高一数学集合与函数概念知识点汇总
高一数学集 合与函数基础知识点

高一数学集合与函数基础知识点一、集合(一)集合的概念集合是指具有某种特定性质的具体的或抽象的对象汇总而成的集体。
这些对象称为该集合的元素。
比如,一个班级里的所有同学就可以组成一个集合,每个同学就是这个集合中的一个元素。
(二)集合的表示方法1、列举法:把集合中的元素一一列举出来,写在大括号内。
例如:{1, 2, 3, 4, 5}。
2、描述法:用确定的条件表示某些对象是否属于这个集合。
例如:{x | x 是小于 10 的正整数}。
(三)集合的基本关系1、子集:如果集合 A 中的任意一个元素都是集合 B 中的元素,就称集合 A 是集合 B 的子集,记作 A ⊆ B。
例如:集合 A ={1, 2},集合 B ={1, 2, 3},则 A 是 B 的子集。
2、真子集:如果集合 A 是集合 B 的子集,且存在元素 x ∈ B,但x ∉ A,就称集合 A 是集合 B 的真子集,记作 A ⊂ B。
例如:集合 A ={1, 2},集合 B ={1, 2, 3},A 是 B 的真子集。
3、集合相等:如果集合 A 和集合 B 中的元素完全相同,就称集合A 和集合B 相等,记作 A = B。
(四)集合的运算1、交集:由属于集合 A 且属于集合 B 的所有元素组成的集合,称为集合 A 与集合 B 的交集,记作A ∩ B。
例如:集合 A ={1, 2, 3},集合 B ={2, 3, 4},则A ∩ B ={2, 3}。
2、并集:由所有属于集合 A 或属于集合 B 的元素组成的集合,称为集合 A 与集合 B 的并集,记作 A ∪ B。
例如:集合 A ={1, 2, 3},集合 B ={2, 3, 4},则 A ∪ B ={1, 2, 3, 4}。
3、补集:设 U 是一个全集,A 是 U 的一个子集,由 U 中所有不属于 A 的元素组成的集合,称为集合 A 在全集 U 中的补集,记作∁UA。
二、函数(一)函数的概念设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B 的一个函数。
高一数学知识点全部归纳

高一数学知识点全部归纳一、集合1. 集合的概念:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合。
2. 集合中元素的特性:确定性、互异性、无序性。
3. 集合的表示方法:列举法、描述法、图示法。
4. 集合间的关系:子集、真子集、相等。
5. 集合的运算:交集、并集、补集。
二、函数1. 函数的概念:设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B的一个函数。
2. 函数的三要素:定义域、值域、对应法则。
3. 函数的表示方法:解析法、列表法、图象法。
4. 函数的单调性:设函数 f(x)的定义域为 I,如果对于定义域I 内某个区间 D 上的任意两个自变量的值 x₁,x₂,当 x₁ x₂时,都有 f(x₁) f(x₂)(或 f(x₁) > f(x₂)),那么就说函数 f(x)在区间 D 上是增函数(或减函数)。
5. 函数的奇偶性:设函数 f(x)的定义域为 D,如果对于定义域D 内任意一个 x,都有x∈D,且 f(x) = f(x)(或 f(x) = f(x)),那么函数 f(x)就叫做奇函数(或偶函数)。
三、指数函数和对数函数1. 指数函数:一般地,函数 y = a^x(a > 0 且a ≠ 1)叫做指数函数。
指数函数的图象和性质:当 a > 1 时,函数在 R 上单调递增;当 0 a 1 时,函数在 R 上单调递减。
2. 对数函数:一般地,如果 a^x = N(a > 0 且a ≠ 1),那么数 x 叫做以 a 为底 N 的对数,记作 x = logₐN。
函数 y = logₐx (a > 0 且a ≠ 1)叫做对数函数。
对数函数的图象和性质:当 a > 1 时,函数在(0, +∞) 上单调递增;当 0 a 1 时,函数在(0, +∞) 上单调递减。
高一上学期数学知识点归纳

新人教版高中数学知识点总结 高中数学必修1知识点第一章集合与函数概念(1)集合的概念集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法表示自然数集,*或表示正整数集,表示整数集,表示有理数集,表示实数集.(3)集合与元素间的关系对象与集合的关系是,或者,两者必居其一.(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{|具有的性质},其中为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集().(6)子集、真子集、集合相等名称记号意义性质示意图子集(或)AB⊇A中的任一元素都属于B(1)A⊆A(2)A∅⊆(3)若BA⊆且B C⊆,则A C⊆(4)若BA⊆且B A⊆,则A B=A(B)或B A N N N+Z QRa M a M∈a M∉x x x∅真子集A ≠⊂B(或B ≠⊃A)B A ⊆,且B中至少有一元素不属于A (1)A ≠∅⊂(A 为非空子集)(2)若A B ≠⊂且B C ≠⊂,则A C≠⊂集合相等A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B (2)B ⊆A (7)已知集合有个元素,则它有个子集,它有个真子集,它有个非空子集,它有非空真子集.(8)交集、并集、补集名称记号意义性质示意图交集{|,x x A ∈且}x B ∈(1)A A A= (2)A ∅=∅ (3)A B A ⊆ 并集{|,x x A ∈或}x B ∈(1)A A A= (2)A A ∅= (3)A B A ⊇ 补集(1)∅=⋂A C AU (2)UA C AU =⋃【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集|x x a <-或}x a >A (1)n n ≥2n 21n -21n -22n -把ax b +看成一个整体,化成||x a <,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法〖〗函数及其表示(1)函数的概念①设、是两个非空的数集,如果按照某种对应法则,对于集合中任何一个数,在集合中都有唯一确定的数和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的一个函数,记作.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法A B f A x B ()f x A B A B f A B :f A B →①设是两个实数,且,满足的实数的集合叫做闭区间,记做;满足的实数的集合叫做开区间,记做;满足,或的实数的集合叫做半开半闭区间,分别记做,;满足的实数的集合分别记做.注意:对于集合与区间,前者可以大于或等于,而后者必须.(3)求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数.②是分式函数时,定义域是使分母不为零的一切实数.③是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数大于零且不等于1.⑤中,.⑥零(负)指数幂的底数不能为零.⑦若是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知的定义域为,其复合函数的定义域应由不等式解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.,a b a b <a x b ≤≤x [,]a b a x b <<x (,)a b a x b ≤<a x b <≤x [,)a b (,]a b ,,,x a x a x b x b ≥>≤<x [,),(,),(,],(,)a a b b +∞+∞-∞-∞{|}x a x b <<(,)a b a b a b <()f x ()f x ()f x tan y x =()2x k k Z ππ≠+∈()f x ()f x [,]a b [()]f g x ()a g x b ≤≤(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数可以化成一个系数含有的关于的二次方程,则在时,由于为实数,故必须有,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6)映射的概念()y f x =y x 2()()()0a y x b y x c y ++=()0a y ≠,x y 2()4()()0b y a y c y ∆=-⋅≥①设、是两个集合,如果按照某种对应法则,对于集合中任何一个元素,在集合中都有唯一的元素和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的映射,记作.②给定一个集合到集合的映射,且.如果元素和元素对应,那么我们把元素叫做元素的象,元素叫做元素的原象.〖〗函数的基本性质(1)函数的单调性①定义及判定方法函数的性质定义图象判定方法如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说f(x)在这个区间上是增函数.(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增)(4)利用复合函数函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f(x 1)>f(x 2),那么就说f(x)在这个区间上是减函数.(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.A B f A B A B A B f A B :f A B →A B ,a A b B ∈∈a b b a a byxo③对于复合函数,令,若为增,为增,则为增;若为减,为减,则为增;若为增,为减,则为减;若为减,为增,则为减.(2)打“√”函数的图象与性质分别在、上为增函数,分别在、上为减函数.(3)最大(小)值定义①一般地,设函数的定义域为,如果存在实数满足:(1)对于任意的,都有;(2)存在,使得.那么,我们称是函数的最大值,记作.②一般地,设函数的定义域为,如果存在实数满足:(1)对于任意的,都有;(2)存在,使得.那么,我们称是函数的最小值,记作.(4)函数的奇偶性①定义及判定方法函数的性质定义图象判定方法[()]y f g x =()u g x =()y f u =()u g x =[()]y f g x =()y f u =()u g x =[()]y f g x =()y f u =()u g x =[()]y f g x =()y f u =()u g x =[()]y f g x =()(0)af x x ax=+>()fx (,-∞)+∞[()y f x =I M x I ∈()f x M ≤0x I ∈0()f x M =M ()f x max ()f x M =()y f x =I m x I ∈()f x m ≥0x I ∈0()f x m =m ()f x max ()f x m =如果对于函数f(x)定义域内任意一个x ,都有f(-x)=-f(x),那么函数f(x)叫做奇函数.(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(-x)=f(x),那么函数f(x)叫做偶函数.(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称)②若函数为奇函数,且在处有定义,则.③奇函数在轴两侧相对称的区间增减性相同,偶函数在轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域;②化解函数解析式;③讨论函数的性质(奇偶性、单调性);④画出函数的图象.利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换②伸缩变换③对称变换(2)识图()f x 0x =(0)0f =y y对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.(3)用图第二章基本初等函数(Ⅰ)〖〗指数函数(1)根式的概念①如果,且,那么叫做的次方根.当是奇数时,的是偶数时,正数的正的次方次方根用符号的次方根是0;负数没有次方根.叫做根指数,叫做被开方数.当为奇数时,为任意实数;当为偶数时,.③根式的性质:;当;当为偶数时,.(2)分数指数幂的概念①正数的正分数指数幂的意义是:且.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:且.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①,,,1n x a a R x R n =∈∈>n N+∈x a n n a n n a n nn a n n a n a n 0a ≥n a =n a =n (0)|| (0) a a a a a ≥⎧==⎨-<⎩0,,,m na a m n N +=>∈1)n >1(0,,,mm n n aa m n N a -+==>∈1)n >(0,,)r s r s a a a a r s R +⋅=>∈②③(4)指数函数〖〗对数函数(1)对数的定义①若,则叫做以为底的对数,记作,其中叫做底数,叫做真数.②负数和零没有对数.③对数式与指数式的互化:.(2)几个重要的对数恒等式,,.()(0,,)r s rs a a a r s R =>∈()(0,0,)r r r ab a b a b r R =>>∈(0,1)x a N a a =>≠且x a N log a x N =a N log (0,1,0)x a x N a N a a N =⇔=>≠>log 10a =log 1a a =log b a a b =(3)常用对数与自然对数常用对数:,即;自然对数:,即(其中…).(4)对数的运算性质如果,那么①加法:②减法:③数乘:④⑤⑥换底公式:(5)对数函数(6)反函数的概念lg N 10log N ln N log e N 2.71828e =0,1,0,0a a M N >≠>>log log log ()a a a M N MN +=log log log a a a MM N N-=log log ()n a a n M M n R =∈log a N a N =log log (0,)b n a a nM M b n R b =≠∈log log (0,1)log b a b N N b b a=>≠且设函数的定义域为,值域为,从式子中解出,得式子.如果对于在中的任何一个值,通过式子,在中都有唯一确定的值和它对应,那么式子表示是的函数,函数叫做函数的反函数,记作,习惯上改写成.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式中反解出;③将改写成,并注明反函数的定义域.(8)反函数的性质①原函数与反函数的图象关于直线对称.②函数的定义域、值域分别是其反函数的值域、定义域.③若在原函数的图象上,则在反函数的图象上.④一般地,函数要有反函数则它必须为单调函数.〖〗幂函数(1)幂函数的定义一般地,函数叫做幂函数,其中为自变量,是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于轴对称);是奇函数时,图象分()y f x =A C ()y f x =x ()x y ϕ=y C ()x y ϕ=x A ()x y ϕ=x y ()x y ϕ=()y f x =1()x f y -=1()y f x -=()y f x =1()x f y -=1()x f y -=1()y f x -=()y f x =1()y f x -=y x =()y f x =1()y f x -=(,)P a b ()y f x ='(,)P b a 1()y f x -=()y f x =y x α=x αy布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在都有定义,并且图象都通过点.③单调性:如果,则幂函数的图象过原点,并且在上为增函数.如果,则幂函数的图象在上为减函数,在第一象限内,图象无限接近轴与轴.④奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数.当(其中互质,和),若为奇数为奇数时,则是奇函数,若为奇数为偶数时,则是偶函数,若为偶数为奇数时,则是非奇非偶函数.⑤图象特征:幂函数,当时,若,其图象在直线下方,若,其图象在直线上方,当时,若,其图象在直线上方,若,其图象在直线下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:②顶点式:③两根式:(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.(0,)+∞(1,1)0α>[0,)+∞0α<(0,)+∞x y ααqpα=,p q p q Z ∈p q qp y x =p q qp y x =p q q py x =,(0,)y x x α=∈+∞1α>01x <<y x =1x >y x =1α<01x <<y x =1x >y x =2()(0)f x ax bx c a =++≠2()()(0)f x a x h k a =-+≠12()()()(0)f x a x x x x a =--≠③若已知抛物线与轴有两个交点,且横线坐标已知时,选用两根式求更方便.(3)二次函数图象的性质①二次函数的图象是一条抛物线,对称轴方程为顶点坐标是.②当时,抛物线开口向上,函数在上递减,在上递增,当时,;当时,抛物线开口向下,函数在上递增,在上递减,当时,.③二次函数当时,图象与轴有两个交点(4)一元二次方程根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程的两实根为,且.令,从以下四个方面来分析此类问题:①开口方向:②对称轴位置:③判别式:④端点函数值符号.①k<x 1≤x 2x ()f x 2()(0)f x ax bx c a =++≠,2bx a=-24(,24b ac b a a--0a >(,2ba-∞-[,)2b a -+∞2b x a=-2min 4()4ac b f x a -=0a <(,]2ba -∞-[,)2b a -+∞2bx a=-2max 4()4ac b f x a -=2()(0)f x ax bx c a =++≠240b ac ∆=->x 11221212(,0),(,0),||||M x M x MM x x =-20(0)ax bx c a ++=≠20(0)ax bx c a ++=≠12,x x 12x x ≤2()f x ax bx c =++a 2bx a=-∆⇔②x1≤x2<k③x1<k<x2af(k)<0④k1<x1≤x2<k2⑤有且仅有一个根x1(或x2)满足k1<x1(或x2)<k2f(k1)f(k2)0,并同时考虑f(k1)=0或f(k2)=0这两种情况是否也符合⑥k1<x1<k2≤p1<x2<p2此结论可直接由⑤推出.(5)二次函数在闭区间上的最值设在区间上的最大值为,最小值为,令.(Ⅰ)当时(开口向上)①若,则②若,则③若,则x叫做函数))((Dxxfy∈=的零点。
高一数学集合及函数基本性质归纳总结

高一数学知识点归纳总结一——集合及函数基本性质集合及集合的应用1. 掌握集合的有关基本定义概念运用集合的概念解决问题2. 掌握集合的包含关系子集、真子集3. 掌握集合的运算(交、并、补)4. 在解决有关集合问题时要注意各种思想方法数形结合、补集思想、分类讨论的运用. 【知识梳理】一、集合的有关概念(一) 集合的含义(二) 集合中元素的三个特性1.元素的确定性2.元素的互异性3.元素的无序性如{a,b,c}和{a,c,b}是表示同一个集合.(三) 集合的表示集合的表示方法列举法与描述法.常用数集及其记法非负整数集即自然数集记作:N;正整数集:N*或N+整数集:Z;有理数集:Q;实数集:R.1列举法{a,b,c,…}2描述法将集合中的元素的公共属性描述出来写在大括号内表示集合的方法.如{x属于R| x-3>2},{x|x-3>2}.3语言描述法如{不是直角三角形的三角形}.4.Venn图.(四) 集合的分类1.有限集: 含有有限个元素的集合;2.无限集: 含有无限个元素的集合;3.空集: 不含任何元素的集合;如{x|x2=-5.二、集合间的基本关系1. “包含”关系——子集注意A∈B有两种可能1A是B的一部分2A与B是同一集合.2. “相等”关系A=B (5≥5且5≤5则5=5).实例设A={x|x2-1=0}B={-1,1}. 则A=B.元素相同则两集合相等,即①任何一个集合是它本身的子集②真子集:如果A∈B,且A≠B,那就说集合A是集合B的真子集③如果A∈B, B∈C ,那么A∈C④如果A∈B, 同时B∈A ,那么A=B.3. 不含任何元素的集合叫做空集规定: 空集是任何集合的子集空集是任何非空集合的真子集. 含有n个元素的集合有2n个子集,2n-1个真子集.三、集合的运算运算类型交集、并集、补集【方法归纳】一、对于集合的问题要确定属于哪一类集合(数集点集或某类图形集),然后再确定处理此类问题的方法.二、关于集合中的运算一般应把各参与运算的集合化到最简形式然后再进行运算.三、含参数的集合问题多根据集合的互异性处理有时需要用到分类讨论、数形集结合的思想.四、处理集合问题要多从已知出发多从特殊点出发来寻找突破口. 课堂精讲练习题考点一集合的概念与表示{3x x22x}中x应满足的条件是___________.【解题思路】x≠1且x≠0且x≠3.难度分级A类函数的图象及基本性质1理解函数概念2了解构成函数的三个要素3会求一些简单函数的定义域与值域4理解函数图象的意义5能正确画出一些常见函数的图象6会利用函数的图象求一些简单函数的值域、判断函数值的变化趋势7理解函数单调性概念8掌握判断函数单调性的方法会证明一些简单函数在某个区间上的单调性9会证明一些较复杂的函数在某个区间上的单调性10能利用函数的单调性解决一些简单的问题11了解函数奇偶性的含义12熟练掌握判断函数奇偶性的方法13熟练单调性与奇偶性讨论函数的性质14能利用函数的奇偶性和单调性解决一些问题.【知识梳理】1函数的定义设,AB是两个非空数集如果按某种对应法则f,对于集合A中的每一个元素x在集合B 中都有惟一的元素y和它对应,这样的对应叫做从A到B的一个函数记为y=f(x),其中输入值x组成的集合A叫做函数y=f(x)的定义域所有输出值y的取值集合叫做函数y=f(x)的值域.2函数的图象y=f(x)自变量的一个值x0作为横坐标相应的函数值作为纵坐标就得到坐标平面上的一个点(x0,f(x0)),当自变量取遍函数定义域内的每一个值时,所有这些点组成的图形就是函数y=f(x)的图象3函数y=f(x)的图象与其定义域、值域的对应关系y=f(x)的图象在x轴上的射影构成的集合对应着函数的定义域在y轴上的射影构成的集合对应着函数的值域4用列表来表示两个变量之间的函数关系的方法叫列表法,其优点是函数的输入值与输出值一目了然用等式来表示两个变量之间的函数关系的方法叫解析法(这个等式通常叫函数的解析表达式简称解析式),其优点是函数关系清楚容易从自变量求出其对应的函数值便于用解析式研究函数的性质用图象来表示两个变量之间的函数关系的方法叫图象法其优点是能直观地反映函数值随自变量变化的趋势8偶函数的定义:如果对于函数y=f(x)的定义域内的任意一个x都有f(-x)=f(x),那么称函数y=f(x)是偶函数9奇函数的定义如果对于函数y=f(x)的定义域内的任意一个x都有f(-x)=-f(x),那么称函数y=f(x)是奇函数10函数图象与单调性奇函数的图象关于原点对称偶函数的图象关于y轴对称一、求函数的定义域的常用求法(一)给出函数解析式的函数的定义域是使解析式有意义的自变量的取值集合常见类型有1. 分式的分母不为零.2. 偶次根式的被开方数大于或等于零.3. 对数的真数大于零,底数大于零且不等于1.4. 零次幂的底数不为零.5. 正切函数的定义域是x≠kπ+π/2(k属于Z)(二)已知fx的定义域求f(g(x))的定义域或已知f(g(x))的定义域求f(x)的定义域抓住两点1. 复合函数f(g(x))定义域都是指最内层函数即g(x)的x的取值范围.2. 内层函数的值域都应是外层函数定义域的子集.(三)实际问题中函数的定义域除了使式子本身有意义之外还应使实际问题有意义.二、函数的值域(一)弄清函数的类型几种常见函数类型1. 基本初等函数2. 有几个基本初等函数复合的函数(三)对于由几个初等函数复合而成的函数可以采用换元法求解.(四)处理复杂函数的值域问题可借助函数的单调性来处理.(五)处理分段函数的值域问题时分别求出每一段的值域然后取并集.四、函数的单调性(一)函数单调性的证明定义法是证明函数单调性的常用方法主要有以下步骤1. 根据题意在区间上设x1<x22. 比较f(x1)与f(x2)的大小3. 下结论“函数在某个区间上是单调增(或减)函数对于第二步常见的思路是作差,变形,定号其中变形主要指的是分解因式、通分、有理化等.(二)复合函数的单调性处理复合函数单调性问题的基本原则是同增异减.一般步骤:1. 写出符合函数的内层函数t=g(x)和外层函数y=f(t)2. 求出内外层函数的单调区间注意求外层函数的单调区间时要将t的范围转化成x的范围.3. 根据同增异减的原则利用取交集的方式求出复合函数的单调区间.三函数单调性的应用1. 比较大小若要比较大小的两个数结构、形式相同、可构造函数利用函数的单调性比较.2. 求函数的值域若函数的单调性可以求出则值域可求.3. 解不等式或方程若不等式方程的两边分别可以看出同一个函数的函数值可以利用单调性得出其自变量的大小关系从而得到简化的不等式方程.五、函数的奇偶性(一)函数奇偶性的判断:判断函数的奇偶性主要是定义法.一般步骤1.判断函数的定义域是否关于原点对称这是函数具有奇偶性的前提.2.判断f(x)和f(-x)是否相等或相反.(二)利用函数的奇偶性求函数的解析式已知函数在某区间解析式,要求其对称区间的解析式。
高一数学知识点:集合与函数概念

高一数学知识点:集合与函数概念一、集合的概念集合是数学中最基本的概念之一。
它是由确定的对象所组成的整体,这些对象被称为集合的元素。
集合可以用不同的方法来表示和描述,最常用的表示方法是列举法和描述法。
1.1 列举法集合的列举法是通过列举集合中的元素来表示集合的方法。
例如,集合A可以通过列举其中的元素来表示:A = {1, 2, 3, 4, 5}。
这意味着集合A包含了元素1、2、3、4和5。
1.2 描述法集合的描述法是通过描述元素所满足的条件来表示集合的方法。
例如,集合B可以通过描述其中的元素来表示:B = {x | x 是正整数,且 x < 10}。
这意味着集合B包含了所有小于10的正整数。
二、集合的运算集合之间可以进行多种运算,常见的有交集、并集、补集和差集。
2.1 交集交集是指两个集合中都包含的元素组成的集合。
用符号∩表示。
例如,设A = {1, 2, 3},B = {2, 3, 4},则A∩B = {2, 3}。
2.2 并集并集是指两个集合中所有元素组成的集合。
用符号∪表示。
例如,设A = {1, 2, 3},B = {2, 3, 4},则A∪B = {1, 2, 3, 4}。
2.3 补集补集是指某个全集中减去一个集合的元素所得到的集合。
用符号’表示。
例如,设全集U = {1, 2, 3, 4, 5},集合A = {1, 2, 3},则A’ = {4, 5}。
2.4 差集差集是指一个集合减去另一个集合的元素所得到的集合。
用符号-表示。
例如,设集合A = {1, 2, 3},B = {2, 3, 4},则A-B = {1}。
三、函数的概念函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
函数通常用f(x)的形式表示,其中x是定义域中的元素,f(x)是对应的值域中的元素。
函数的定义包括定义域、值域和对应关系三个要素。
3.1 定义域定义域是指函数中所有可能的输入值构成的集合。
高一年级数学《集合与函数概念》超全知识点.doc

高一年级数学《集合与函数概念》超全知识点【集合的几种运算法则】并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A ∪B={x|x∈A,或x∈B}交集:以属于A且属于B的元差集表示素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}例如,全集U={1,2,3,4,5}A={1,3,5}B={1,2,5}。
那么因为A和B 中都有1,5,所以A∩B={1,5}。
再来看看,他们两个中含有1,2,3,5这些个元素,不管多少,反正不是你有,就是我有。
那么说A ∪B={1,2,3,5}。
图中的阴影部分就是A∩B。
有趣的是;例如在1到105中不是3,5,7的整倍数的数有多少个。
结果是3,5,7每项减集合1再相乘。
48个。
对称差集:设A,B为集合,A与B的对称差集A?B定义为:A?B=(A-B)∪(B-A)例如:A={a,b,c},B={b,d},则A?B={a,c,d}对称差运算的另一种定义是:A?B=(A∪B)-(A∩B)无限集:定义:集合里含有无限个元素的集合叫做无限集有限集:令N*是正整数的全体,且N_n={1,2,3,……,n},如果存在一个正整数n,使得集合A与N_n一一对应,那么A叫做有限集合。
差:以属于A而不属于B的元素为元素的集合称为A与B的差(集)。
记作:A\B={x│x∈A,x不属于B}。
注:空集包含于任何集合,但不能说“空集属于任何集合”.补集:是从差集中引出的概念,指属于全集U不属于集合A的元素组成的集合称为集合A的补集,记作CuA,即CuA={x|x∈U,且x不属于A}空集也被认为是有限集合。
例如,全集U={1,2,3,4,5}而A={1,2,5}那么全集有而A中没有的3,4就是CuA,是A的补集。
CuA={3,4}。
在信息技术当中,常常把CuA写成~A。
01第一章:集合与函数概念知识点总结

01第⼀章:集合与函数概念知识点总结第⼀章:集合与函数概念本章知识结构图:本章知识点梳理:1、集合①空集:不含有任何元素的集合,记作Φ(1)集合的分类⑤有限集:含有有限个元素的集合;⽆限集:含有⽆穷多个元素的集合(2)集合元素的特性②有:确定性、互异性、⽆序性。
(3)常⽤数集的专⽤符号⑥:⾃然数集:N ,正整数集:N +或N*,整数集:Z ,有理数集:Q ,实数集:R 。
(4)集合的表⽰⽅法④:①列举法:把集合中的元素⼀⼀列举出来,写在⼤括号内表⽰集合的⽅法;②描述法:把集合中元素的公共属性描述出来,写在⼤括号内表⽰集合的⽅法。
2、⼦集、交集、并集、补集(1)⼦集⑧定义:设集合A 与B ,如果集合A 中的任何⼀个元素都是集合B 的元素,那么集合A 叫做集合B 的⼦集记作B A ?(或A B );如果A 是B 的⼦集,并且B 中⾄少有⼀个元素不属于A ,那么集合A 叫做集合B 的真⼦集,记作B A≠(或A B ≠)(2)交集○14定义:由所有属于集合A 且属于集合B 的元素组成的集合,叫做A 、B 的交集,记作B A (如右图),即A x xB A ∈=|{ 且}B x ∈(3)并集○13定义:由所有属于集合A 或属于集合B 的元素组成的集合,叫做A 、B 的并集,记作A B ,即A a B A ∈={ 或}B a ∈(4)补集○15定义:设I 是⼀个集合,A 是I 的⼀个⼦集,由I 中所有不属于A的元素组成的集合,叫做I 中⼦集A 的补集(或余集),记作A C I ,即I x x A C I ∈=|{,且}A x ?如右图所⽰。
3、(1)函数的概念○16①设A 、B 是两个⾮空的数集,如果按照某种对应法则f ,对于集合A 中任何⼀个数x ,在集合B 中都有唯⼀确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的⼀个函数,记作:f A B →.②函数的三要素○17:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同⼀函数.(2)区间的概念○19及表⽰法①设,a b 是两个实数,且a b <,满⾜a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满⾜a x b<<的实数x 的集合叫做开区间,记做(,)a b ;满⾜a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满⾜,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以⼤于或等于b ,⽽后者必须a b <.(3)函数的表⽰⽅法○20表⽰函数的⽅法,常⽤的有解析法、列表法、图象法三种.解析法:就是⽤数学表达式表⽰两个变量之间的对应关系.列表法:就是列出表格来表⽰两个变量之间的对应关系.图象法:就是⽤图象表⽰两个变量之间的对应关系.(4)映射的概念○23①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何⼀个元素,在集合B 中都有唯⼀的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定⼀个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象. 4、函数的基本性质(1)函数的单调性○25函数为增函数,减函数减去⼀个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)函数的最⼤(⼩)值定义○26①⼀般地,设函数()y f x =的定义域为I ,如果存在实数M 满⾜:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最⼤值,记作m ax ()f x M =.②⼀般地,设函数()y f x =的定义域为I ,如果存在实数m 满⾜:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最⼩值,记作m a x ()f x m=.(3)函数的奇偶性②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,⼀个偶函数与⼀个奇函数的积(或商)是奇函数. 5、函数的图象的作法(1)利⽤描点法作图:①确定函数的定义域;②化解函数解析式;③讨论函数的性质(奇偶性、单调性);④画出函数的图象.(2)利⽤基本函数图象的变换作图:要准确记忆⼀次函数、⼆次函数、反⽐例函数、指数函数、对数函数、幂函数、三⾓函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k><=→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=→=伸缩 01,1,()()A A y f x y Af x <<>=→=缩伸③对称变换()()x y f x y f x =→=-轴()()y y f x y f x =→=-轴()()y f x y f x =→=--原点 1()()y xy f x y f x -==→=直线()(||)y y y y f x y f x =→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =→=保留轴上⽅图象将轴下⽅图象翻折上去知识点1:集合与元素知识点2:集合中元素的三个特性知识点3:元素与集合的两种关系知识点4:集合的三种表⽰法知识点5:有限集和⽆限集知识点6:特定集合的表⽰知识点7:Venn 图与数轴法表⽰集合知识点8:⼦集知识点9:集合相等知识点10:真⼦集知识点11:空集知识点12:集合的⼦集的数⽬知识点13:并集知识点14:交集知识点15:补集知识点16:函数的概念知识点17:函数的两个要素知识点18:函数的值域及其求法知识点19:区间的概念知识点20:函数的三种表达⽅法知识点21:函数图象知识点22、分段函数知识点23:映射的定义知识点24:增函数与减函数的定义知识点25:单调性与单调区间知识点26:函数的最⼤(⼩)值知识点27:奇函数与偶函数的概念知识点28:利⽤定义判断函数奇偶性的⼀般步骤知识点29:奇偶函数的图象的性质知识点30:奇偶函数的单调性部分知识点详细解释:知识点1:集合与元素1、元素:⼀般地,我们把研究对象统称为元素(element ),元素常⽤⼩写字母 c b a ,,表⽰。
高一数学必修一知识点梳理与总结

高一数学必修一知识点梳理与总结鹏博教育高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念集合是由一些元素组成的整体。
元素具有确定性、互异性和无序性。
例如,{a,b,c}和{a,c,b}表示同一集合。
集合可以用列举法和描述法表示。
例如,集合A可以表示为A={我校的篮球队员},或者用描述法表示为A={x R|x-3>2}。
常用的数集有非负整数集N、正整数集N*或N+、整数集Z、有理数集Q和实数集R。
二、集合间的基本关系集合间有包含关系和相等关系。
如果集合A包含于集合B,则称A为B的子集,记作A B。
如果A与B是同一集合,则记作A=B。
空集是不含任何元素的集合,记为Φ。
空集是任何集合的子集,也是任何非空集合的真子集。
三、集合的运算集合的运算有交集、并集和补集。
交集是由所有属于A且属于B的元素所组成的集合,记作A B。
并集是由所有属于集合A或属于集合B的元素所组成的集合,记作A B。
补集是由S中所有不属于A的元素组成的集合,记作A的补集。
1.定义集合B为由集合A和集合B'中的元素组成的集合,即B={x|x∈A或x∈B'}。
如图1所示。
2.定义集合CSA为由集合S中属于A的元素和不属于A但属于S的元素组成的集合,即CSA={x|x∈S且(x∈A或x∉A)}。
如图2所示。
3.关于集合A的性质:A与自身的交集等于A本身,即A∩A=A。
A与空集的交集等于空集,即A∩Φ=Φ。
A与集合B的交集包含于A和B中元素共有的部分,即A∩B⊆A且A∩B⊆B。
A与集合B的并集包含于A和B中所有元素的集合,即A∪B包含于A和B的并集。
A与集合B的并集等于A和B中所有元素的集合加上A和B中共有的元素的集合,即A∪B=(A∖B)∪(B∖A)∪(A∩B)。
A与集合B的并集等于集合B与A的补集的补集的并集,即A∪B=(CuA')∩(CuB')。
4.选择题答案:A。
5.集合{a,b,c}的真子集共有7个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学集合与函数概念知识点汇总
数学只有到了基础,学习才能变得容易。
小编准备了高一数学集合与函数概念知识点,希望你喜欢。
集合
集合具有某种特定性质的事物的总体。
这里的事物可以是人,物品,也可以是数学元素。
例如:1、分散的人或事物聚集到一起;使聚集:紧急~。
2、数学名词。
一组具有某种共同性质的数学元素:有理数的~。
3、口号等等。
集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论。
康托(Cantor,G.F.P.,1845年1918年,德国数学家先驱,是集合论的创始者,目前集合论的基本思想已经渗透到现代数学的所有领域。
集合,在数学上是一个基础概念。
什么叫基础概念?基础概念是不能用其他概念加以定义的概念。
集合的概念,可通过直观、公理的方法来下定义。
集合
集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。
组成一集合的那些对象称为这一集合的元素(或简称为元)。
元素与集合的关系
元素与集合的关系有属于与不属于两种。
集合与集合之间的关系
某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做。
空集是任何集合的子集,是任何非空集的真子集。
任何集合是它本身的子集。
子集,真子集都具有传递性。
『说明一下:如果集合A的所有元素同时都是集合B的元素,则A称作是B的子集,写作A?B。
若A是B的子集,且A不等于B,则A称作是B的真子集,一般写作A?B。
中学教材课本里将?符号下加了一个符号(如右图),不要混淆,考试时还是要以课本为准。
所有男人的集合是所有人的集合的真子集。
』
集合的几种运算法则
并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作AB(或BA),读作A并B(或B并A),即AB={x|xA,或xB}交集:以属于A且属于B的元差集表示
素为元素的集合称为A与B的交(集),记作AB(或BA),读作A交B(或B交A),即AB={x|xA,且xB}例如,全集U={1,2,3,4,5}A={1,3,5}B={1,2,5}。
那么因为A和B中都有1,5,所以AB={1,5}。
再来看看,他们两个中含有1,2,3,5这些个元素,不管多少,反正不是你有,就是我有。
那么说AB={1,2,3,5}。
图中的阴影部分就是AB。
有趣的是;例如在1到105中不是3,5,7的整倍数的数有多少个。
结果是3,5,7每项减集合
1再相乘。
48个。
对称差集:设A,B为集合,A与B的对称差集A?B定义为:A?B=(A-B)(B-A)例如:A={a,b,c},B={b,d},则A?B={a,c,d}对称差运算的另一种定义是:
A?B=(AB)-(AB)无限集:定义:集合里含有无限个元素的集合叫做无限集有限集:令N*是正整数的全体,且N_n={1,2,3,,n},如果存在一个正整数n,使得集合A与N_n一一对应,那么A叫做有限集合。
差:以属于A而不属于B的元素为元素的集合称为A与B的差(集)。
记作:AB={x│xA,x不属于B}。
注:空集包含于任何集合,但不能说空集属于任何集合.补集:是从差集中引出的概念,指属于全集U不属于集合A的元素组成的集合称为集合A的补集,记作CuA,即CuA={x|xU,且x不属于A}空集也被认为是有限集合。
例如,全集U={1,2,3,4,5}而A={1,2,5}那么全集有而A中没有的3,4就是CuA,是A的补集。
CuA={3,4}。
在信息技术当中,常常把CuA写成~A。
集合元素的性质
1.确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如个子高的同学很小的数都不能构成集合。
这个性质主要用于判断一个集合是否能形成集合。
2.独立性:集合中的元素的个数、集合本身的个数必须为自然数。
3.互异性:集合中任意两个元素都是不同的对象。
如写成{1,1,2},等同于{1,2}。
互异性使集合中的元素是没有重复,两个相同的对象在同一个集合中时,只能算作这个集合的一个元素。
4.无序性:{a,b,c}{c,b,a}是同一个集合。
5.纯粹性:所谓集合的纯粹性,用个例子来表示。
集合A={x|x2},集合A中所有的元素都要符合x2,这就是集合纯粹性。
6.完备性:仍用上面的例子,所有符合x2的数都在集合A中,这就是集合完备性。
完备性与纯粹性是遥相呼应的。
集合有以下性质
若A包含于B,则AB=A,AB=B
集合的表示方法
集合常用大写拉丁字母来表示,如:A,B,C而对于集合中的元素则用小写的拉丁字母来表示,如:a,b,c拉丁字母只是相当于集合的名字,没有任何实际的意义。
将拉丁字母赋给集合的方法是用一个等式来表示的,例如:A={}的形式。
等号左边是大写的拉丁字母,右边花括号括起来的,括号内部是具有某种共同性质的数学元素。
常用的有列举法和描述法。
1.列举法﹕常用于表示有限集合,把集合中的所有元素一一列举出来﹐写在大括号内﹐这种表示集合的方法叫做列举法。
{1,2,3,}2.描述法﹕常用于表示无限集合,把集合中元素的公共属性用文字﹐符号或式子等描述出来﹐写在大括号内﹐这种表示集合的方法
叫做描述法。
{x|P}(x为该集合的元素的一般形式,P为这个集合的元素的共同属性)如:小于的正实数组成的集合表示为:{x|0
4.自然语言常用数集的符号:(1)全体非负整数的集合通常简称非负整数集(或自然数集),记作N;不包括0的自然数集合,记作N*(2)非负整数集内排除0的集,也称正整数集,记作Z+;负整数集内也排除0的集,称负整数集,记作Z-(3)全体整数的集合通常称作整数集,记作Z(4)全体有理数的集合通常简称有理数集,记作Q。
Q={p/q|pZ,qN,且p,q互质}(正负有理数集合分别记作Q+Q-)(5)全体实数的集合通
常简称实数集,记作R(正实数集合记作R+;负实数记作R-)(6)复数集合计作C集合的运算:集合交换律AB=BB=BA集合结合律(AC=AC)(AC=AC)集合分配律AC)=(A(AC)AC)=(A(AC)集
合德.摩根律集合
Cu(AB)=CuACuBCu(AB)=CuACuB集合容斥原理在研究集合时,会遇到有关集合中的元素个数问题,我们把有限集合A的元素个数记为card(A)。
例如A={a,b,c},则
card(A)=3card(AB)=card(A)+card(B)-card(AB)card(AC)= card(A)+card(B)+card(C)-card(AB)-card(BC)-card(CA)+ card(AC)1885年德国数学家,集合论创始人康托尔谈到集合一词,列举法和描述法是表示集合的常用方式。
集合吸收律AB)=AAB)=A集合求补律ACuA=UACuA=设A为集合,把A的全
部子集构成的集合叫做A的幂集德摩根律
A-(BUC)=(A-B)(A-C)A-(BC)=(A-B)U(A-C)~(BUC)=~B~C~(BC)=~BU~C~=E~E=特殊集合的表示复数集C实数集R正实数集R+负实数集R-整数集Z正整数集Z+负整数集Z-有理数集Q正有理数集Q+负有理数集Q-不含0的有理数集Q*
高一数学集合与函数概念知识点就为大家介绍到这里,希望对你有所帮助。