(a,b),前者a可以大于或等于b,而后者必须a b.(3)求函数的定义域时,一般遵循以下原则:①f(x)是整式时,定义域是全体实数.②f(x)是分式函数时,定义域是使分母不为零的一切实数.③f(x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤y tanx中,x k (k Z).2⑥零(负)指数幕的底数不能为零.⑦若f(x)是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知 f (x)的定义域为[a,b],其复合函数f[g(x)]的定义域应由不等式a g(x) b解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的•事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同•求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数y f (x)可以化成一个系数含有y的关于x的二次方程a(y)x2b(y)x c(y) 0 ,则在a(y) 0时,由于x,y为实数,故必须有2b (y) 4a(y) c( y) 0 ,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【】函数的表示法(5 )函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6) 映射的概念①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合 A , B以及A到B的对应法则f )叫做集合A到B的映射,记作f : A B .②给定一个集合A到集合B的映射,且a A,b B .如果元素a和元素b对应,那么我们把元素b叫做元素a的象,元素a叫做元素b的原象.〖〗函数的基本性质【】单调性与最大(小)值(1)函数的单调性一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数y f[g(x)],令u g(x),若y f(u)为增,u g(x)为增,则y f[g(x)]为增;若y f (u)为减,u g(x)为减,则y f[g(x)]为增;若y f(u) 为增,u g(x)为减,则y f [g (x)]为减;若y f (u)为减,u g (x)为增,则y f[g(x)]为减.函数f (x)的最大值,记作f max (x)② 一般地,设函数y f (x)的定义域为I ,如果存在实数 m 满足:(1)对于任意的x I ,都有f (x) m ; (2)存在x o I ,使得f(X o ) m .那么,我们称 m 是函数f (x)的最小值,记作f max (X ) m .【】奇偶性(4 )函数的奇偶性函数的性质定义图象 判定方法如果对于函数f(x)定义(1)利用定义(要域内任意一个x ,都有(a f (a))先判断定义域是否函数的ZTf( — x)= — f(x),那么函C-关于原点对称)奇偶性1 a"数f(x)叫做奇函数.(-a, f f-fi))(2)利用图象(图象关于原点对称)(3) 打"2”函数f (x) x - (a 0)的图象与性质x f (x)分别在(,a ]、[.a,)上为增函数,分别在 [.a ,0)、(0,、a ]上为减函数. 最大(小)值定义 ①一般地,设函数y f(x)的定义域为I ,如果存在实数 满足:(1)对于任意的x I ,都有 f(x) M ; (2)存在 x o I ,使得 f (X o ) M .那么,我们称 M②若函数f(x)为奇函数,且在x 0处有定义,则f(0) 0 .③奇函数在y轴两侧相对称的区间增减性相同,偶函数在y轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数)两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商) 是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域;②化解函数解析式;③讨论函数的性质(奇偶性、单调性) ;④画出函数的图象.利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幕函数、三角函数等各种基本初等函数的图象.①平移变换h 0,左移h个单位y f(x)h o,右移ihi个单位y f(x h)v f(x)k 0上移k个单位y f(x)ky f(x)k 0,下移|k|个单位y f (x) k②伸缩变换y f(x) 01缩伸y f( x)y f(x)缩y Af(x)③对称变换y f(x)y f(x)y f(x)y f( x)(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.(3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具•要重视数形结合解题的思想方法.。

高三数学知识点总结(3篇)

高三数学知识点总结(3篇)

高三数学知识点总结第一章:集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集:N-或N+整数集:Z有理数集:Q实数集:R1)列举法:{a,b,c……}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系:A=B(5≥5,且5≤5,则5=5)实即:①任何一个集合是它本身的子集。

AíA②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)③如果AíB,BíC,那么AíC④如果AíB同时BíA那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。

4.子集个数:有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集三、集合的运算运算类型交集并集补集第二章:基本初等函数一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈-.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

集合与函数概念知识点总结

集合与函数概念知识点总结

集合与函数概念知识点总结集合是由一些元素组成的整体,元素之间无序且互不相同。

常用的集合符号有大括号{}表示,元素之间用逗号隔开。

例如,集合A={1, 2, 3}表示有元素1、2、3的集合A。

函数是一个特殊的关系,它规定了每个输入值都对应唯一一个输出值。

函数由输入集合、输出集合和映射关系构成。

例如,函数f(x) = x^2 表示输入值x经过平方运算得到对应的输出值f(x)。

1. 集合的性质:- 互异性:集合中元素互不相同。

- 无序性:集合中元素之间没有顺序。

- 没有重复元素:集合中不会包含相同的元素。

- 元素的个数:可以用集合的基数表示,用 |A| 表示集合A的元素个数。

2. 常见的集合表示法:- 列举法:用大括号{}将元素列举出来。

- 描述法:利用一个条件式来描述集合中的元素。

- 空集:不包含任何元素的集合,用∅表示。

3. 集合的运算:- 交集:两个集合中共有的元素构成的集合,用符号∩ 表示。

- 并集:两个集合中所有的元素构成的集合,用符号∪表示。

- 差集:从一个集合中去掉与另一个集合相同的元素构成的集合,用符号 - 表示。

- 补集:对于某个给定的全集,该全集中不属于某个集合的元素构成的集合,用符号 ' 表示。

4. 函数的性质:- 单射:对于函数中的每一个输出值,对应的输入值是唯一的。

- 满射:对于函数中的每一个输出值,都有对应的输入值。

- 双射:既是单射又是满射的函数。

5. 函数的表示法:- 函数箭头:用箭头来表示函数的映射关系,如f: A → B 表示函数f从集合A到集合B的映射。

- 函数图像:用图形表示函数的映射关系。

- 函数表达式:使用数学表达式来表示函数的运算规则,如f(x) = x^2 表示函数f对输入值x进行平方运算。

6. 函数的运算:- 复合函数:将一个函数的输出值作为另一个函数的输入值,依次进行运算。

- 反函数:将函数的输入值和输出值互换,得到新的函数。

以上是集合与函数概念的基础知识点总结。

高一数学知识点:集合与函数概念

高一数学知识点:集合与函数概念

高一数学知识点:集合与函数概念一、集合的概念集合是数学中最基本的概念之一。

它是由确定的对象所组成的整体,这些对象被称为集合的元素。

集合可以用不同的方法来表示和描述,最常用的表示方法是列举法和描述法。

1.1 列举法集合的列举法是通过列举集合中的元素来表示集合的方法。

例如,集合A可以通过列举其中的元素来表示:A = {1, 2, 3, 4, 5}。

这意味着集合A包含了元素1、2、3、4和5。

1.2 描述法集合的描述法是通过描述元素所满足的条件来表示集合的方法。

例如,集合B可以通过描述其中的元素来表示:B = {x | x 是正整数,且 x < 10}。

这意味着集合B包含了所有小于10的正整数。

二、集合的运算集合之间可以进行多种运算,常见的有交集、并集、补集和差集。

2.1 交集交集是指两个集合中都包含的元素组成的集合。

用符号∩表示。

例如,设A = {1, 2, 3},B = {2, 3, 4},则A∩B = {2, 3}。

2.2 并集并集是指两个集合中所有元素组成的集合。

用符号∪表示。

例如,设A = {1, 2, 3},B = {2, 3, 4},则A∪B = {1, 2, 3, 4}。

2.3 补集补集是指某个全集中减去一个集合的元素所得到的集合。

用符号’表示。

例如,设全集U = {1, 2, 3, 4, 5},集合A = {1, 2, 3},则A’ = {4, 5}。

2.4 差集差集是指一个集合减去另一个集合的元素所得到的集合。

用符号-表示。

例如,设集合A = {1, 2, 3},B = {2, 3, 4},则A-B = {1}。

三、函数的概念函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。

函数通常用f(x)的形式表示,其中x是定义域中的元素,f(x)是对应的值域中的元素。

函数的定义包括定义域、值域和对应关系三个要素。

3.1 定义域定义域是指函数中所有可能的输入值构成的集合。

高一年级数学《集合与函数概念》超全知识点.doc

高一年级数学《集合与函数概念》超全知识点.doc

高一年级数学《集合与函数概念》超全知识点【集合的几种运算法则】并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A ∪B={x|x∈A,或x∈B}交集:以属于A且属于B的元差集表示素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}例如,全集U={1,2,3,4,5}A={1,3,5}B={1,2,5}。

那么因为A和B 中都有1,5,所以A∩B={1,5}。

再来看看,他们两个中含有1,2,3,5这些个元素,不管多少,反正不是你有,就是我有。

那么说A ∪B={1,2,3,5}。

图中的阴影部分就是A∩B。

有趣的是;例如在1到105中不是3,5,7的整倍数的数有多少个。

结果是3,5,7每项减集合1再相乘。

48个。

对称差集:设A,B为集合,A与B的对称差集A?B定义为:A?B=(A-B)∪(B-A)例如:A={a,b,c},B={b,d},则A?B={a,c,d}对称差运算的另一种定义是:A?B=(A∪B)-(A∩B)无限集:定义:集合里含有无限个元素的集合叫做无限集有限集:令N*是正整数的全体,且N_n={1,2,3,……,n},如果存在一个正整数n,使得集合A与N_n一一对应,那么A叫做有限集合。

差:以属于A而不属于B的元素为元素的集合称为A与B的差(集)。

记作:A\B={x│x∈A,x不属于B}。

注:空集包含于任何集合,但不能说“空集属于任何集合”.补集:是从差集中引出的概念,指属于全集U不属于集合A的元素组成的集合称为集合A的补集,记作CuA,即CuA={x|x∈U,且x不属于A}空集也被认为是有限集合。

例如,全集U={1,2,3,4,5}而A={1,2,5}那么全集有而A中没有的3,4就是CuA,是A的补集。

CuA={3,4}。

在信息技术当中,常常把CuA写成~A。

集合与函数概念知识点归纳

集合与函数概念知识点归纳

集合与函数概念知识点归纳
一、集合
1、定义:集合是一种特殊的数学概念,由一组无序的、相互独立的、具有相同特征的对象构成的。

2、术语:元素是集合中的每一个成员,例如:集合{1,2,3}中1,2,3
都是它的元素。

一个集合的元素称为它的子集,可以用一对大括号表示:{x,y,z}。

3、集合的关系:
(1)子集:如果一个集合包含另一个集合中的全部元素,称前者是
后者的子集。

(2)真子集:如果一个集合中包含另一个集合中的其中一元素,称
前者是后者的真子集。

(3)并集:并集是指两个集合中元素的总和,称为两个集合的并集。

(4)交集:交集是指两个集合中都包含的元素,称为两个集合的交集。

(5)补集:补集是指一个集合之外的其他元素,称为另一个集合的
补集。

4、集合的操作:
(1)加法:将元素加入到一些集合中,使得其包含的元素增加。

(2)减法:从一些集合中删除元素,使其包含的元素减少。

(3)求幂:将一些集合中的元素以其中一种方式考虑,得到一个新
的集合。

(4)合并操作:将两个集合中的元素合并成一个集合。

二、函数
1、定义:函数是一种特殊的数学概念,它表示两个变量之间的关系,当给定一个输入时,它可以将输入映射到一个输出。

2、术语:函数由函数表达式组成。

高二集合与函数知识点归纳

高二集合与函数知识点归纳

高二集合与函数知识点归纳一、集合的基本概念集合是指具有某种特定性质的事物的总体,用大写字母A、B、C等表示。

集合中的元素用小写字母a、b、c等表示。

1.1 集合的表示方法集合可以通过列举元素的方法表示,也可以通过描述元素的性质表示。

例如:A = {1, 2, 3, 4, 5} (列举法)B = {x | x是自然数,0 < x < 10} (描述法)1.2 集合的关系(1)包含关系若集合A的所有元素都属于集合B,记作A ⊆ B,读作“集合A包含于集合B”。

例如:A = {1, 2, 3},B = {1, 2, 3, 4},则A ⊆ B。

(2)相等关系若集合A包含于集合B,并且集合B包含于集合A,则称集合A和集合B相等,记作A = B。

例如:A = {1, 2, 3},B = {3, 2, 1},则A = B。

(3)交集和并集设A和B是两个集合,其交集是指包含所有既属于A又属于B 的元素的集合,记作A ∩ B。

例如:A = {1, 2, 3},B = {2, 3, 4},则A ∩ B = {2, 3}。

其并集是指包含所有属于A或属于B的元素的集合,记作A ∪ B。

例如:A = {1, 2, 3},B = {2, 3, 4},则A ∪ B = {1, 2, 3, 4}。

二、函数的基本概念函数是一种特殊的关系,它将集合A中的每个元素x唯一地对应到集合B中的一个元素y。

常用f(x)表示函数。

函数的定义域是指使函数有定义的集合,记作D(f);函数的值域是指函数所有可能取值的集合,记作R(f)。

2.1 函数的表示方法函数可以用图像、显式公式和隐式公式等方式进行表示。

(1)显式公式表示当函数的定义域是一个数集,且通过一个公式可以直接表达函数的取值时,可使用显式公式表示函数。

例如:f(x) = x^2,其中定义域为实数集。

(2)图像表示函数的图像是函数的所有点在平面直角坐标系中的表示,通常用来直观地观察函数的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章集合与函数概念一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法和自然语言法。

注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a ∈A ,相反,a不属于集合A 记作aÏA列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{xÎR| x-3>2}或{x| x-3>2}4、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A2.“相等”关系(5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B 的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B①任何一个集合是它本身的子集。

AÍA②真子集:如果AÍB,且A¹ B那就说集合A是集合B的真子集,记作A B(或B A)③如果AÍB, BÍC ,那么AÍC④如果AÍB 同时BÍA 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

三、集合的运算1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B 的并集。

记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.3、交集与并集的性质:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A,A∪φ= A ,A∪B = B∪A.4、全集与补集(1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;3 函数的定义域、值域要写成集合或区间的形式.定义域补充能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;构成函数的三要素:定义域、对应关系和值域再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

(3)相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . 即记为C={ P(x,y) | y= f(x) , x∈A }图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。

(3)作用:1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。

提高解题的速度。

发现解题中的错误。

4.了解区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;2 解析法:必须注明函数的定义域;3 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;4 列表法:选取的自变量要有代表性,应能反映定义域的特征.解析法:便于算出函数值。

列表法:便于查出函数值。

图象法:便于量出函数值5.函数单调性(1).增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数。

区间D称为y=f(x)的单调增区间(睇清楚课本单调区间的概念)如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2 时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;2 必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2) 。

(2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(A) 定义法:1 任取x1,x2∈D,且x1<x2;2 作差f(x1)-f(x2);3 变形(通常是因式分解和配方);4 定号(即判断差f(x1)-f(x2)的正负);5 下结论(指出函数f(x)在给定的区间D上的单调性).(B)图象法(从图象上看升降)_注意:1、函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 2、还记得我们在选修里学习简单易行的导数法判定单调性吗?8.函数的奇偶性(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2).奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.注意:1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。

2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)有时判定f(-x)=±f(x)比较困难,可考虑根据是否有f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .9、函数的解析表达式(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2).求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x)10.函数最大(小)值1 利用二次函数的性质(配方法)求函数的最大(小)值2 利用图象求函数的最大(小)值3 利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);。

相关文档
最新文档