[PLC技术]传感器选用原则
称重传感器的选用原则

称重传感器的选用原则标题:选择称重传感器的原则第一段:引言称重传感器是一种广泛应用于工业、商业和家庭领域的重要设备。
在选择合适的称重传感器时,需要考虑多个因素,以确保其性能和可靠性。
本文将介绍一些常见的选用原则,以帮助读者更好地了解如何选择合适的称重传感器。
第二段:重量范围和精度称重传感器的重量范围和精度是选择的关键因素之一。
首先,需要确定被测物体的最大重量范围,以确保传感器能够满足测量要求。
其次,需要考虑测量的精度,即传感器能够提供多大的重量分辨率。
一般来说,重量范围越大,精度越高的称重传感器通常价格也会更高。
第三段:环境适应性称重传感器必须能够适应不同的环境条件,例如温度、湿度和振动等。
对于特殊环境下的应用,比如高温或潮湿环境,需要选择具有良好的耐温性和防潮性能的传感器。
此外,还需要考虑传感器的防护等级,以确保其能够在恶劣的工作环境中正常运行。
第四段:安装和维护便捷性在选择称重传感器时,还需要考虑其安装和维护的便捷性。
一些传感器需要专业的安装和调试,而另一些则可以进行简单的安装和维护。
此外,还需要考虑传感器的可靠性和稳定性,以减少维护和维修的次数。
第五段:成本效益成本效益是选择称重传感器时必须考虑的重要因素之一。
除了传感器本身的价格外,还需要考虑传感器的使用寿命和维护成本。
有时候,选择价格较高的传感器可能会在长期使用中带来更低的维护成本和更长的使用寿命,这也是需要考虑的因素之一。
第六段:适应不同应用的类型需要根据具体的应用需求选择适合的称重传感器类型。
不同的应用可能需要不同类型的传感器,例如压力传感器、应变片传感器或电子称等。
需要根据具体的应用环境和要求选择合适的传感器。
结论:在选择称重传感器时,需要综合考虑重量范围和精度、环境适应性、安装和维护便捷性、成本效益以及适应不同应用的类型等因素。
只有综合考虑这些因素,才能选择到性能可靠、适用于具体应用的合适称重传感器。
希望本文对读者在选择称重传感器时有所帮助。
PLC控制温度湿度压力传感器

中文摘要摘要目前对于工厂环境的监测和控制,基本上是人工进行的,劳动强度大,繁琐。
由于人工反应不及时,造成损失的现象时有发生。
而且现在许多工厂车间对于环境的要求越来越高,固有的监测和控制方法已经不能满足其需求。
随着PLC 技术的发展,PLC技术被更广泛的应用于实时监测和控制中来。
通过PLC技术的应用,能够清晰直观并且实时的收集信息,并自动快速的做出反应,实现对车间环境的自动化、智能化。
本论文主要讲述了基于以西门子S7-200系列可编程控制器(PLC)为主要的控制元件,采用PID算法进行控制,运用PLC梯形图编程语言进行编程。
本次设计的目的是实现对工厂环境的温度,湿度及管道压力进行实时监测和显示,并通过PID算法对温度、湿度和压力进行控制,使环境可以维持在工业要求的范围内。
关键词:温度湿度压力可编程控制器AbstractABSTRACTNow the monitoring and controlling of factory environment is basically a manual of labor-intensive and cumbersome. Artificial response in a timely manner, resulting in the phenomenon of the loss occurred. And now, the increasingly high demand for many of the factory floor environment, inherent in the monitoring and control methods have been unable to meet their needs. With the development of PLC technology, PLC technology is more widely used in the real-time monitoring and control. Through the application of PLC technology, clear and intuitive and real-time collection of information, automatically and quickly respond to the automation of the workshop environment, intelligent.This paper mainly based on Siemens S7-200 series programmable controller (PLC) for the control of the main components,the use of the PID algorithm,the use of PLC ladder programming language programming,to achieve the factory environment, temperature, humidity and pressure of the pipeline real-time monitoring and display, and at the same temperature, humidity and pressure control design method.Key words: temperature humidity pressure PLC目录摘要 (I)ABSTRACT (II)目录 (III)第一章引言......................................... - 1 -1.1 课题的背景和意义.................................. - 1 - 1.2 国内外研究现状.................................... - 1 - 1.3 本课题的主要研究内容............................... - 2 - 第二章 PID算法介绍.................................. - 3 - 2.1 PID算法简介...................................... - 3 - 2.2 PID参数的调整.................................... - 4 - 2.3 PID控制的应用.................................... - 5 - 第三章基于PLC监控系统的硬件设计 ....................... - 7 -3.1 系统的主要技术指标与参数........................... - 7 - 3.2 系统设计方案的论证 ................................ - 7 - 3.3 PLC的概述及选型 .................................. - 7 -3.3.1 PLC的产生和应用 ............................... - 8 -3.3.3 PLC的选型 ................................... - 10 -3.4 传感器的选择.................................... - 11 -3.4.1 温度传感器的选择.............................. - 11 -3.4.2 湿度传感器................................... - 13 -3.5 模块的配置和应用................................ - 15 - 3.6 其他元器件的选择................................ - 16 - 3.7 系统硬件接线图.................................. - 17 - 第四章系统的软件设计............................... - 19 -4.1 常用PLC程序的设计方法........................... - 19 -4.2 系统流程图..................................... - 19 - 4.3 温度监控程序的设计 .............................. - 20 - 4.4 湿度监控程序设计................................ - 25 - 4.5 压力监控子程序.................................. - 28 - 结论 ............................................. - 33 -参考文献.......................................... - 34 -致谢及声明......................................... - 35 -第一章引言1.1 课题的背景和意义温度、湿度、压力和人类的生产、生活有着密切的关系,同时也是工业生产中最常见最基本的工艺参数,例如机械、电子、石油、化工等各类工业中广泛需要对温度、湿度、压力的检测和控制。
plc自动门控制系统设计论文

PLC自动门控制系统设计论文摘要本文旨在设计一个基于PLC技术的自动门控制系统。
通过采用PLC作为控制核心,结合传感器和执行器,实现自动门的开关控制功能。
本文通过详细的设计方案和实施步骤,为自动门控制系统的设计和实施提供了一个可行的解决方案。
引言自动门广泛应用于商场、医院、办公楼等公共场所,成为现代建筑的重要组成部分。
传统的自动门控制系统使用机械开关或红外线传感器,存在安全性能不高、响应速度慢等问题。
而PLC(可编程逻辑控制器)技术具有可靠性高、实时性强等特点,因此成为自动门控制的理想选择。
本文将详细介绍PLC自动门控制系统的设计和实施过程。
首先,根据实际需求,确定自动门系统的功能和性能要求。
然后,选择合适的PLC型号,并设计相应的电气控制线路。
接下来,选用合适的传感器和执行器,并与PLC进行连接。
最后,通过编程实现自动门的准确控制。
1. 系统需求分析根据实际需求,PLC自动门控制系统应具有以下功能和性能要求:1.自动门的开关控制:实现自动门的开关功能,可以通过传感器或遥控器触发。
2.安全性能要求:保证自动门运行时的安全性,能够及时检测到人员和障碍物,并避免夹人或夹物。
3.响应速度要求:在接收到触发信号后,能够快速响应并实现门的开关动作。
4.自动门状态显示:能够显示自动门的当前状态,包括门的开关状态、故障状态等。
2. 系统设计方案基于上述需求分析,本文设计了如下的PLC自动门控制系统方案:1.选用PLC型号:根据实际需求,选择合适的PLC型号。
考虑到系统的可扩展性和可靠性,选择了XX型号PLC。
2.电气控制线路设计:根据自动门的控制要求,设计合理的电气控制线路。
主要包括电源模块、输入模块、输出模块和信号传输模块。
3.传感器选择:选用合适的传感器,用于检测人员和障碍物。
根据需求,选择了红外线传感器作为主要的检测手段。
4.执行器选择:选用合适的执行器,用于实现门的开关动作。
考虑到系统的可靠性和响应速度,选择了电机作为执行器。
PLC与传感器连接解决方案选型参考

PLC与传感器连接方案选型参考传感器模拟信号数据采集与PLC系统匹配方案选型概述在工业现场中,压力、位移、温度、流量、转速等各类模拟量传感器因设计使用的技术方法不同。
传感器工作配电的方式主要分为两线制和四线制,其输出的模拟信号也各有差异,而常见的有0-20mA/4-20mA电流信号和0-75mV/0-5V/1-5V电压信号。
要把各类传感器模拟信号成功采集到PLC/DCS/FCS/MCU/FA/PC系统,就要根据传感器与数据采集系统的功能和技术特点进行匹配选型,同时也要考虑到工业现场传感器与PLC等数据采集系统的供电差异及各种EMC干扰的影响,通常把传感器输出的模拟信号隔离、放大、转换后送到PLC等数据采集系统。
PLC通过信号线采集传感器的模拟或数字信号,然后进行处理,如果传感器是模拟输出,PLC就要接模拟输入接口,如果传感器是数字信号输出,PLC就要接数字输入接口。
开关量传感器就是一个无触点的开关 ,开关量传感器可作为PLC的开关量输入信号。
一般用于开关量控制的设备,机床,机器等。
模拟量传感器是把不同的物理量(如 压力、流量、温度)转换成模拟量(4-20MA的电流或1-5V的电压)。
模拟量传感器作为PLC的模拟量输入模块的输入信号。
一般用于过程控制。
数字传感器是指将传统的模拟式传感器经过加装或改造A/D转换模块,使之输出信号为数字量(或数字编码)的传感器,主要包括:放大器、A/D转换器、微处理器(CPU)、存储器、通讯接口电路等。
常用的模拟量传感器分为两线制和四线制,两线制和四线制都只有两根信号线,它们之间的主要区别在于:两线制的两根信号线既要给传感器或者变送器供电,又要提供电流电压信号;而四线制的两根信号线只提供电流信号。
因此,通常提供两线制电流电压信号的传感器或者变送器是无源的;而提供四线制电流信号的传感器或者变送器是有源的。
因此,当PLC等数据采集系统的模板输入通道设定为连接四线制传感器时,PLC只从模板通道的端子上采集模拟信号,而当PLC等数据采集系统的模板输入通道设定为连接二线制传感器时,PLC的模拟输入模板的通道上还要向外输出一个直流24V的电源,以驱动两线制传感器工作。
机电一体化系统的微机控制系统的选择与设计PPT课件

用集成电路自行设计接口电路
可设计任意要求的接口, 价格低,但可靠性差。
如: • 74LS138:三-八译码器 • 74LS373:八位锁存器 • 74LS244:三态缓冲器等
1、光电隔离电路原理
VC +5V
+12V
1
输入信号 (来自微机)
输出 (去执行系统)
G
2、光电隔离电路的作用:
(1)可将输入与输出两部分电 路的地线分开,各自使用一套电 源供电;
(2)可以进行电平转换; (3)提高驱动能力。
3、光电耦合器的分类
1)普通型
3
1
输入
输出
管脚3主要 用于温度补 偿及检测等。
4)总线型工业控制计算机 特点:
• 提高设计效率,缩短设计和制造周期 • 提高了系统的可靠性; • 便于调试和维修; • 能适应技术发展的需要,迅速改进系
统的性能
总线类型:
• ISA总线 • VESA 总线 • PCI总线 • AGP标准 • STD总线
ISA总线:
• ISA(industrial standard architecture) 总线标准是IBM 公司1984年为推出 PC/AT机而建立的系统总线标准,所以 也叫AT总线。它是对XT总线的扩展, 以适应8/16位数据总线要求。
二、控制系统的设计思路
1、确定系统整体控制方案 1)从系统构成上考虑是否采用 开环控制或闭环控制;
2)执行元件采用何种
3)考虑系统是否有特殊控制要 求及采取的措施是什么?
4)考虑微机在整个控制系 的作用
机电一体化技术课后习题及答案

机电一体化技术课后习题及答案(孙卫青版第二版)1- 1 、试说机电一体化的含义答:机电一体化是在机械主功能、动力功能、信息功能和控制功能上引进微电子技术,并将机械装置与电子装置用相关软件有机结合而构成系统的总称。
1- 2 、机电一体化的主要组成、作用及其特点是什么答:主要由机械本体、动力系统、传感与检测系统、信息处理及控制系统和执行装置等组成。
机械本体用于支撑和连接其他要素,并把这些要素合理的结合起来,形成有机的整体。
动力系统为机电一体化产品提供能量和动力功能,驱动执行机构工作以完成预定的主功能。
传感与检测系统将机电一体化产品在运行过程中所需要的自身和外界环境的各种参数及状态转换成可以测定的物理量,同时利用检测系统的功能对这些物理量进行测定,为机电一体化产品提供运行控制所需的各种信息。
执行装置在控制信息的作用下完成要求的动作,实现产品的主功能。
1- 3 、工业三大要素是什么?答:物质、能量和信息。
1- 4 、传统机电产品与机电一体化产品主要区别是什么?答:传统的机电产品机械与电子系统相对独立,可以分别工作。
机电一体化产品是机械系统和微电子系统的有机结合,从而赋予其新的功能和性能的一种新产品,产品功能是由所有功能单元共同作用的结果。
1- 6 、应用机电一体化技术的突出特点是什么?答:①精度提高;②生产能力和工作质量提高;③使用安全性和可靠性提高;④调解和维护方便,使用性能改善;⑤具有复合功能,适用面广;⑥改善劳动条件,有利于自动化生产;⑦节约能源,减少耗材;⑧增强柔性。
1- 7 、机电一体化的主要支撑技术有哪些,它们的作用如何?答:1、传感测试技术,在机电一体化产品中,工作过程的各种参数、工作状态以及工作过程有关的相关信息都要通过传感器进行接收,并通过相应的信号检测装置进行测量,然后送入信息处理装置以及反馈给控制装置,以实现产品工作过程的自动控制。
2、信息处理技术,在机电一体化产品工作过程中,参与工作过程各种参数和状态以及自动控制有关的信息输入、识别、变换、运算、存储、输出和决策分析。
PLC实验报告温度传感器应用与控制

PLC实验报告温度传感器应用与控制一、引言在工业自动化领域中,传感器起着至关重要的作用,它们能够将各种物理量转换为可供PLC(可编程逻辑控制器)进行处理的电信号。
温度传感器是其中一种常见的传感器,广泛应用于工业生产中的温度监测和控制系统。
本实验报告旨在探讨温度传感器的原理、应用以及与PLC的协同工作。
二、温度传感器原理温度传感器是一种能够感知周围温度变化的设备。
常见的温度传感器包括热敏电阻、热电偶和半导体温度传感器。
这些传感器根据物理效应将温度变化转换为电信号。
1. 热敏电阻热敏电阻的电阻值会随温度发生变化。
常见的热敏电阻有铂电阻和热敏电阻两种。
通过测量热敏电阻的电阻值,我们可以间接获取所测量的温度值。
2. 热电偶热电偶是由两种不同金属导线组成的接头,当接头两端存在温度差时,会产生电势差。
这个电势差与温度变化成正比。
通过测量热电偶的电势差,我们可以获得所测量的温度值。
3. 半导体温度传感器半导体温度传感器利用材料的温度特性,将温度变化转换为电信号。
这类传感器具有体积小、响应快、精度高等特点,广泛应用于工业自动控制领域。
三、温度传感器应用与控制温度传感器在工业领域的应用非常广泛。
它们可以实现实时温度监测和温度控制,保证工业生产过程的安全和稳定。
1. 温度监测利用温度传感器,可以对工业生产中的设备和物料进行温度监测。
例如,在冶金行业,温度传感器可以用于监测炉温,确保金属材料的正常加热和熔化过程。
在食品加工行业,温度传感器可以用于监测食品的加热和冷却过程,确保食品的质量和安全。
2. 温度控制温度传感器与PLC的协同工作可以实现温度的自动控制。
根据实际需求,可以通过PLC对温度传感器采集到的温度数据进行分析和判断,控制执行机构,实现温度的自动调节。
例如,在某个化工生产过程中,温度超过设定阈值时,PLC可以控制冷却设备启动,将温度控制在安全范围内,避免损坏设备或产生危险物质。
四、实验结果与讨论针对温度传感器的应用与控制,我们进行了一系列的实验。
机电一体化系统设计-复习提纲(1)

1. 以下产品不属于机电一体化产品的是(D )。
2. STD 总线属于什么接口类型?(A )3. RS232C 属于什么接口类型?(C )4. 以下哪项不属于机电一体化的发展方向。
(B )5. 机电一体化产品所设计的固有频率一般较高,其原因之一是(D )。
6. 以下属于机电一体化产品的是(C )。
7. 机电一体化系统有时采用半闭环控制,可能原因是(B )。
8. 能够使工业机器人传动链短的主要原因是(D )。
9. 关于机电一体化说法不确切的表达是(D )。
10. 关于机电一体化说法不确切的表达是(A )。
11. 机电一体化技术是以(C )部分为主体,强调各种技术的协同和集成的综合性技术 12. 以下哪项不属于概念设计的特征。
(A )13. 在机电一体化概念设计过程中,形态学矩阵的作用是(C )。
14. 在机电一体化概念设计过程中,黑箱分析方法的作用是(B )。
15. 关于机电一体化系统可靠性,以下论述错误的是(C )。
16. 机电一体化现代设计方法不包括(A )。
17. 谐波齿轮具有速比大、传动精度和效率高等优点,它是由以下哪种传动演变而来的。
( C )18. 使滚珠丝杠具有最大刚度的支承方式是( A )19. 在机电一体化系统设计中,齿轮系常用于伺服系统传动机构中,作用是( A ) 20. 多级齿轮传动中,各级传动比“前大后小”的分配原则适用于按( D )设计的传动链。
21. 下列哪种传动机构具有自锁功能 ( C )22. 滚珠丝杠传动轴向间隙的调整,下列哪一种方法精度高,结构复杂。
( B ) 23. 为了提高滚珠丝杠副的旋转精度,滚珠丝杠副在使用之前应该进行( B ) 24. 在滚珠丝杠副中,公式IE Ml ES Pl L π200±±=∆是验算满载时滚珠丝杠副的 ( A )25. 在同步齿型带传动中,节线的长度在工作过程中 ( A ) 26. 滚珠丝杠副基本导程指丝杠相对于螺母旋转2π弧度时,螺母上基准点的( B ) 27. 在两级齿轮传动中,若传动比的分配方案是i i =,则其遵循的原则是( D ) 28. 当刚轮固定,柔轮输出,波形发生器输入时,谐波齿轮可实现(B )传动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现代传感器在原理与结构上千差万别,如何根据具体的测量目的、测量对象以及测量环境合理地选用传感器,是在进行某个量的测量时首先要解决的问题。
当传感器确定之后,与之相配套的测量方法和测量设备也就可以确定了。
测量结果的成败,在很大程度上取决于传感器的选用是否合理。
1)根据测量对象与测量环境确定传感器的类型要进行—个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。
因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下一些具体问题:量程的大小;被测位置对传感器体积的要求;测量方式为接触式还是非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,国产还是进口,价格能否承受,还是自行研制。
在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标。
2)灵敏度的选择通常,在传感器的线性范围内,希望传感器的灵敏度越高越好。
因为只有灵敏度高时,与被测量变化对应的输出信号的值才比较大,有利于信号处理。
但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度。
因此,要求传感器本身应具有较高的信噪比,尽员减少从外界引入的厂扰信号。
传感器的灵敏度是有方向性的。
当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器;如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好。
3)频率响应特性传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有—定延迟,希望延迟时间越短越好。
传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械系统的惯性较大,因有频率低的传感器可测信号的频率较低。
在动态测量中,应根据信号的特点(稳态、瞬态、随机等)响应特性,以免产生过火的误差4)线性范围传感器的线形范围是指输出与输入成正比的范围。
以理论上讲,在此范围内,灵敏度保持定值。
传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。
在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。
但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。
当所要求测量精度比较低时,在一定的范围内,可将非线性误差较小的传感器近似看作线性的,这会给测量带来极大的方便。
5)稳定性传感器使用一段时间后,其性能保持不变化的能力称为稳定性。
影响传感器长期稳定性的因素除传感器本身结构外,主要是传感器的使用环境。
因此,要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。
在选择传感器之前,应对其使用环境进行调查,并根据具体的使用环境选择合适的传感器,或采取适当的措施,减小环境的影响。
传感器的稳定性有定量指标,在超过使用期后,在使用前应重新进行标定,以确定传感器的性能是否发生变化。
在某些要求传感器能长期使用而又不能轻易更换或标定的场合,所选用的传感器稳定性要求更严格,要能够经受住长时间的考验。
6)精度精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。
传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以,不必选得过高。
这样就可以在满足同一测量目的的诸多传感器中选择比较便宜和简单的传感器。
如果测量目的是定性分析的,选用重复精度高的传感器即可,不宜选用绝对量值精度高的;如果是为了定量分析,必须获得精确的测量值,就需选用精度等级能满足要求的传感器。
对某些特殊使用场合,无法选到合适的传感器,则需自行设计制造传感器。
自制传感器的性能应满足使用要求光电传感器基础知识及术语光电传感器是一种小型电子设备,它可以检测出其接收到的光强的变化。
早期的用来检测物体有无的光电传感器是一种小的金属圆柱形设备,发射器带一个校准镜头,将光聚焦射向接收器,接收器出电缆将这套装置接到一个真空管放大器上。
在金属圆筒内有一个小的白炽灯做为光源。
这些小而坚固的白炽灯传感器就是今天光电传感器的雏形。
LED(发光二极管)发光二极管最早出现在19世纪60年代,现在我们可以经常在电气和电子设备上看到这些二极管做为指示灯来用。
LED就是一种半导体元件,其电气性能与普通二极管相同,不同之处在于当给LED通电流时,它会发光。
由于LED是固态的,所以它能延长传感器的使用寿命。
因而使用LED的光电传感器能被做得更小,且比白炽灯传感器更可靠。
不象白炽灯那样,LED抗震动抗冲击,并且没有灯丝。
另外,LED所发出的光能只相当于同尺寸白炽灯所产生光能的一部分。
(激光二极管除外,它与普通LED的原理相同,但能产生几倍的光能,并能达到更远的检测距离)。
LED能发射人眼看不到的红外光,也能发射可见的绿光、黄光、红光、蓝光、蓝绿光或白光。
经调制的LED传感器1970年,人们发现LED还有一个比寿命长更好的优点,就是它能够以非常快的速度来开关,开关速度可达到KHz。
将接收器的放大器调制到发射器的调制频率,那么它就只能对以此频率振动的光信号进行放大。
我们可以将光波的调制比喻成无线电波的传送和接收。
将收音机调到某台,就可以忽略其他的无线电波信号。
经过调制的LED发射器就类似于无线电波发射器,其接收器就相当于收音机。
人们常常有一个误解:认为由于红外光LED发出的红外光是看不到的,那么红外光的能量肯定会很强。
经过调制的光电传感器的能量的大小与LED光波的波长无太大关系。
一个LED发出的光能很少,经过调制才将其变得能量很高。
一个未经调制的传感器只有通过使用长焦距镜头的机械屏蔽手段,使接收器只能接收到发射器发出的光,才能使其能量变得很高。
相比之下,经过调制的接收器能忽略周围的光,只对自己的光或具有相同调制频率的光做出响应。
未经调制的传感器用来检测周围的光线或红外光的辐射,如刚出炉的红热瓶子,在这种应用场合如果使用其它的传感器,可能会有误动作。
如果一个金属发射出的光比周围的光强很多的话,那么它就可以被周围光源接收器可靠检测到。
周围光源接收器也可以用来检测室外光。
但是并不是说经调制的传感器就一定不受周围光的干扰,当使用在强光环境下时就会有问题。
例如,未经过调制的光电传感器,当把它直接指向阳光时,它能正常动作。
我们每个人都知道,用一块有放大作用的玻璃将阳光聚集在一张纸上时,很容易就会把纸点燃。
设想将玻璃替换成传感器的镜头,将纸替换成光电三极管,这样我们就很容易理解为什么将调制的接收器指向阳光时它就不能工作了,这是周围光源使其饱和了。
调制的LED改进了光电传感器的设计,增大了检测距离,扩展了光束的角度,人们逐渐接受了这种可靠易于对准的光束。
到1980年,非调制的光电传感器逐步就退出了历史舞台。
红外光LED是效率最高的光束,同时也是在光谱上与光电三极管最匹配的光束。
但是有些传感器需要用来区分颜色(如色标检测),这就需要用可见光源。
在早期,色标传感器使用白炽灯做光源,使用光电池接收器,直到后来发明了高效的可见光LED。
现在,多数的色标传感器都是使用经调制的各种颜色的可见光LED发射器。
经调制的传感器往往牺牲了响应速度以获取更长的检测距离,这是因为检测距离是一个非常重要的参数。
未经调制的传感器可以用来检测小的物体或动作非常快的物体,这些场合要求的响应速度都非常快。
但是,现在高速的调制传感器也可以提供非常快的响应速度,能满足大多数的检测应用。
超声波传感器声波传感器所发射和接收的声波,其振动频率都超过了人耳所能听到的范围。
它是通过计算声波从发射,经被测物反射回到接收器所需要的时间,来判断物体的位置。
对于对射式超声波传感器,如果物体挡住了从发射器到接收器的声波,则传感器就会检测到物体。
与光电传感器不同,超声波传感器不受被测物透明度和反光率的影响,因此在许多使用超声波传感器的场合就不适合使用光电传感器来检测。
光纤安装空间非常有限或使用环境非常恶劣的情况下,我们可以考虑使用光纤。
光纤与传感器配套使用,是无源元件,另外,光纤不受任何电磁信号的干扰,并且能使传感器的电子元件与其他电的干扰相隔离。
光纤有一根塑料光芯或玻璃光芯,光芯外面包一层金属外皮。
这层金属外皮的密度比光芯要低,因而折射率低。
光束照在这两种材料的边界处(入射角在一定范围内,),被全部反射回来。
根据光学原理,所有光束都可以由光纤来传输。
两条入射光束(入射角在接受角以内)沿光纤长度方向经多次反射后,从另一端射出。
另一条入射角超出接受角范围的入射光,损失在金属外皮内。
这个接受角比两倍的最大入射角略大,这是因为光纤在从空气射入密度较大的光纤材料中时会有轻微的折射。
光在光纤内部的传输不受光纤是否弯曲的影响(弯曲半径要大于最小弯曲半径)。
大多数光纤是可弯曲的,很容易安装在狭小的空间。
玻璃光纤玻璃光纤由一束非常细(直径约50μm)的玻璃纤维丝组成。
典型的光缆由几百根单独的带金属外皮玻璃光纤组成,光缆外部有一层护套保护。
光缆的端部有各种尺寸和外形,并且浇注了坚固的透明树脂。
检测面经过光学打磨,非常平滑。
这道精心的打磨工艺能显著提高光纤束之间的光耦合效率。
玻璃光纤内的光纤束可以是紧凑布置的,也可随意布置。
紧凑布置的玻璃光纤通常用在医疗设备或管道镜上。
每一根光纤从一端到另一端都需要精心布置,这样才能在另一端得到非常清晰的图像。
由于这种光纤费用非常昂贵并且多数的光纤应用场合并不需要得到一个非常清晰的图像,所以多数的玻璃光纤其光纤束是随意布置的,这种光纤就非常便宜了,当然其所得到的图像也只是一些光。
玻璃光纤外部的保护层通常是柔性的不锈钢护套,也有的是PVC或其他柔性塑料材料。
有些特殊的光纤可用于特殊的空间或环境,其检测头做成不同的形状以适用于不同的检测要求。
玻璃光纤坚固并且性能可靠,可使用在高温和有化学成分的环境中,它可以传输可见光和红外光。
常见的问题就是由于经常弯曲或弯曲半径过小而导致玻璃丝折断,对于这种应用场合,我们推荐使用塑料光纤。
塑料光纤塑料光纤由单根的光纤束(典型光束直径为0.25到1.5mm)构成,通常有P VC外皮。
它能安装在狭小的空间并且能弯成很小的角度。
多数的塑料光纤其检测头都做成探针形或带螺纹的圆柱形,另一端未做加工以方便客户根据使用将其剪短。
邦纳公司的塑料光纤都配有一个光纤刀。
不像玻璃光纤,塑料光纤具有较高的柔性,带防护外皮的塑料光纤适于安装在往复运动的机械结构上。
塑料光纤吸收一定波长的光波,包括红外光,因而塑料光纤只能传输可见光。
与玻璃光纤相比,塑料光纤易受高温,化学物质和溶剂的影响。
对射式和直反式光纤玻璃光纤和塑料光纤既有“单根的”-对射式,也有“分叉的”-直反式。
单根光纤可以将光从发射器传输到检测区域,或从检测区域传输到接收器。