集合与函数概念知识点总结
集合与函数概念知识点总结

集合与函数概念知识点总结集合是由一些元素组成的整体,元素之间无序且互不相同。
常用的集合符号有大括号{}表示,元素之间用逗号隔开。
例如,集合A={1, 2, 3}表示有元素1、2、3的集合A。
函数是一个特殊的关系,它规定了每个输入值都对应唯一一个输出值。
函数由输入集合、输出集合和映射关系构成。
例如,函数f(x) = x^2 表示输入值x经过平方运算得到对应的输出值f(x)。
1. 集合的性质:- 互异性:集合中元素互不相同。
- 无序性:集合中元素之间没有顺序。
- 没有重复元素:集合中不会包含相同的元素。
- 元素的个数:可以用集合的基数表示,用 |A| 表示集合A的元素个数。
2. 常见的集合表示法:- 列举法:用大括号{}将元素列举出来。
- 描述法:利用一个条件式来描述集合中的元素。
- 空集:不包含任何元素的集合,用∅表示。
3. 集合的运算:- 交集:两个集合中共有的元素构成的集合,用符号∩ 表示。
- 并集:两个集合中所有的元素构成的集合,用符号∪表示。
- 差集:从一个集合中去掉与另一个集合相同的元素构成的集合,用符号 - 表示。
- 补集:对于某个给定的全集,该全集中不属于某个集合的元素构成的集合,用符号 ' 表示。
4. 函数的性质:- 单射:对于函数中的每一个输出值,对应的输入值是唯一的。
- 满射:对于函数中的每一个输出值,都有对应的输入值。
- 双射:既是单射又是满射的函数。
5. 函数的表示法:- 函数箭头:用箭头来表示函数的映射关系,如f: A → B 表示函数f从集合A到集合B的映射。
- 函数图像:用图形表示函数的映射关系。
- 函数表达式:使用数学表达式来表示函数的运算规则,如f(x) = x^2 表示函数f对输入值x进行平方运算。
6. 函数的运算:- 复合函数:将一个函数的输出值作为另一个函数的输入值,依次进行运算。
- 反函数:将函数的输入值和输出值互换,得到新的函数。
以上是集合与函数概念的基础知识点总结。
高中数学知识点归纳

高中数学知识点归纳一、集合与函数概念。
1. 集合。
- 集合的定义:一些元素组成的总体。
- 集合的表示方法:列举法(如{1,2,3})、描述法(如{xx > 0})。
- 集合间的关系:- 子集:若集合A中的元素都在集合B中,则A⊆ B。
- 真子集:A⊆ B且A≠ B,则A⊂neqq B。
- 集合相等:A = B当且仅当A⊆ B且B⊆ A。
- 集合的运算:- 交集:A∩ B={xx∈ A且x∈ B}。
- 并集:A∪ B ={xx∈ A或x∈ B}。
- 补集:设U为全集,A⊆ U,则∁_UA={xx∈ U且x∉ A}。
2. 函数及其表示。
- 函数的概念:设A,B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→ B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。
- 函数的三要素:定义域、值域、对应关系。
- 函数的表示方法:解析法(如y = x^2+1)、图象法、列表法。
3. 函数的基本性质。
- 单调性:- 增函数:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D 内的任意两个自变量的值x_1,x_2,当x_1时,都有f(x_1),那么就说函数y = f(x)在区间D上是增函数。
- 减函数:当x_1时,都有f(x_1)>f(x_2),则函数y = f(x)在区间D上是减函数。
- 奇偶性:- 偶函数:对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
- 奇函数:对于函数f(x)的定义域内任意一个x,都有f(-x)= - f(x),那么函数f(x)就叫做奇函数。
二、基本初等函数(Ⅰ)1. 指数函数。
- 指数与指数幂的运算:- 根式:sqrt[n]{a^m}=a^(m)/(n)(a > 0,m,n∈ N^*,n > 1)。
- 有理数指数幂的运算性质:a^r· a^s=a^r + s,(a^r)^s=a^rs,(ab)^r=a^rb^r(a > 0,b > 0,r,s∈ Q)。
集合与函数基本概念例题和知识点总结

集合与函数基本概念例题和知识点总结在数学的学习中,集合与函数是非常重要的基础概念。
理解和掌握它们对于后续的数学学习至关重要。
下面我们将通过一些例题来深入理解集合与函数的基本概念,并对相关知识点进行总结。
一、集合的基本概念集合是由一些确定的、不同的对象所组成的整体。
这些对象称为集合的元素。
例如,{1, 2, 3}就是一个集合,其中 1、2、3 是这个集合的元素。
集合的表示方法有列举法、描述法和图示法。
列举法就是将集合中的元素一一列举出来,如{1, 2, 3}。
描述法是用元素所满足的条件来描述集合,比如{x | x 是小于 5 的正整数}。
图示法常用的有韦恩图,它能直观地表示集合之间的关系。
集合之间的关系有子集、真子集、相等。
如果集合 A 的所有元素都属于集合 B,那么 A 是 B 的子集,记作A ⊆ B。
如果 A 是 B 的子集,且 B 中至少有一个元素不属于 A,那么 A 是B 的真子集,记作 A ⊂ B。
如果 A 和 B 的元素完全相同,那么 A 和 B 相等,记作 A = B。
下面我们通过一个例题来加深对集合概念的理解。
例 1:已知集合 A ={1, 2, 3},B ={x | x² 5x + 6 = 0},判断A 和B 的关系。
首先,求解集合 B 中的方程 x² 5x + 6 = 0,即(x 2)(x 3) = 0,解得 x = 2 或 x = 3。
所以集合 B ={2, 3}。
因为集合 A 中的元素 1 不属于集合 B,而集合 B 的元素都属于集合A,所以 B 是 A 的真子集,即 B ⊂ A。
二、函数的基本概念函数是一种特殊的对应关系。
设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x) 和它对应,那么就称 f:A→B 为从集合 A 到集合B 的一个函数。
函数的三要素是定义域、值域和对应法则。
集合与函数概念知识点归纳

集合与函数概念知识点归纳
一、集合
1、定义:集合是一种特殊的数学概念,由一组无序的、相互独立的、具有相同特征的对象构成的。
2、术语:元素是集合中的每一个成员,例如:集合{1,2,3}中1,2,3
都是它的元素。
一个集合的元素称为它的子集,可以用一对大括号表示:{x,y,z}。
3、集合的关系:
(1)子集:如果一个集合包含另一个集合中的全部元素,称前者是
后者的子集。
(2)真子集:如果一个集合中包含另一个集合中的其中一元素,称
前者是后者的真子集。
(3)并集:并集是指两个集合中元素的总和,称为两个集合的并集。
(4)交集:交集是指两个集合中都包含的元素,称为两个集合的交集。
(5)补集:补集是指一个集合之外的其他元素,称为另一个集合的
补集。
4、集合的操作:
(1)加法:将元素加入到一些集合中,使得其包含的元素增加。
(2)减法:从一些集合中删除元素,使其包含的元素减少。
(3)求幂:将一些集合中的元素以其中一种方式考虑,得到一个新
的集合。
(4)合并操作:将两个集合中的元素合并成一个集合。
二、函数
1、定义:函数是一种特殊的数学概念,它表示两个变量之间的关系,当给定一个输入时,它可以将输入映射到一个输出。
2、术语:函数由函数表达式组成。
高中数学知识点总结全2024

高中数学知识点总结全2024一、集合与函数概念1. 集合的基本概念集合的定义:集合是某些确定的、互不相同的对象的全体。
集合的表示方法:列举法、描述法、图示法。
集合间的关系:子集、真子集、相等。
集合的运算:并集、交集、补集。
2. 函数的概念函数的定义:设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。
函数的三要素:定义域、对应关系、值域。
函数的性质:单调性、奇偶性、周期性、最值。
3. 函数的表示方法解析法:用数学式子表示函数关系。
表格法:用表格形式表示函数关系。
图象法:用图象表示函数关系。
二、基本初等函数1. 一次函数定义:形如y=kx+b(k≠0)的函数。
性质:图象是一条直线,k为斜率,b为截距。
2. 二次函数定义:形如y=ax²+bx+c(a≠0)的函数。
性质:图象是一条抛物线,a决定开口方向和大小,顶点坐标为(b/2a, cb²/4a)。
3. 指数函数定义:形如y=a^x(a>0且a≠1)的函数。
性质:图象过点(0,1),a>1时单调递增,0<a<1时单调递减。
4. 对数函数定义:形如y=log_a(x)(a>0且a≠1)的函数。
性质:图象过点(1,0),a>1时单调递增,0<a<1时单调递减。
5. 三角函数正弦函数:y=sin(x),周期为2π,图象为波形曲线。
余弦函数:y=cos(x),周期为2π,图象为波形曲线。
正切函数:y=tan(x),周期为π,图象为渐近线间的曲线。
三、立体几何1. 空间几何体的结构多面体:由若干个多边形围成的几何体,如棱柱、棱锥。
旋转体:由平面图形绕某条直线旋转形成的几何体,如圆柱、圆锥、球。
2. 空间几何体的三视图主视图:从正面看到的图形。
俯视图:从上面看到的图形。
左视图:从左面看到的图形。
数学集合与函数知识点总结

数学集合与函数知识点总结一、集合的基本概念1.1 集合的定义集合是指具有确定的特征和个数、可以确定归属关系的一组事物的总和。
集合中的元素可以是数字、字母、符号、实际事物或抽象概念等。
1.2 集合的表示方法集合可以用两种方式表示:列举法和描述法。
列举法是将集合的元素逐个列举出来,用大括号{}括起来表示;描述法是用适当的条件来表示集合的元素(x满足某个条件),一般用符号{}或者条件表达式表示。
1.3 集合的元素关系集合中的元素之间可以存在包含关系、相等关系和互不相交关系。
1.4 集合的运算常见的集合运算有并集、交集、差集、补集、直积等。
1.5 集合的基本性质集合的基本性质包括空集的唯一性、互补律、结合律、分配律、对称律等。
二、集合的性质和应用2.1 集合的性质集合的性质包括有限集合和无限集合、有穷集合和无穷集合、空集合和非空集合等。
2.2 集合的应用集合在数学和其他学科中都有很多应用,如概率论、图论、数理逻辑、离散数学等。
三、函数的基本概念3.1 函数的定义函数是一个元素集合到另一个元素集合的映射关系。
通常用f(x)表示函数,其中x是自变量,f(x)是因变量。
3.2 函数的图像函数的图像是函数的自变量和因变量的对应关系在平面直角坐标系中的表示,常用图形表示。
3.3 函数的特性函数具有单值性、有限性、相等性等特性,其中单值性是指每个自变量在函数中对应一个确定的因变量。
3.4 函数的表示方法函数可以用解析式、图象或者映射表示。
3.5 函数的分类函数可以按照定义域、值域、解析式的形式来分类,常见的函数有多项式函数、指数函数、对数函数、三角函数等。
四、函数的性质和应用4.1 函数的性质函数的性质包括奇偶性、周期性、单调性、最值等。
4.2 函数的应用函数在数学和其他学科中有很多应用,可以用来描述现实生活中的变化规律,如物理学中的运动规律、经济学中的需求函数、生物学中的生长规律等。
五、数学集合与函数的综合应用5.1 集合与函数的关系集合与函数是数学中基本的概念,它们之间有着密切的关系。
集合与函数概念知识点总结

集合与函数概念知识点总结一、集合的基本概念集合是数学中的一个基本概念,它是由一些确定的元素构成的整体。
集合中的元素可以是任意对象,可以是数字、字母、符号、词语等。
集合的表示方式有两种:列举法和描述法。
集合的元素之间没有顺序关系,每个元素在集合中只能出现一次。
1.1 集合的符号表示集合用大写字母表示,例如A、B、C等。
如果一个元素x属于集合A,则用x∈A 表示;如果一个元素y不属于集合A,则用y∉A表示。
1.2 集合的列举法集合的列举法是将集合的所有元素一一列举出来。
例如,集合A={1, 2, 3, 4}表示A是由元素1、2、3、4组成的集合。
1.3 集合的描述法集合的描述法是通过描述集合元素的共同特征来表示集合。
例如,集合A={x|x是正整数,x<5}表示A是由小于5的正整数组成的集合。
二、集合的运算集合之间可以进行多种运算,包括并集、交集、差集和补集。
2.1 并集两个集合A和B的并集,表示为A∪B,包含了A和B中的所有元素,且每个元素只出现一次。
2.2 交集两个集合A和B的交集,表示为A∩B,包含了同时属于A和B的所有元素。
2.3 差集两个集合A和B的差集,表示为A-B,包含了属于A但不属于B的所有元素。
2.4 补集对于给定的全集U,集合A相对于U的补集,表示为A’,包含了属于U但不属于A的所有元素。
三、函数的基本概念函数是数学中的一个重要概念,它描述了一个集合中的元素和另一个集合中的元素之间的对应关系。
函数可以看作是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
3.1 函数的符号表示函数用小写字母表示,例如f、g、h等。
如果集合A中的元素x经过函数f的映射得到了集合B中的元素y,则用f(x)=y表示。
3.2 定义域和值域函数的定义域是指函数中所有可能的输入值的集合,也就是函数的自变量的取值范围。
函数的值域是指函数中所有可能的输出值的集合,也就是函数的因变量的取值范围。
高中数学必修一知识点整理

高中数学必修一知识点整理高中数学必修1知识点总结第一章集合与函数概念1.1 集合1.1.1 集合的含义与表示集合是由一些确定、互异、无序的元素组成。
常用的数集有自然数集N、正整数集N*或N+、整数集Z、有理数集Q、实数集R。
集合的表示法有自然语言法、列举法、描述法和图示法。
集合可以分为有限集、无限集和空集。
1.1.2 集合间的基本关系集合间有子集、真子集和集合相等的关系。
子集表示A 中的任一元素都属于B,真子集表示A是B的子集且B中至少有一个元素不属于A,集合相等表示A和B互为子集。
1.1.3 集合的基本运算集合的基本运算有交集、并集和补集。
交集表示同时属于A和B的元素组成的集合,并集表示属于A或B的元素组成的集合,补集表示不属于A的元素组成的集合。
补充:含绝对值的不等式的解法是将其化为|x|a的形式进行求解。
含有ax+b的绝对值不等式可以化为|ax+b|c的形式进行求解。
注意:文章中没有明显的格式错误和有问题的段落,因此不需要删除和改写。
一元二次不等式的解法:一元二次不等式的判别式为 $\Delta = b^2-4ac$,根据判别式的大小关系可以得到不等式的解集。
对于二次函数 $y=ax^2+bx+c(a>0)$,它的图象是一个开口朝上的抛物线。
对于一元二次方程 $ax^2+bx+c=0(a>0)$,它的根可以通过公式 $x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}$ 求得,其中$\Delta=b^2-4ac$,当 $\Delta>0$ 时,方程有两个不相等的实根;当 $\Delta=0$ 时,方程有两个相等的实根;当$\Delta<0$ 时,方程没有实根。
对于一元二次不等式 $ax^2+bx+c>0(a>0)$,它的解集为$\{x|xx_2\}$,其中 $x_1$ 和 $x_2$ 分别是方程$ax^2+bx+c=0$ 的两个实根,且 $x_10)$ 时,它的解集为$\{x|x_10)$ 时,它的解集为 $\{x|x\neq-\frac{b}{2a}\}$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章集合与函数概念一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性::1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
:(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}|2.集合的表示方法:列举法与描述法和自然语言法。
注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N\正整数集N*或N+ 整数集Z 有理数集Q 实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作a ∈A ,相反,a不属于集合A 记作aÏA列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
《描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{xÎR| x-3>2}或{x| x-3>2}|4、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{x|x2=-5}|二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
)反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A2.“相等”关系(5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B 的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B@①任何一个集合是它本身的子集。
AÍA②真子集:如果AÍB,且A¹ B那就说集合A是集合B的真子集,记作A B(或B A)③如果AÍB, BÍC ,那么AÍC④如果AÍB 同时BÍA 那么A=B—3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
三、集合的运算*1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B 的并集。
记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.3、交集与并集的性质:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A,/A∪φ= A ,A∪B = B∪A.4、全集与补集(1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)~二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A 到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;3 函数的定义域、值域要写成集合或区间的形式.定义域补充…能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;构成函数的三要素:定义域、对应关系和值域…再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
(3)相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备)3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象.~C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上. 即记为C={ P(x,y) | y= f(x) , x∈A }图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。
(3)作用:)1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。
提高解题的速度。
发现解题中的错误。
4.了解区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)(3)·(4)无穷区间;(3)区间的数轴表示.函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;2 解析法:必须注明函数的定义域;3 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;4 列表法:选取的自变量要有代表性,应能反映定义域的特征.解析法:便于算出函数值。
列表法:便于查出函数值。
图象法:便于量出函数值{5.函数单调性(1).增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数。
区间D称为y=f(x)的单调增区间(睇清楚课本单调区间的概念)*如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2 时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;2 必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2) 。
~(2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(A) 定义法:\1 任取x1,x2∈D,且x1<x2;2 作差f(x1)-f(x2);3 变形(通常是因式分解和配方);4 定号(即判断差f(x1)-f(x2)的正负);5 下结论(指出函数f(x)在给定的区间D上的单调性).(B)图象法(从图象上看升降)_注意:1、函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集. 2、还记得我们在选修里学习简单易行的导数法判定单调性吗&8.函数的奇偶性(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2).奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.注意:1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。
2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)有时判定f(-x)=±f(x)比较困难,可考虑根据是否有f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定.9、函数的解析表达式(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2).求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x)10.函数最大(小)值1 利用二次函数的性质(配方法)求函数的最大(小)值2 利用图象求函数的最大(小)值3 利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);。