(完整版)2019广州中考数学一模汇编21,22题

合集下载

2019年广东省中考数学试题(含答案,解析版)

2019年广东省中考数学试题(含答案,解析版)

2019年广东省初中学业水平考试数 学说明:1.全卷共4页,满分为120分,考试用时为100分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.﹣2的绝对值是A .2B .﹣2C .21 D .±2 【答案】A【解析】正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.【考点】绝对值2.某网店2019年母亲节这天的营业额为221 000元,将数221 000用科学记数法表示为A.2.21×106B.2.21×105 C.221×103 D.0.221×106【答案】B【解析】a×10n形式,其中0≤|a|<10.【考点】科学记数法3.如图,由4个相同正方体组合而成的几何体,它的左视图是【答案】A【解析】从左边看,得出左视图.【考点】简单组合体的三视图4.下列计算正确的是A.b6÷b3=b2B.b3·b3=b9C.a2+a2=2a2D.(a3)3=a6【答案】C【解析】合并同类项:字母部分不变,系数相加减.【考点】同底数幂的乘除,合并同类项,幂的乘方5.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是【答案】C【解析】轴对称与中心对称的概念.【考点】轴对称与中心对称6.数据3、3、5、8、11的中位数是A .3B .4C .5D .6【答案】C【解析】按顺序排列,中间的数或者中间两个数的平均数.【考点】中位数的概念 7.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是A .a>bB .|a| < |b|C .a+b>0D .ba <0【答案】D【解析】a 是负数,b 是正数,异号两数相乘或相除都得负.【考点】数与代数式的大小比较,数轴的认识8.化简24的结果是A .﹣4B .4C .±4D .2【答案】B【解析】公式aa2 .【考点】二次根式9.已知x1、x2是一元二次方程了x2﹣2x=0的两个实数根,下列结论错误的是A.x1≠x2B.x12﹣2x1=0 C.x1+x2=2 D.x1·x2=2 【答案】D【解析】因式分解x(x-2)=0,解得两个根分别为0和2,代入选项排除法. 【考点】一元二次方程的解的概念和计算10.如图,正方形ABCD的边长为4,延长CB至E使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于M,连接AM、AF,H为AD的中点,连接FH分别与AB、AM交于点N、K.则下列结论:①△ANH≌△GNF;②∠AFN=∠HFG;③FN=2NK;④S△AFN: S△ADM =1 : 4.其中正确的结论有A.1个B.2个C.3个D.4个【答案】C【解析】AH=GF=2,∠ANH=∠GNF,∠AHN=∠GFN,△ANH≌△GNF(AAS),①正确;由①得AN=GN=1,∵NG⊥FG,NA不垂直于AF,∴FN不是∠AFG的角平分线,∴∠AFN≠∠HFG,②错误;由△AKH∽△MKF,且AH:MF=1:3,∴KH:KF=1:3,又∵FN=HN,∴K为NH的中点,即FN=2NK,③正确;S△AFN =21AN·FG=1,S△ADM =21DM·AD=4,∴S△AFN : S△ADM =1 :4,④正确.【考点】正方形的性质,平行线的应用,角平分线的性质,全等三角形,相似三角形,三角形的面积二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.计算20190+(31)﹣1=____________. 【答案】4【解析】1+3=4【考点】零指数幂和负指数幂的运算12.如图,已知a ∥b ,∠l=75°,则∠2 =________.【答案】105°【解析】180°-75°=105°.【考点】平行线的性质 13.一个多边形的内角和是1080°,这个多边形的边数是_________.【答案】8【解析】(n-2)×180°=1080°,解得n=8.【考点】n 边形的内角和=(n-2)×180°14.已知x=2y+3,则代数式4x ﹣8y+9的值是___________.【解析】由已知条件得x-2y=3,原式=4(x-2y)+9=12+9=21.【考点】代数式的整体思想15米,在实验楼的15.如图,某校教学楼AC与实验楼BD的水平间距CD=3顶部B点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是_________________米(结果保留根号).【答案】15+153【解析】AC=CD·tan30°+CD·tan45°=15+153.【考点】解直角三角形,特殊三角函数值16.如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是_____________________(结果用含a、b代数式表示).【解析】每个接触部分的相扣长度为(a-b ),则下方空余部分的长度为a-2(a-b )=2b-a ,3个拼出来的图形有1段空余长度,总长度=2a+(2b-a )=a+2b ;5个拼出来的图形有2段空余长度,总长度=3a+2(2b-a )=a+4b ;7个拼出来的图形有3段空余长度,总长度=4a+3(2b-a )=a+6b ;9个拼出来的图形有4段空余长度,总长度=5a+4(2b-a )=a+8b.【考点】规律探究题型三、解答题(一)(本大题3小题,每小题6分,共18分)17.解不等式组:【答案】解:由①得x >3,由②得x >1,∴原不等式组的解集为x >3.【考点】解一元一次不等式组18.先化简,再求值:4-x x -x 2-x 1-2-x x 22÷⎪⎭⎫ ⎝⎛ ,其中x=2. 【答案】解:原式=2-x 1-x 4-x x -x 22÷ =2-x 1-x ×()()()1-x x 2-x 2x + =x 2x +当x=2,原式=222+=2222+=1+2. 【考点】分式的化简求值,包括通分、约分、因式分解、二次根式计算19.如图,在△ABC 中,点D 是AB 边上的一点.(1)请用尺规作图法,在△ABC 内,求作∠ADE .使∠ADE=∠B ,DE 交AC于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若DB AD=2,求EC AE的值.【答案】解:(1)如图所示,∠ADE 为所求.(2)∵∠ADE=∠B∴DE ∥BC ∴EC AE =DB AD∵DB AD =2 ∴ECAE =2 【考点】尺规作图之作一个角等于已知角,平行线分线段成比例四、解答题(二)(本大题3小题,毎小题7分,共21分)20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A 、B 、C 、D 四个等级,绘制如下不完整的统计图表,如题20图表所示,根据图表信息解答下列问题:(1)x =________,y =_______,扇形图中表示C 的圆心角的度数为_______度;(2)甲、乙、丙是A 等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.【答案】解:(1)y=10÷25%=40,x=40-24-10-2=4,C 的圆心角=360°×404=36° (2)画树状图如下:一共有6种可能结果,每种结果出现的可能性相同,其中同时抽到甲、乙的结果有2种∴P (甲乙)=62=31 答:同时抽到甲、乙两名学生的概率为31. 【考点】数据收集与分析,概率的计算21.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,己知每个篮球的价格为70元,毎个足球的价格为80元.(1)若购买这两类球的总金额为4600元,篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,最多可购买多少个篮球?【答案】解:(1)设购买篮球x 个,则足球(60-x )个.由题意得70x+80(60-x )=4600,解得x=20则60-x=60-20=40.答:篮球买了20个,足球买了40个.(2)设购买了篮球y 个.由题意得 70y ≤80(60-x ),解得y ≤32答:最多可购买篮球32个.【考点】一元一次方程的应用,一元一次不等式的应用22.在如图所示的网格中,每个正方形的连长为1,每个小正方形的顶点叫格点,△ABC 的三个顶点均在格点上,以点A 为圆心的⌒EF 与BC 相切于点D ,分别交AB 、AC 于点E 、F .(1)求△ABC 三边的长;(2)求图中由线段EB 、BC 、CF 及⌒FE 所围成的阴影部分的面积.【答案】解:(1)由题意可知,AB=2262+=102,AC=2262+=102, BC=2284+=54(2)连接AD由(1)可知,AB2+AC2=BC2,AB=AC∴∠BAC=90°,且△ABC 是等腰直角三角形∵以点A 为圆心的⌒EF 与BC 相切于点D∴AD ⊥BC∴AD=21BC=52 (或用等面积法AB ·AC=BC ·AD 求出AD 长度) ∵S 阴影=S △ABC -S 扇形EAFS △ABC =21×102×102=20 S 扇形EAF =()25241π =5π ∴S 阴影=20-5π【考点】勾股定理及其逆定理,阴影面积的计算包括三角形和扇形的面积公式五、解答题(三)(本大题3小题,毎小题7分,共21分)23.如图,一次函数y=k 1x+b 的图象与反比例函数y=xk 2的图象相交于A 、B 两点,其中点A 的坐标为(﹣1,4),点B 的坐标为(4,n ).(1)根据函数图象,直接写出满足k 1x+b>xk 2的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP : S △BOP =1 : 2,求点P 的坐标.【答案】解:(1)x <-1或0<x <4(2)∵反比例函数y=xk 2图象过点A (﹣1,4) ∴4=1-k 2,解得k 2=﹣4 ∴反比例函数表达式为x4-y = ∵反比例函数x4-y =图象过点B (4,n ) ∴n=44-=﹣1,∴B (4,﹣1) ∵一次函数y=k 1x+b 图象过A (﹣1,4)和B (4,﹣1)∴⎩⎨⎧+=+=bk 41-b -k 411,解得⎩⎨⎧==3b 1-k 1 ∴一次函数表达式为y=﹣x+3(3)∵P 在线段AB 上,设P 点坐标为(a ,﹣a+3)∴△AOP 和△BOP 的高相同∵S △AOP : S △BOP =1 : 2∴AP : BP=1 : 2过点B 作BC ∥x 轴,过点A 、P 分别作AM ⊥BC ,PN ⊥BC 交于点M 、N∵AM ⊥BC ,PN ⊥BC ∴BNMN BP AP = ∵MN=a+1,BN=4-a ∴21a -41a =+,解得a=32 ∴-a+3=37 ∴点P 坐标为(32,37) (或用两点之间的距离公式AP=()()224-3a -1a +++,BP=()()223-a 1-a -4++,由21BP AP =解得a 1=32,a 2=-6舍去)【考点】一次函数和反比例函数的数形结合,会比较函数之间的大小关系,会求函数的解析式,同高的三角形的面积比与底边比的关系24.如题24-1图,在△ABC 中,AB=AC ,⊙O 是△ABC 的外接圆,过点C 作∠BCD=∠ACB 交⊙O 于点D ,连接AD 交BC 于点E ,延长DC 至点F ,使CF=AC ,连接AF .(1)求证:ED=EC ;(2)求证:AF是⊙O的切线;(3)如题24-2图,若点G是△ACD的内心,BC·BE=25,求BG的长.【答案】(1)证明:∵AB=AC∴∠B==∠ACB∵∠BCD=∠ACB∴∠B=∠BCD∵⌒AC=⌒AC∴∠B=∠D∴∠BCD=∠D ∴ED=EC (2)证明:连接AO并延长交⊙O于点G,连接CG 由(1)得∠B=∠BCD∴AB∥DF∵AB=AC,CF=AC∴AB=CF∴四边形ABCF是平行四边形∴∠CAF=∠ACB∵AG为直径∴∠ACG=90°,即∠G+∠GAC=90°∵∠G=∠B,∠B=∠ACB∴∠ACB+∠GAC=90°∴∠CAF+∠GAC=90°即∠OAF=90°∵点A在⊙O上∴AF是⊙O的切线(3)解:连接AG∵∠BCD=∠ACB ,∠BCD=∠1∴∠1=∠ACB∵∠B=∠B∴△ABE ∽△CBA ∴BCAB AB BE ∵BC ·BE=25∴AB 2=25∴AB=5∵点G 是△ACD 的内心∴∠2=∠3∵∠BGA=∠3+∠BCA=∠3+∠BCD=∠3+∠1=∠3+∠2=∠BAG∴BG=AB=5【考点】圆的综合应用,等弧等弦等角的转换,切线的证明,垂径定理的逆应用,内心的概念,相似三角形的应用,外角的应用,等量代换的意识25.如题25-1图,在平面直角坐标系中,抛物线y=837 -x 433x 832+与x 轴交于点A 、B(点A 在点B 右侧),点D 为抛物线的顶点.点C 在y 轴的正半轴上,CD 交x 轴于点F ,△CAD 绕点C 顺时针旋转得到△CFE ,点A 恰好旋转到点F ,连接BE .(1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如题25-2图,过顶点D 作DD 1⊥x 轴于点D 1,点P 是抛物线上一动点,过点P 作PM ⊥ x 轴,点M 为垂足,使得△PAM 与△DD 1A 相似(不含全等).①求出一个满足以上条件的点P 的横坐标;②直接回答....这样的点P 共有几个?【答案】(1)解:由y=837 -x 433x 832+=()32-3x 83+得点D 坐标为(﹣3,32) 令y=0得x 1=﹣7,x 2=1∴点A 坐标为(﹣7,0),点B 坐标为(1,0)(2)证明:过点D 作DG ⊥y 轴交于点G ,设点C 坐标为(0,m )∴∠DGC=∠FOC=90°,∠DCG=∠FCO∴△DGC ∽△FOC ∴COCG FO DG = 由题意得CA=CF ,CD=CE ,∠DCA=∠ECF ,OA=1,DG=3,CG=m+32 ∵CO ⊥FA∴FO=OA=1 ∴m 32m 13+=,解得m=3 (或先设直线CD 的函数解析式为y=kx+b ,用D 、F 两点坐标求出y=3x+3,再求出点C 的坐标)∴点C 坐标为(0,3)∴CD=CE=()223233++=6 ∵tan ∠CFO=FO CO =3∴∠CFO=60°∴△FCA 是等边三角形∴∠CFO=∠ECF∴EC ∥BA∵BF=BO -FO=6∴CE=BF∴四边形BFCE 是平行四边形(3)解:①设点P 坐标为(m ,837-m 433m 832+),且点P 不与点A 、B 、D 重合.若△PAM 与△DD 1A 相似,因为都是直角三角形,则必有一个锐角相等.由(1)得AD 1=4,DD 1=32(A )当P 在点A 右侧时,m >1 (a )当△PAM ∽△DAD 1,则∠PAM=∠DAD 1,此时P 、A 、D 三点共线,这种情况不存在(b )当△PAM ∽△ADD 1,则∠PAM=∠ADD 1,此时11DD AD AM PM = ∴3241-m 837-m 433m 832=+,解得m 1=35-(舍去),m 2=1(舍去),这种不存在(B )当P 在线段AB 之间时,﹣7<m <1 (a )当△PAM ∽△DAD 1,则∠PAM=∠DAD 1,此时P 与D 重合,这种情况不存在第 21 页 (共 21 页) (b )当△PAM ∽△ADD 1,则∠PAM=∠ADD 1,此时11DD AD AM PM = ∴3241-m 837-m 433m 832=+,解得m 1=35-,m 2=1(舍去) (C )当P 在点B 左侧时,m <﹣7(a )当△PAM ∽△DAD 1,则∠PAM=∠DAD 1,此时11AD DD AM PM = ∴﹣3241-m 837-m 433m 832=+432,解得m 1=﹣11,m 2=1(舍去) (b )当△PAM ∽△ADD 1,则∠PAM=∠ADD 1,此时11DD AD AM PM = ∴﹣3241-m 837-m 433m 832=+,解得m 1=337-,m 2=1(舍去) 综上所述,点P 的横坐标为35-,﹣11,337-,三个任选一个进行求解即可. ②一共存在三个点P ,使得△PAM 与△DD 1A 相似.【考点】二次函数的综合应用,旋转的性质,相似三角形的的应用,等边三角形的性质,平行四边形的证明,平面直角坐标的灵活应用,动点问题,分类讨论思想。

中考数学临考题号押广东卷22题(方程运用与最大利润)(解析版)

中考数学临考题号押广东卷22题(方程运用与最大利润)(解析版)
(2)由题意得,当 时,每天可售100盒.
当猪肉粽每盒售x元时,每天可售 盒.每盒的利润为( )
∴ ,
配方得:
当 时,y取最大值为1750元.
∴ ,最大利润为1750元.
答:y关于x的函数解析式为 ,且最大利润为1750元.
2.(2020广东)某社区拟建A、B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米,建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的 .
(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出结论.
【解答】解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,
根据题意得: = ,
解得:x=35,
经检验,x=35是原方程的解,
∴x﹣9=26.
答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.
(2)设可以购买m瓶乙品牌洗手液,则可以购买(100-m)瓶甲品牌洗手液,根据总价=单价×数量,结合总费用不超过1645元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再取其中的最大整数值即可得出结论.
【详解】解:(1)设甲品牌洗衣液进价为 元/瓶,则乙品牌洗衣液进价为 元/瓶,
由题意可得, ,
(1)扩大生产规模后每天生产多少个冰墩墩硅胶外壳?
(2)该公司通过增加模具的方式提高日产量,本来只有两套模具,每套模具每天平均生产500个冰墩墩硅胶外壳,为达到扩大生产规模后的日产量,至少需要增加多少套模具?
【分析】(1)根据题设条件,表示出原计划用的时间,和扩大规模后用的时间,根据前后时间差为464天,可列分式方程,解方程即可得到答案;

2019年广州市南沙区中考数学一模试卷

2019年广州市南沙区中考数学一模试卷

2019年广州市南沙区中考数学一模本试卷分选择题和非选择题两部分,共三大题25小题,满分150分.考试用时120分钟. 注意事项:1.答卷前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;填写考场试室号、座位号,再用2B 铅笔把对应号码的标号涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回. 5.考试过程中不允许使用计算器.第一部分 选择题 (共30分)一、选择题(每小题3分,共30分,每小题给出的四个选项中,只有一项符合题意) 1.8的立方根是( ※ )A . 2-B .2C .4-D .4 2.下列计算正确的是( ※ )A .325()a a = B .623a a a ÷= C .326a a a =gD .3332a a a += 3.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是( ※ )A .主视图B .左视图C .俯视图D .主视图和左视图4.如图,直线a b∥,以直线a 上的点A 为圆心、适当长为半径画弧,分别交直线a 、b 于点B 、C ,连接AC 、BC .若∠ABC =65°,则∠1=( ※ )A .115°B .80°C .65°D .50°5.南沙区某中学在备考2019广州中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示: 成绩(单位:米)人数23245211则下列叙述正确的是( ※ )A .这些男生成绩的众数是5B .这些男生成绩的中位数是C .这些男生的平均成绩是D .这些男生成绩的极差是6.下列数中与191-最接近的是( ※ )A .2B .3C .πD .4 7.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB =8,OC =3,则EC 的长为( ※ )第3题图第7题图第4题图A .215B .8C .210D .2138.港珠澳大桥是我国桥梁建筑史上的又一伟大奇迹,东接香港,西接珠海、澳门,全程 55千米.通车前需走水陆两路共约 170 千米,通车后,约减少时间3小时,平均速度是 原来的2.5倍,如果设原来通车前的平均时速为x 千米/小时,则可列方程为( ※ ) A .1705532.5x x -= B .551703x x-= C .17055 2.53x x⨯-= D .1705532.5x x -= 9.在同一直角坐标系中,一次函数y ax b =-和二次函数2y ax b =--的大致图象是( ※ )10.如图,在直角坐标系中,有一等腰直角三角形OBA ,∠OBA =90°,斜边OA 在x 轴正半轴上,且OA =2,将Rt △OBA 绕原点O 逆时针旋转90°,同时扩大边长的1倍,得到等腰直角三角形OB 1A 1(即A 1O=2AO ).同理,将Rt △OB 1A 1逆时针旋转90°,同时扩大边长1倍,得到等腰直角三角形OB 2A 2……依此规律,得到等腰直角三角形OB 2019A 2019,则点B 2019的坐标为( ※ )A .()2019201922-, B .()2019201922-, C .()2018201822-, D .()2018201822-,A .B .C .D .第10题图第二部分 非选择题 (共120分)二、填空题(每小题3分,共18分)11.关于x 的不等式组的解集在数轴上的表示如图所示,则此不等式组的解集为 ※ .12.抛物线22(1)3y x =-++的顶点坐标是※ .13.如图,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠BED的余弦值等于 ※ .14.如图,在平行四边形ABCD 中,BE ⊥AC ,AC =24,BE =5,AD =8,则两平行线AD 与BC间的距离是 ※ . 15.如果16a a -=,则221a a+的值为 ※ . 16.如图,在菱形ABCD 中,AB =BD ,点E 、F 分别是线段AB 、AD 上的动点(不与端点重合),且AE =DF ,BF 与DE 相交于点G .给出如下几个结论:①△AED ≌△DFB ;②∠BGE 大小会发生变化;③CG 平分∠BGD ;④若AF =2DF ,BG =6GF ; ⑤S 四边形BCDG =23CG .其中正确的结论有 ※ (填序号).三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤)第16题图第11题图 第13题图 第14题图17.(本小题满分9分)解一元一次方程:13122=--x x .18.(本小题满分9分)如图,已知在四边形ABCD 中,点E 在AD 上,∠B +∠AEC =180°,∠BAC =∠D ,BC =CE .求证:AC =DC .19.(本小题满分10分)已知222244112x x x T x xx x x ⎛⎫-+-=+÷ ⎪-+⎝⎭ (1)化简T ;(2)若x 为△ABC 的面积,其中∠C =90°,∠A =30°,BC =2,求T 的值.20.(本小题满分10分)随着中国传统节日“端午节”的临近,永旺超市决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折.已知打折前,买1盒甲品牌粽子和2盒乙品牌粽子需230元;打折 后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元. (1)打折前甲、乙两种品牌粽子每盒分别为多少元(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子 比不打折节省了多少钱21.(本小题满分12分)随着信息技术的快速发展,人们购物的付款方式更加多样、便捷.某校数学兴趣小组为了解人们最喜欢的付款方式设计了一份调查问卷,要求被调查者选且 只选其中一种你最喜欢的付款方式.现将调查结果进行统计并绘制成如下两幅不完整的第18题图统计图,请根据统计图回答下列问题:(1)这次活动共调查了 人;在扇形统计图中,表示“支付宝”付款的扇形圆心 角的度数为 ; (2)补全条形统计图;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种付款 方式中选一种方式进行付款,请用树状图或列表法求出两人恰好选择同一种付款方式的概率.22.(本小题满分12分)已知直线11522y x =+与直线2y kx b =+关于原点O 对称,若反比例函数my x=的图象与直线2y kx b =+交于A 、B 两点,点A 横坐标为1,点B 纵坐标为12-. (1)求k ,b 的值; (2)结合图象,当2521+<x x m 时,求自变量x 的取值范围.23.(本小题满分12分)如图,AB 为O e 的直径,点C 在O e 上,且tan∠ABC =2;(1)利用尺规过点A 作O e 的切线AD (点D 在直线AB 右侧), 且AD =AB ,连接OD 交AC 于点E (保留作图痕迹,不写作法); (2)在(1)条件下, ①求证:OD ∥BC ;②连接BD 交O e 于点F ,求证:DE OD DF BD =g g . 24.(本小题满分14分)抛物线L :212y x bx c =++经过点(01)A -,,与它的对称轴直线2x =交于点B .(1)求出抛物线L 的解析式;(2)如图1,过定点的直线25y kx k =--(0)k >与抛物线L 交于点M 、N .若△BMN的面积等于3,求k 的值;(3)如图2,将抛物线L 向下平移m (m >0)个单位长度得到抛物线L 1,抛物线L 1与y 轴交于点C ,过点C 作y 轴的垂线交抛物线L 1于另一点D .点F 为抛物线L 1的对称轴与x 轴的交点,P 为线段OC 上一点.若△PCD 与△POF 相似,并且符合条件的点P 恰有2个,求m 的值及相应点P的坐标.第23题图25.(本小题满分14分)如图1,已知在平面直角坐标系中,点O 为坐标原点,点A 在x 轴负半轴上,直线6+-=x y 与x 轴、y 轴分别交于B 、C 两点,四边形ABCD 为平行四边形,且AC =BC ,点P 为△ACD 内一点,连接AP 、BP 且∠APB =90°. (1)求证:∠PAC=∠PBC ;(2)如图2,点E 在线段BP 上,点F 在线段AP 上,且AF =BE ,∠AEF =45°,求222AE EF + 的值;(3)在(2)的条件下,当PE =BE 时,求点P 的坐标.图1图2图2图1。

专题03 反比例函数(广东专版)-2019年中考真题数学试题分项汇编(解析版)

专题03 反比例函数(广东专版)-2019年中考真题数学试题分项汇编(解析版)

专题03 反比例函数1.(2019•广州)若点A(-1,y1),B(2,y2),C(3,y3)在反比例函数y6x=的图象上,则y1,y2,y3的大小关系是A.y3<y2<y1B.y2<y1<y3 C.y1<y3<y2D.y1<y2<y3【答案】C【解析】∵点A(-1,y1),B(2,y2),C(3,y3)在反比例函数y6x=的图象上,∴y161==--6,y262==3,y363==2,又∵-6<2<3,∴y1<y3<y2.故选C.【名师点睛】本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.2.(2019年广东省湛江市霞山区中考数学一模试卷)已知反比例函数2yx=,下列结论中不正确的是A.图象经过点(-1,-2)B.图象在第一、三象限C.当x>1时,0<y<2 D.当x<0时,y随着x的增大而增大【答案】D【解析】A、∵当x=-时,y=-2,∴此函数图象过点(-1,-2),故本选项正确;B、∵k=3>0,∴此函数图象的两个分支位于一三象限,故本选项正确;C、∵当x=1时,y=2,∴当x>1时,0<y<2,故本选项正确;D、∵k=2>0,∴当x<0时,y随着x的增大而减小,故本选项错误,故选D.【名师点睛】此题考查反比例函数的性质,解题关键在于熟练掌握反比例函数图象上点的坐标特点.3.(2019年广东省汕头市澄海区中考数学一模试卷)如图,已知双曲线y=2x经过Rt△OAB的直角边AB的中点P,则△AOP的面积为A.12B.1C.2 D.4【答案】B【解析】∵双曲线y=2x经过P,∴S△ABP=||2k=1,∵P为AB边上的中点,∴S△AOP=S△ABP=1,故选B.【名师点睛】考查了反比例函数的比例系数的几何意义,解题的关键是了解两个三角形的面积相等.4.(广东省深圳市龙岗区实验学校2019届中考数学第二次模拟检测试题)如图,点A在双曲线y=kx上,B在y轴上,且AO=AB,若△ABO的面积为6,则k的值为A.6 B.-6 C.12 D.-12 【答案】A【解析】如图,过点A作AD⊥y轴于点D,∵AB=AO,△ABO的面积为6,∴S△ADO=12|k|=3,又反比例函数的图象位于第一、三象限,k>0,则k=6.故选A.【名师点睛】本题考查反比例函数系数k的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=12|k|.也考查了等腰三角形的性质以及反比例函数图象上点的坐标特征.5.(广东省惠来县2019届九年级初中毕业班调研考试数学试题)在同平面直角坐标系中,函数y=x-1与函数y=1x的图象大致是A.B.C.D.【答案】D【解析】函数y=1x中k=1>0,故图象在第一、三象限;函数y=x-1的图象在第一、三、四象限,故选D.【名师点睛】本题考查反比例函数与一次函数图象,关键是掌握一次函数图象与系数的关系.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.6.(广东省惠州市博罗县2019届九年级中考一模数学试卷)如图,已知A,B是反比例函数y=kx(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P作PM⊥x轴,垂足为M.设三角形OMP的面积为S,P点运动时间为r,则S关于t的函数图象大致为A.B.C .D .【答案】C【解析】设∠AOM =α,点P 运动的速度为a , 当点P 从点O 运动到点A 的过程中,S 22(cos )(sin )1cos sin 22at at a t αααα⋅⋅⋅==⋅⋅,从而可知图象本段应为抛物线,且S 随着t 的增大而增大; 当点P 从A 运动到B 时,由反比例函数性质可知△OPM 的面积为12k ,保持不变, 故本段图象应为与横轴平行的线段;当点P 从B 运动到C 过程中,OM 的长在减少,△OPM 的高与在B 点时相同, 故本段图象应该为一段下降的线段,故选C .【名师点睛】本题考查了反比例函数图象性质、锐角三角函数性质,解题的关键是明确点P 在O →A 、A →B 、B →C 三段位置时三角形OMP 的面积计算方式.7.(2019•深圳)如图,在Rt △ABC 中,∠ABC =90°,C (0,-3),CD =3AD ,点A 在反比例函数y k x=图象上,且y 轴平分∠ACB ,求k =__________.【解析】如图,过A 作AE ⊥x 轴,垂足为E ,∵C (0,-3),∴OC =3,可证△ADE ∽△CDO , ∴13AE DE AD CO OD CD ===,∴AE =1. 又∵y 轴平分∠ACB ,CO ⊥BD ,∴BO =OD , ∵∠ABC =90°,∴△ABE ~COD ,∴AE BEOD OC=, 设DE =n ,则BO =OD =3n ,BE =7n ,∴1733n n =,∴n 7=,∴OE =4n 7=,∴A (7,1),∴k 177=⨯=.故答案为:7. 【名师点睛】本题考查解直角三角形、坐标与图形的性质、相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考选择题中的压轴题.8.(广东省湛江雷州市2019届九年级中考模拟联考数学试题)已知1(4)A y -,,2(1)B y -,是反比例函数4y x=图象上的两个点,则1y 与2y 的大小关系为__________. 【答案】12y y >【解析】∵A (-4,y 1),B (-1,y 2)是反比例函数y =4x图象上的两个点, ∴-4y 1=4,-1·y 2=4, ∴y 1=-1,y 2=-4,∴y 1>y 2.故答案为:y 1>y 2.【名师点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y =kx(k 为常数,k ≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy =k .9.(2019年广东省深圳市福田区中考数学三模试卷)如图,正方形ABCD 的顶点A 、D 分别在x 轴、y 轴上,∠ADO =30°,OA =2,反比例函y =kx经过CD 的中点M ,那么k =__________.【解析】如图,作CE⊥y轴于点E.∵正方形ABCD的顶点A、D分别在x轴、y轴上,∴∠CED=∠DOA=90°,∠DCE=∠ADO,CD=DA,∴△CDE≌△DAO,∴DE=AO=2,又∵∠ODA=30°,∴Rt△AOD中,AD=2AO=4,DO CE,∴EO∴C(D(0,∵M是CD的中点,∴M,∵反比例函数y=kx经过CD的中点M,∴k(+6,+6.【名师点睛】本题考查反比例函数图象上点的坐标特征和正方形的性质,解题的关键是熟练掌握反比例函数图象上点的坐标特征和正方形的性质.10.(广东省江门市第二中学2019届九年级中考数学第一次模拟考试题)如图,A、B两点在双曲线y=5x上,分别经过A、B两点向坐标轴作垂线段,已知S阴影=2,则S1+S2=__________.【答案】6【解析】根据题意得S 1+S 阴影=S 2+S 阴影=5,而S 阴影=2,所以S 1=S 2=3,所以S 1+S 2=6.故答案为:6. 【名师点睛】本题考查了比例系数k 的几何意义:在反比例函数y =kx图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k |.在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k |,且保持不变. 11.(广东省中山市第一中学2019届九年级5月质量调研检测数学试题)如图,函数1y kx b =+与2k y x=交与点A 、B 两点,且A 、B 两点的横坐标分别是-1,3,则满足21y y <的x 的取值范围是__________.【答案】-3<x <0或x >2【解析】∵一次函数1y kx b =+与反比例函数2ky x=交于A ,B 两点, 且A ,B 两点的横坐标分別为-1,3,故满足21y y <的x 的取值范围是x <-1或0<x <3, 故答案为:-3<x <0或x >2.【名师点睛】此题考查反比例函数的图象和一次函数的图象,解题关键在于观察函数图象.12.(2019年广东省深圳市二十三校联考中考数学4月份模拟试卷)如图在平面直角坐标系中,周长为12的正六边形ABCDEF 的对称中心与原点O 重合,点A 在x 轴上.点B ,在反比例函数y =kx位于第一象限的图象上.则k 的值为__________.【答案】3【解析】如图,连接OB,∵周长为12的正六边形ABCDEF的对称中心与原点O重合,∴正六边形ABCDEF的边长为2,∴OB=2,BM=1,∵OM⊥BC,∴OM==点B在反比例函数y=kx位于第一象限的图象上,点B的坐标为(1,3).将点(1,3)代入y=kx中,得k=3.故故答案为:k=3.【名师点睛】本题考查了正多边形性质,锐角三角函数,反比例函数的性质,等边三角形的性质和判定的应用,关键是求出B的坐标.13.(2019•广州)如图,在平面直角坐标系xOy中,菱形ABCD的对角线AC与BD交于点P(-1,2),AB⊥x轴于点E,正比例函数y=mx的图象与反比例函数y3nx-=的图象相交于A,P两点.(1)求m,n的值与点A的坐标;(2)求证:△CPD∽△AEO;(3)求sin∠CDB的值.【解析】(1)将点P(-1,2)代入y=mx,得:2=-m,解得:m=-2,∴正比例函数解析式为y=-2x;将点P(-1,2)代入y3nx-=,得:2=-(n-3),解得:n=1,∴反比例函数解析式为y2x =-.联立正、反比例函数解析式成方程组,得:22y xyx=-⎧⎪⎨=-⎪⎩,解得:111 2x y =-⎧⎨=⎩,2212xy=⎧⎨=-⎩,∴点A的坐标为(1,-2).(2)∵四边形ABCD是菱形,∴AC⊥BD,AB∥CD,∴∠DCP=∠BAP,即∠DCP=∠OAE.∵AB⊥x轴,∴∠AEO=∠CPD=90°,∴△CPD∽△AEO.(3)∵点A的坐标为(1,-2),∴AE=2,OE=1,AO==∵△CPD∽△AEO,∴∠CDP=∠AOE,∴sin∠CDB=sin∠AOEAEAO===.【名师点睛】本题考查了待定系数法求一次函数解析式、待定系数法反比例函数解析式、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征、菱形的性质、相似三角形的判定与性质以及解直角三角形,解题的关键是:(1)根据点的坐标,利用待定系数法求出m,n的值;(2)利用菱形的性质,找出∠DCP=∠OAE,∠AEO=∠CPD=90°;(3)利用相似三角形的性质,找出∠CDP=∠AOE.14.(2019•广东)如图,一次函数y =kx +b 的图象与反比例函数y 2k x=的图象相交于A 、B 两点,其中点A 的坐标为(-1,4),点B 的坐标为(4,n ). (1)根据图象,直接写出满足kx +b 2k x>的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP ∶S △BOP =1∶2,求点P 的坐标.【解析】(1)∵点A 的坐标为(-1,4),点B 的坐标为(4,n ).由图象可得:kx +b 2k x >的x 的取值范围是x <-1或0<x <4. (2)∵反比例函数y 2kx=的图象过点A (-1,4),B (4,n ),∴k 2=-1×4=-4,k 2=4n , ∴n =-1, ∴B (4,-1),∵一次函数y =kx +b 的图象过点A ,点B , ∴441k b k b -+=⎧⎨+=-⎩,解得:k =-1,b =3,∴直线解析式y =-x +3,反比例函数的解析式为y 4x=-. (3)如图,设直线AB 与y 轴的交点为C ,∴C(0,3),∵S△AOC12=⨯3×132=,∴S△AOB=S△AOC+S△BOC12=⨯3×1132+⨯⨯4152=,∵S△AOP∶S△BOP=1∶2,∴S△AOP1515 232 =⨯=,∴S△COP5322=-=1,∴12⨯3·x P=1,∴x P23=,∵点P在线段AB上,∴y23=-+373=,∴P(23,73).【名师点睛】本题考查了一次函数与反比例函数的综合题,涉及了待定系数法,函数与不等式,三角形的面积等,熟练掌握相关知识是解题的关键.注意数形结合思想的应用.15.(2019年广东省佛山市顺德区中考数学三模试卷)如图,反比例函数y=2x的图象和一次函数的图象交于A、B两点,点A的横坐标和点B的纵坐标都是1.(1)在第一象限内,写出关于x的不等式kx+b≥2x的解集;(2)求一次函数的表达式;(3)若点P(m,n)在反比例函数图象上,且关于y轴对称的点Q恰好落在一次函数的图象上,求m2+n2的值.【解析】(1)∵反比例函数y=2x的图象和一次函数的图象交于A、B两点,点A的横坐标和点B的纵坐标都是1,∴A(1,2),B(2,1),∴在第一象限内,不等式kx+b≥2x的解集为1≤x≤2,故答案为:1≤x≤2.(2)设一次函数的解析式为y=kx+b,∵经过A(1,2),B(2,1)点,∴221k bk b+=⎧⎨+=⎩,解得13kb=-⎧⎨=⎩,∴一次函数的解析式为y=-x+3.(3)∵点P(m,n),∴Q(-m,n),∵点P在反比例函数图象上,∴mn=2,∵点Q恰好落在一次函数的图象上,∴n=m+3,∴m(m+3)=2,∴m2+3m=2,∴m2+n2=m2+(m+3)2=2m2+6m+9=2(m2+3m)+9=2×2+9=13.【名师点睛】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.16.(广东省广州市荔湾区2019届九年级中考第一次模拟考试数学试题)如图,在平面直角坐标系中,四边形ABCD为正方形,点A的坐标为(0,3),点B的坐标为(0,-4),反比例-函数y=kx(k≠0)的图象经过点C.(1)求反比例函数的解析式;(2)点P是反比例函数在第二象限的图象上的一点,若△PBC的面积等于正方形ABCD的面积,求点P的坐标.【解析】(1)∵点A 的坐标为(0,3),点B 的坐标为(0,-4),∴AB =7,∵四边形ABCD 为正方形,∴点C 的坐标为(7,-4),代入y =k x,得k =-28,), ∴反比例函数的解析式为y =-28x. (2)设点P 到BC 的距离为h .∵△PBC 的面积等于正方形ABCD 的面积, ∴12×7×h =72,解得h =14, ∵点P 在第二象限,y P =h -4=10,此时,x P =-2810=-514, ∴点P 的坐标为(-514,10). 【名师点睛】本题考查了用待定系数法求反比例函数的解析式,反比例函数系数k 的几何意义,正方形的性质以及三角形和正方形的面积等,根据正方形的性质求得C 的坐标是解题的关键.。

2021年广东中考数学23题汇编

2021年广东中考数学23题汇编

中考数学23题专训1、(2019广州中考)如图10,⊙O的直径AB=10,弦AC=8,连接BC。

(1)尺规作图:作弦CD,使CD=BC(点D不与B重合),连接AD;(保留作图痕迹,不写作法)(2)在(1)所作的图中,求四边形ABCD的周长。

五种基本作图1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知角的平分线;4.过一点作已知直线的垂线;5.作已知线段的垂直平分线.1.( 2018广州中考)如图,四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.(1)利用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法);(2)在(1)的条件下,①证明:AE⊥DE;②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值.2.(2017广州中考)已知抛物线21y x mx n =-++,直线21,y kx b y =+的对称轴与2y 交于点()1,5A -,点A 与1y 的顶点B 的距离是4.(1)求1y 的解析式;(2)若2y 随着x 的增大而增大,且1y 与2y 都经过x 轴上的同一点,求2y 的解析式.3.(2020天河)如图,直线AD与x轴交于点C,与双曲线y=交于点A,AB⊥x轴于点B(4,0),点D的坐标为(0,﹣2).(1)求直线AD的解析式;(2)若x轴上存在点M(不与点C重合),使得△AOC和△AOM相似,求点M的坐标.4.(2020育才)如图,Rt△ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,E、F是⊙O上的两点,连结AE、CF、DF,满足EA=CA.(1)求证:AE是⊙O的切线;(2)若⊙O的半径是3,tan∠CFD=43,求AD的长.5.(2019海珠)6.(2019荔湾广雅)(2)7.(2017海珠)当堂测试1.(2020荔湾)已知:如图,AB是⊙O的直径,点C是过点A的⊙O的切线上一点,连接OC,过点A作OC的垂线交OC于点D,交⊙O于点E,连接CE.(1)求证:CE与⊙O相切;(2)连结BD并延长交AC于点F,若OA=5,sin∠BAE=,求AF的长.2.(2019黄埔)如图,已知在⊙O中,AB是⊙O的直径,AC=8,BC=6.(1)求⊙O的面积;(2)若D为⊙O上一点,且△ABD为等腰三角形,求CD的长.3.(2018铁一)已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K.(1)如图1,求证:KE=GE;(2)如图2,连接CABG,若∠FGB=12∠ACH,求证:CA∥FE;(3)如图3,在(2)的条件下,连接CG交AB于点N,若sin E=35,AK,求CN的长.。

2019年广东省深圳市中考数学一模试卷(解析版)

2019年广东省深圳市中考数学一模试卷(解析版)

2019年广东省深圳市中考数学一模试卷一、选择题(本题共有12小题,每小题3分,共36分)1.﹣4的倒数是()A.﹣4B.4C.D.2.如图是五个相同的小正方体搭成的几何体,这几个几何体的主视图是()A.B.C.D.3.下列计算正确的是()A.2a3+a2=3a5B.(3a)2=6a2C.(a+b)2=a2+b2D.2a2•a3=2a54.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.据测算,世博会召开时,上海使用清洁能源可减少二氧化碳排放约16万吨,将16万吨用科学记数法表示为()A.1.6×103吨B.1.6×104吨C.1.6×105吨D.1.6×106吨6.如图,AB∥CD,∠ABE=60°,∠D=50°,则∠E的度数为()A.40°B.30°C.20°D.10°7.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()A.赚16元B.赔16元C.不赚不赔D.无法确定8.某班级第一小组7名同学积极捐出自己的零花钱支持地震灾区,他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是()A.50元,20元B.50元,40元C.50元,50元D.55元,50元9.如图,观察二次函数y=ax2+bx+c的图象,下列结论:①a+b+c>0,②2a+b>0,③b2﹣4ac>0,④ac>0.其中正确的是()A.①②B.①④C.②③D.③④10.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.2,πC.,D.2,11.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4B.6C.8D.1012.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH其中,正确的结论有()A.1个B.2个C.3个D.4个二、填空题(本题共有4小题,每小题3分,共12分)13.因式分解:a3﹣4a=.14.从﹣3、1、﹣2这三个数中任取两个不同的数,积为正数的概率是.15.用同样大小的黑色五角星按图所示的方式摆图案,按照这样的规律摆下去,第99个图案需要的黑色五角星个.16.如图,△ABC的内心在x轴上,点B的坐标是(2,0),点C的坐标是(0,﹣2),点A的坐标是(﹣3,b),反比例函数y=(x<0)的图象经过点A,则k=.三、解答题(本题共7小题,其中第17题6分,第18题6分,第19题7分,第20题8分,第21题8分,第22题8分,第23题9分,共52分〕17.计算:sin30°+(﹣1)2013+(π﹣3)0﹣cos60°.18.解不等式组并写出它的所有非负整数解19.丹东是个美丽的旅游城市,吸引了很多外地游客,某旅行社对今年五月接待的外地游客来丹东旅游的首选景点做了一次抽样调查,根据收集到的数据,绘制成如下统计图(不完整),请根据图中提供的信息,完成下列问题:(1)此次共调查多少人?(2)请将两幅统计图补充完整.(3)“凤凰山”部分的圆心角是°.(4)该旅行社今年五月接待来丹东的游客2000人,请估计首选去河口的人数约为多少人.20.为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥,建桥过程中需测量河的宽度(即两平行河岸AB与MN之间的距离).在测量时,选定河对岸MN上的点C处为桥的一端,在河岸点A处,测得∠CAB=30°,沿河岸AB前行30米后到达B处,在B处测得∠CBA=60°,请你根据以上测量数据求出河的宽度.(参考数据:≈1.41,≈1.73,结果保留整数)21.某开发商要建一批住房,经调查了解,若甲、乙两队分别单独完成,则乙队完成的天数是甲队的1.5倍;若甲、乙两队合作,则需120天完成.(1)甲、乙两队单独完成各需多少天?(2)施工过程中,开发商派两名工程师全程监督,需支付每人每天食宿费150元.已知乙队单独施工,开发商每天需支付施工费为10 000元.现从甲、乙两队中选一队单独施工,若要使开发商选甲队支付的总费用不超过选乙队的,则甲队每天的施工费最多为多少元?总费用=施工费+工程师食宿费.22.如图,直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣1),点D在劣弧OA上,连接BD交x轴于点C,且∠COD=∠CBO.(1)请直接写出⊙M的直径,并求证BD平分∠ABO;(2)在线段BD的延长线上寻找一点E,使得直线AE恰好与⊙M相切,求此时点E的坐标.23.如图,抛物线y =﹣x 2+bx +c 交x 轴于点A (﹣3,0)和点B ,交y 轴于点C (0,3). (1)求抛物线的函数表达式;(2)若点P 在抛物线上,且S △AOP =4S △BOC ,求点P 的坐标;(3)如图2,设点Q 是线段AC 上的一动点,作DQ ⊥x 轴,交抛物线于点D ,交x 轴于点E ,是否存在点Q ,使得直线AC 将△ADE 的面积分成1:2的两部分?若存在,求出所有点Q 的坐标;若不存在,请说明理由.2019年广东省深圳市中考数学一模试卷参考答案与试题解析一、选择题(本题共有12小题,每小题3分,共36分)1.﹣4的倒数是()A.﹣4B.4C.D.【分析】根据乘积是1的两数互为倒数可得答案.【解答】解:﹣4的倒数是﹣,故选:D.【点评】此题主要考查了倒数,关键是掌握倒数定义.2.如图是五个相同的小正方体搭成的几何体,这几个几何体的主视图是()A.B.C.D.【分析】仔细观察图形找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有2个正方形,第二层最右边有一个正方形.故选:C.【点评】本题主要考查了三视图的主视图的知识,主视图是从物体的正面看得到的视图,属于基础题.3.下列计算正确的是()A.2a3+a2=3a5B.(3a)2=6a2C.(a+b)2=a2+b2D.2a2•a3=2a5【分析】根据合并同类项法则、积的乘方、完全平方公式、单项式乘单项式判断即可.【解答】解:A、2a3与a2不是同类项不能合并,故A选项错误;B、(3a)2=9a2,故B选项错误;C、(a+b)2=a2+2ab+b2,故C选项错误;D、2a2•a3=2a5,故D选项正确,故选:D.【点评】本题考查了合并同类项法则、积的乘方、完全平方公式、单项式乘单项式,熟练掌握法则是解题的关键.4.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、既是轴对称图形,又是中心对称图形,故A正确;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、是轴对称图形,不是中心对称图形,故D错误.故选:A.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.据测算,世博会召开时,上海使用清洁能源可减少二氧化碳排放约16万吨,将16万吨用科学记数法表示为()A.1.6×103吨B.1.6×104吨C.1.6×105吨D.1.6×106吨【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:将16万吨用科学记数法表示为:1.6×105吨.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.如图,AB∥CD,∠ABE=60°,∠D=50°,则∠E的度数为()A.40°B.30°C.20°D.10°【分析】根据平行线的性质求出∠CFE,根据三角形的外角性质得出∠E=∠CFE﹣∠D,代入求出即可.【解答】解:∵AB∥CD,∠ABE=60°,∴∠CFE=∠ABE=60°,∵∠D=50°,∴∠E=∠CFE﹣∠D=10°,故选:D.【点评】本题考查了平行线的性质和三角形的外角性质的应用,解此题的关键是求出∠CFE的度数,注意:两直线平行,同位角相等.7.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()A.赚16元B.赔16元C.不赚不赔D.无法确定【分析】此类题应算出实际赔了多少或赚了多少,然后再比较是赚还是赔,赔多少、赚多少,还应注意赔赚都是在原价的基础上.【解答】解:设赚了25%的衣服的成本为x元,则(1+25%)x=120,解得x=96元,则实际赚了24元;设赔了25%的衣服的成本为y元,则(1﹣25%)y=120,解得y=160元,则赔了160﹣120=40元;∵40>24;∴赔大于赚,在这次交易中,该商人是赔了40﹣24=16元.故选:B.【点评】本题考查了一元一次方程的应用,注意赔赚都是在原价的基础上,故需分别求出两件衣服的原价,再比较.8.某班级第一小组7名同学积极捐出自己的零花钱支持地震灾区,他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是()A.50元,20元B.50元,40元C.50元,50元D.55元,50元【分析】根据中位数的定义将一组数据从小到大(或从大到小)重新排列后,找出最中间的那个数;根据众数的定义找出出现次数最多的数即可.【解答】解:50出现了3次,出现的次数最多,则众数是50;把这组数据从小到大排列为:20,25,30,50,50,50,55,最中间的数是50,则中位数是50.故选:C.【点评】此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).9.如图,观察二次函数y=ax2+bx+c的图象,下列结论:①a+b+c>0,②2a+b>0,③b2﹣4ac>0,④ac>0.其中正确的是()A.①②B.①④C.②③D.③④【分析】令x=1代入可判断①;由对称轴x=﹣的范围可判断②;由图象与x轴有两个交点可判断③;由开口方向及与x轴的交点可分别得出a、c的符号,可判断④.【解答】解:由图象可知当x=1时,y<0,∴a+b+c<0,故①不正确;由图象可知0<﹣<1,∴>﹣1,又∵开口向上,∴a>0,∴b>﹣2a,∴2a+b>0,故②正确;由图象可知二次函数与x轴有两个交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴△>0,即b2﹣4ac>0,故③正确;由图象可知抛物线开口向上,与y轴的交点在x轴的下方,∴a>0,c<0,∴ac<0,故④不正确;综上可知正确的为②③,故选:C.【点评】本题主要考查二次函数的图象和性质,掌握二次函数的开口方向、对称轴、与x轴的交点等知识是解题的关键.10.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.2,πC.,D.2,【分析】正六边形的边长与外接圆的半径相等,构建直角三角形,利用直角三角形的边角关系即可求出OM,再利用弧长公式求解即可.【解答】解:连接OB,∵OB=4,∴BM=2,∴OM=2,==π,故选:D.【点评】本题考查了正多边形和圆以及弧长的计算,将扇形的弧长公式与多边形的性质相结合,构思巧妙,利用了正六边形的性质,是一道好题.11.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4B.6C.8D.10【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO===4,∴AE=2AO=8.故选:C.【点评】本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.也考查了等腰三角形的判定与性质和基本作图.12.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH其中,正确的结论有()A.1个B.2个C.3个D.4个【分析】根据正方形的性质得出∠B=∠DCB=90°,AB=BC,求出BG=BE,根据勾股定理得出BE=GE,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据SAS推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH不相似,即可判断④.【解答】解:∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∴BG=BE,由勾股定理得:BE=GE,∴①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选:B.【点评】本题考查了正方形的性质,等腰三角形的性质,全等三角形的性质和判定,相似三角形的判定,勾股定理等知识点的综合运用,综合比较强,难度较大.二、填空题(本题共有4小题,每小题3分,共12分)13.因式分解:a3﹣4a=a(a+2)(a﹣2).【分析】首先提取公因式a,进而利用平方差公式分解因式得出即可.【解答】解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).【点评】此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.14.从﹣3、1、﹣2这三个数中任取两个不同的数,积为正数的概率是.【分析】画出树状图,然后根据概率公式列式计算即可得解.【解答】解:根据题意画出树状图如下:一共有6种情况,积是正数的有2种情况,所以,P(积为正数)==.故答案为:.【点评】本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.15.用同样大小的黑色五角星按图所示的方式摆图案,按照这样的规律摆下去,第99个图案需要的黑色五角星150个.【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点.【解答】解:当n为奇数时:通过观察发现每一个图形的每一行有个,故共有3()个;当n为偶数时,中间一行有个,故共有+1个.所以当n=99时,共有3×=150个.故答案为150.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力,解题的关键是通过仔细观察发现规律.16.如图,△ABC的内心在x轴上,点B的坐标是(2,0),点C的坐标是(0,﹣2),点A的坐标是(﹣3,b),反比例函数y=(x<0)的图象经过点A,则k=﹣15.【分析】根据内心的性质得OB平分∠ABC,再由点B的坐标是(2,0),点C的坐标是(0,﹣2)得到△OBC为等腰直角三角形,则∠OBC=45°,所以∠ABC=90°,利用勾股定理有AB2+BC2=AC2,根据两点间的距离公式得到(﹣3﹣2)2+b2+22+22=(﹣3)2+(b+2)2,解得b =5,然后根据反比例函数图象上点的坐标特征求k的值.【解答】解:∵△ABC的内心在x轴上,∴OB平分∠ABC,∵点B的坐标是(2,0),点C的坐标是(0,﹣2),∴OB=OC,∴△OBC为等腰直角三角形,∴∠OBC=45°,∴∠ABC=90°,∴AB2+BC2=AC2,∴(﹣3﹣2)2+b2+22+22=(﹣3)2+(b+2)2,解得b=5,∴A点坐标为(﹣3,5),∴k=﹣3×5=﹣15.故答案为﹣15.【点评】本题考查了三角形的内切圆与内心:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.也考查了反比例函数图象上点的坐标特征和两点间的距离公式.三、解答题(本题共7小题,其中第17题6分,第18题6分,第19题7分,第20题8分,第21题8分,第22题8分,第23题9分,共52分〕17.计算:sin30°+(﹣1)2013+(π﹣3)0﹣cos60°.【分析】原式利用特殊角的三角函数值,乘方的意义,以及零指数幂法则计算即可求出值.【解答】解:原式=﹣1+1﹣=0.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.解不等式组并写出它的所有非负整数解【分析】先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的所有非负整数解即可.【解答】解:,解不等式①得:x>2,解不等式②得:x≤10,则不等式组的解集为2<x≤10,故不等式组的非负整数解为3,4,5,6,7,8,9,10,【点评】本题考查的是解一元一次不等式组及求一元一次不等式组的非负整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.丹东是个美丽的旅游城市,吸引了很多外地游客,某旅行社对今年五月接待的外地游客来丹东旅游的首选景点做了一次抽样调查,根据收集到的数据,绘制成如下统计图(不完整),请根据图中提供的信息,完成下列问题:(1)此次共调查多少人?(2)请将两幅统计图补充完整.(3)“凤凰山”部分的圆心角是72°.(4)该旅行社今年五月接待来丹东的游客2000人,请估计首选去河口的人数约为多少人.【分析】(1)根据大鹿口的人数是30人,所占的百分比是10%,据此即可求得调查的总人数;(2)根据百分比的意义求得首先凤凰山的人数以及选择河口以及市区景区的人数所占的百分比,即可补全统计图;(3)利用360度乘以对应的百分比即可求解;(4)利用总人数2000乘以对应的百分比即可.【解答】解:(1)调查的总人数是:30÷10%=300(人);(2)凤凰山的人数是:300×20%=60(人),选择河口的人数所占的比例:×100%=33%,选择市内景区的所占比例:×100%=25%,;(3)“凤凰山”部分的圆心角是:360×20%=72°,故答案是:72;(4)估计首选去河口的人数约为:2000×33%=660(人).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥,建桥过程中需测量河的宽度(即两平行河岸AB与MN之间的距离).在测量时,选定河对岸MN上的点C处为桥的一端,在河岸点A处,测得∠CAB=30°,沿河岸AB前行30米后到达B处,在B处测得∠CBA=60°,请你根据以上测量数据求出河的宽度.(参考数据:≈1.41,≈1.73,结果保留整数)【分析】如图,过点C作CD⊥AB于点D,通过解直角△ACD和直角△BCD来求CD的长度.【解答】解:如图,过点C作CD⊥AB于点D,设CD=x.∵在直角△ACD中,∠CAD=30°,∴AD==x.同理,在直角△BCD中,BD==x.又∵AB=30米,∴AD+BD=30米,即x+x=30.解得x=13.答:河的宽度的13米.【点评】本题考查了解直角三角形的应用.关键把实际问题转化为数学问题加以计算.21.某开发商要建一批住房,经调查了解,若甲、乙两队分别单独完成,则乙队完成的天数是甲队的1.5倍;若甲、乙两队合作,则需120天完成.(1)甲、乙两队单独完成各需多少天?(2)施工过程中,开发商派两名工程师全程监督,需支付每人每天食宿费150元.已知乙队单独施工,开发商每天需支付施工费为10 000元.现从甲、乙两队中选一队单独施工,若要使开发商选甲队支付的总费用不超过选乙队的,则甲队每天的施工费最多为多少元?总费用=施工费+工程师食宿费.【分析】(1)假设甲队单独完成需x天,则乙队单独完成需1.5x天,根据总工作量为1得出等式方程求出即可;(2)分别表示出甲、乙两队单独施工所需费用,得出不等式,求出即可.【解答】(1)设甲队单独完成需x天,则乙队单独完成需1.5x天.根据题意,得+=1.解得x=200.经检验,x=200是原分式方程的解.答:甲队单独完成需200天,乙队单独完成需300天.(2)设甲队每天的施工费为y元.根据题意,得200y+200×150×2≤300×10 000+300×150×2,解得y≤15150.答:甲队每天施工费最多为15150元.【点评】此题主要考查了分式方程的应用,根据已知利用总工作量为1得出等式方程是解题关键.22.如图,直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣1),点D在劣弧OA上,连接BD交x轴于点C,且∠COD=∠CBO.(1)请直接写出⊙M的直径,并求证BD平分∠ABO;(2)在线段BD的延长线上寻找一点E,使得直线AE恰好与⊙M相切,求此时点E的坐标.【分析】(1)根据勾股定理可得AB的长,即⊙M的直径,根据同弧所对的圆周角可得BD平分∠ABO;(2)作辅助构建切线AE,根据特殊的三角函数值可得∠OAB=30°,分别计算EF和AF的长,可得点E的坐标.【解答】解:∵点A(,0)与点B(0,﹣1),∴OA=,OB=1,∴AB==2,∵AB是⊙M的直径,∴⊙M的直径为2,∵∠COD=∠CBO,∠COD=∠CBA,∴∠CBO=∠CBA,即BD平分∠ABO;(2)如图,过点A作AE⊥AB于E,交BD的延长线于点E,过E作EF⊥OA于F,即AE是切线,∵在Rt △ACB 中,tan ∠OAB ===, ∴∠OAB =30°,∵∠ABO =90°,∴∠OBA =60°,∴∠ABC =∠OBC ==30°, ∴OC =OB •tan30°=1×=,∴AC =OA ﹣OC =, ∴∠ACE =∠ABC +∠OAB =60°,∴∠EAC =60°,∴△ACE 是等边三角形,∴AE =AC =, ∴AF =AE =,EF ==1,∴OF =OA ﹣AF =, ∴点E 的坐标为(,1).【点评】此题属于圆的综合题,考查了勾股定理、圆周角定理、等边三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.23.如图,抛物线y =﹣x 2+bx +c 交x 轴于点A (﹣3,0)和点B ,交y 轴于点C (0,3). (1)求抛物线的函数表达式;(2)若点P 在抛物线上,且S △AOP =4S △BOC ,求点P 的坐标;(3)如图2,设点Q 是线段AC 上的一动点,作DQ ⊥x 轴,交抛物线于点D ,交x 轴于点E ,是否存在点Q ,使得直线AC 将△ADE 的面积分成1:2的两部分?若存在,求出所有点Q 的坐标;若不存在,请说明理由.【分析】(1)根据点A ,C 的坐标,利用待定系数法可求出抛物线的函数表达式;(2)利用二次函数图象上点的坐标特征可求出点B 的坐标,设点P 的纵坐标为m ,根据三角形的面积公式结合S △AOP =4S △BOC ,即可得出关于m 的含绝对值符号的一元一次方程,解之即可得出m 的值,再利用二次函数图象上点的坐标特征,即可求出点P 的坐标;(3)根据点A ,C 的坐标,利用待定系数法可求出直线AC 的函数表达式,设点Q 的坐标为(x ,x +3)(﹣3<x <0),则点D 的坐标为(x ,﹣x 2﹣2x +3),点E 的坐标为(x ,0),进而可得出DQ ,QE 的长度,结合直线AC 将△ADE 的面积分成1:2的两部分,即可得出关于x 的一元二次方程,解之即可得出x 的值,再将其代入点Q 的坐标即可求出结论.【解答】解:(1)将A (﹣3,0),C (0,3)代入y =﹣x 2+bx +c ,得: ,解得:,∴抛物线的函数表达式为y =﹣x 2﹣2x +3.(2)当y =0时,﹣x 2﹣2x +3=0,解得:x 1=﹣3,x 2=1,∴点B 的坐标为(1,0),∴S △BOC =×1×3=.设点P 的纵坐标为m ,则S △AOP =|m |,∵S △AOP =4S △BOC , ∴|m |=4×,∴m =±4.当y =4时,﹣x 2﹣2x +3=4,解得:x 1=x 2=﹣1,∴点P 的坐标为(﹣1,4);当y=﹣4时,﹣x2﹣2x+3=﹣4,解得:x1=﹣1﹣2,x2=﹣1+2,∴点P的坐标为(﹣1﹣2,﹣4)或(﹣1+2,﹣4).综上所述:点P的坐标为(﹣1,4)、(﹣1﹣2,﹣4)或(﹣1+2,﹣4).(3)设直线AC的函数表达式为y=kx+a(k≠0),将A(﹣3,0),C(0,3)代入y=kx+a,得:,解得:,∴直线AC的函数表达式为y=x+3.设点Q的坐标为(x,x+3)(﹣3<x<0),则点D的坐标为(x,﹣x2﹣2x+3),点E的坐标为(x,0),∴DQ=﹣x2﹣2x+3﹣(x+3)=﹣x2﹣3x,QE=x+3.∵直线AC将△ADE的面积分成1:2的两部分,且△AEQ和△ADQ等高,∴DQ=2QE或2DQ=QE,∴﹣x2﹣3x=2(x+3)或x+3=2(﹣x2﹣3x),解得:x1=﹣3(舍去),x2=﹣2,x3=﹣,∴点Q的坐标为(﹣2,1)或(﹣,).∴存在点Q(﹣2,1)或(﹣,),使得直线AC将△ADE的面积分成1:2的两部分.【点评】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、三角形的面积,解含绝对值符号的一元一次方程、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线的函数表达式;(2)根据两三角形面积间的关系,求出点P的纵坐标;(3)由直线AC将△ADE的面积分成1:2的两部分,找出关于x的一元二次方程.。

2019年广州中考数学真题试卷及答案

2019年广州中考数学真题试卷及答案

2019年广州中考数学真题试卷及答案2019年广州市初中毕业生学业考试数学第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.求-6的相反数,答案为6,选项B。

2.求长度的众数,即出现次数最多的长度,根据数据可知5和6都出现了3次,选项C和D,但是题目要求的是试点建设的长度,排除48.4,所以答案为C,6.3.根据XXX的定义,tan∠BAC=BC/AC,代入数据得到AC=BC/tan∠BAC=30/tan45°=30m,选项C。

4.选项B中的运算正确,-3-2=-5,选项C和D中的运算都有错误,选项A中的运算看似正确,但是2/5不等于1/3,所以也是错误的。

5.作圆心角∠OPA,可得到直角三角形OPA,根据勾股定理得到AP=√5,所以可作两条切线,选项C。

6.设甲每小时做x个零件,则乙每小时做x+8个零件,根据题意得到方程120/x=150/(x+8),化简得到x=40,选项A。

7.根据平行四边形的性质,EH=HG,选项A正确;四边形EFGH不一定是平行四边形,选项B错误;AC和BD相交于点O,但不一定垂直,选项C错误;根据对角线的性质,四边形ABCD可以分成两个全等的三角形,所以它们的面积相等,即S△ABO=S△EFO,而S△ABO=S△AOC+S△BOC,所以S△AOC+S△BOC=S△EFO,即AC·BD/2=EF·BC/2,代入数据得到AC=√20,选项D。

8.根据反比例函数的定义,y=k/x,代入数据得到k=6,所以y1·y2·y3=k3·k2·k1,即y3<y2<y1,选项A。

9.根据矩形对角线的性质,AC=√(AB²+BC²)=√(4²+3²)=√25=5,选项B。

注意:文章中的图1、2、3没有给出,无法确定其中的数据和图形,因此无法对这些题目进行答案判断。

广东省广州市2019年中考数学真题试题(含答案解析)

广东省广州市2019年中考数学真题试题(含答案解析)

广东省广州市2019年中考数学真题试题第一部分选择题(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图1,数轴上两点,A B表示的数互为相反数,则点B表示的()A. -6 B.6 C. 0 D.无法确定【答案】B【解析】试题分析:-6的相反数是6,A点表示-6,所以,B点表示6.故选答案B.考点:相反数的定义2.如图2,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到图形为()【答案】A考点:旋转的特征3. 某6人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁)12,13,14,15,15,15.这组数据中的众数,平均数分别为()A.12,14 B. 12,15 C.15,14 D. 15,13【答案】C 【解析】试题分析:15出现次数最多,有3次,所以,众数为15, 11213141515156+++++()=14.故选C. 考点: 众数,中位数的求法 4. 下列运算正确的是( )A .362a b a b ++= B .2233a b a b++⨯=a = D .()0a a a =≥ 【答案】D考点:代数式的运算5.关于x 的一元二次方程280x x q ++=有两个不相等的实数根,则q 的取值范围是( ) A .16q < B .16q > C. 4q ≤ D .4q ≥ 【答案】A 【解析】试题分析:根的判别式为△=6440q ->,解得:16q <.故选答案A. 考点:一元二次方程根的判别式的性质 6. 如图3,O 是ABC ∆的内切圆,则点O 是ABC ∆的( )图3A . 三条边的垂直平分线的交点B .三角形平分线的交点 C. 三条中线的交点 D .三条高的交点 【答案】B 【解析】试题分析:内心到三角形三边距离相等,到角的两边距离相等的点在这个角的角平分线上,故选B 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019广州中考一模数学 20-22题汇编
【番禺区】如图,某公路建设中需要测量某条江的宽度AB ,飞机上的测量人员在C 处测得A ,B 两点的俯角分别为45°和30°.若飞机离地面的高度CH 为1200m ,且点H ,A ,B 在同一水平直线上,试求这条江的宽度AB (结果精确到0.1m ).(参考数据:
2 1.41≈4,
3 1.732≈

如图,在Rt △ABC 中,90BAC ∠=︒.
(1)先作∠ACB 的平分线交AB 边于点P ,再以点P 为圆心,PA 长为半径作⊙P ;(要求:尺规作图,保留作图痕迹,不写作法)
(2)判断图中BC 与⊙P 的位置关系,并证明你的结论.
第20题
【黄埔区】19.如图7,在ABC ∆中,已知5AB BC ==,3
tan 4
ABC ∠=. (1)利用直尺和圆规作线段BC 的垂直平分线,交AB 于点D ,交BC 于点E (保留作图
痕迹,不写作法);
(2)在(1)所作的图形中,求BD .
B
C
A
【南沙区】随着中国传统节日“端午节”的临近,永旺超市决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折.已知打折前,买1盒甲品牌粽子和2盒乙品牌粽子需230元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.
(1)打折前甲、乙两种品牌粽子每盒分别为多少元?
(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子 比不打折节省了多少钱?
【白云区】开学初,某文化用品商店减价促销,全场8 折.购买规格相同的铅笔套装,折价后用32 元买到的数量刚好比按原价用50 元买到的数量少2 套.求原来每套铅笔套装的价格是多少元?
第22题图
【增城区】如图,点A 是反比例函数1
4
y x
=
与一次函数2y kx b =+在x 轴上方的图象的交点,过点A 作AC x ⊥轴,垂足是点C ,AC=OC.一次函数2y kx b =+的图象与y 轴的正半轴交于点B.
(1)求点A 的坐标;
(2)若梯形ABOC 的面积是3,求一次函数2y kx b =+的解析式; (3)结合这两个函数的完整图象:当12y y >时,写出x 的取值范围。

【海珠区】
如图,已知以Rt △ABC 的边AB 为直径作△ABC 的外接圆⊙O ,∠B 的平分线BE 交AC 于D ,交⊙O 于E ,过E 作EF ∥AC 交BA 的延长线于F . (1)求证:EF 是⊙O 切线;
(2)若AB =15,EF =10,求AE 的长.
【花都区】如图,ABC
∆中,BD是∠ABC的角平分线.
(1)尺规作图:作线段BD的垂直平分线EF,交AB于点E,交BC于点F(保留作图痕迹,不要求写作法);
(2)连接DE,若4
DE=,3
AE=,求BC的长.
【荔湾区】如图,在平面直角坐标系中,四边形
ABCD为正方形,点A的坐标为(0,3),点B的坐标
为(0,-4),反比例函数
k
y
x
=(0
k≠)的图象经过
点C.
(1)求反比例函数的解析式;
(2)点P是反比例函数在第二象限的图象上的一点,若△PBC的面积等于正方形ABCD的面积,求点
P的坐标.
A
C
D
B
第22题图
第21题
【天河区】22.(12分)某文具店购进A,B两种钢笔,若购进A种钢笔2支,B种钢笔3支,共需90元;购进A种钢笔3支,B种钢笔5支,共需145元.
(1)求该文具店购进A、B两种钢笔每支各多少元?
(2)经统计,B种钢笔售价为30元时,每月可卖64支;每涨价3元,每月将少卖12支,求该文具店B种钢笔销售单价定为多少元时,每月获利最大?最大利润是多少元?
【越秀区】如图,已知AB为⊙O的直径,AD、BD是⊙O的弦,BC是⊙O的切线,切点为B,OC∥AD,BA、CD的延长线相交于点E.
(1)求证:DC是⊙O的切线;
(2)若AE=1,ED=3,求⊙O的半径.
【广附】问题情境:已知矩形的面积为a (a 为常数,a >0),当该矩形的长为多少时,它的周长最小?最小值是多少?
数学模型:设该矩形的长为x ,周长为y ,则y 与x 的函数关系式为2()(0)a y x x x
=+>. 探索研究:⑴我们可以借鉴以前研究函数的经验,先探索函数
1
(0)y x x x
=+>的图象性质.
①填写下表,画出函数的图象:
②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax 2+bx +c (a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数1
y x x
=+
(x >0)的最小值. 解决问题:⑵用上述方法解决“问题情境”中的问题,直接写出答案
【省实】如图,△AOB 的顶点A 、B 分别在x 轴,y 轴上,∠BAO =45°,且△AOB 的面积为8.
(1)直接写出A 、B 两点的坐标;
(2)过点A 、B 的抛物线G 与x 轴的另一个交点为点C .
①若△ABC 是以BC 为腰的等腰三角形,用尺规作图作出点C (保留作图痕迹,不写作法),并求出此时抛物线的解析式;
②将抛物线G 向下平移4个单位后,恰好与直线AB 只有一个交点N ,求点N 的坐标.
x
……
14 13 12
1 2 3 4
…… y ……


【育才】如图,在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象与反比例函数y =(n ≠0)的图象交于第二、四象限内的A 、B 两点,与x 轴交于点C ,点B 坐标为(m ,﹣1),AD ⊥x 轴,且AD =3,tan ∠AOD =. (1)求该反比例函数和一次函数的解析式;
(2)点E 是x 轴上一点,且△AOE 是等腰三角形,求 E 点的坐标.
【执信】如图,一次函数4y x =-+的图象与反比例函数(0)k
y k x
=
≠的图象交于(1,),A a B 两点.
(1)求反比例函数的表达式及点B 的坐标;
(2)在x 轴上找一点P ,使PA+PB 的值最小,求满足条件的点P 的坐标及PAB ∆的面积.
【4中聚贤】21.(12分)如图,一次函数y kx b =+的图象与反比例函数m
y x
=
的图象在第一象限交于点(4,2)A ,直线AB 与y 轴的负半轴交于点B ,与x 轴的交于点(3,0)C ; (1)求一次函数与反比例函数的解析式; (2)记直线AB 与反比例函数m
y x
=的另一交点为D ,若在y 轴上有一点P ,使得4
9
PCD BOC S S ∆∆=
,求P 点的坐标.
【4中聚贤】22.(12分)某建筑公司有甲、乙两位师傅建造养鸡场,建造时按养鸡场的建造面积收费.已知甲师傅建造22m 的费用与乙师傅建造23m 的费用总和为440元,甲师傅建造23m 的费用与乙师傅建造22m 的费用总和为460元. (1)分别求出甲、乙两位师傅建造21m 养鸡场的费用;
(2)若乙师傅计划用总长度为24米的材料建造两个一侧靠墙且位置相邻的矩形养鸡场(如图),已知墙的长为9米,则养鸡场的宽AB 为多少时,建造费用最多?最多为多少元?。

相关文档
最新文档