鸡兔同笼问题几种不同的解法培训讲学
鸡兔同笼问题讲义

鸡兔同笼问题讲义例、笼中有若干只鸡和兔,它们共有50个头和140只脚,问鸡兔各有多少只?解法1 假设法假设一个未知数是已知的,比如假定50个头全是兔,则共有脚(4×50=)200(只),这与题中已知140只不符,多出(200-140=)60(只),多的原因是鸡当兔后每只鸡多算了2只脚,所以鸡的只数是(60÷2=)30(只),则兔的只数为(50-30=)20(只)。
解法2 公式法让每只鸡呈金鸡独立之状,每只兔呈玉兔拜月状,着地的脚数之和有(140÷2=)70(只),其中鸡的头数与脚数相等,由于每只兔的脚比头数多1,因此兔的头数为(70-50=)20(个),即兔有20只,则鸡有(50-20=)30(只)。
实际上我们用了如下的公式。
脚数和÷2-头数和=兔子数。
典型例题例【1】鸡兔同笼,共有45个头,146只脚。
笼中鸡兔各有多少只?分析题目中给出了鸡、兔共45只。
如果假设这45只全都是兔子,那么就应该有180只脚。
而题目只告诉我们有146只脚,我们算的180只脚和实际相比多算了34只脚。
为什么呢?因为一只鸡是两只脚,而我们把它当成4只脚算了。
如果用一只鸡来置换一只兔,就要减少2之脚,那么,34只脚里包含多少个2只脚,也就是我们把多少只鸡当成了兔子,显然34÷2=17(只)。
所以鸡有17只,兔子有28只。
当然,我们也可以把45只都假设成是鸡,把以上问题反过来考虑。
解法一假设全是兔子。
(4×45-146)÷(4-2)=17(只)——鸡45-17=28(只)——兔解法二假设全是鸡。
(146-2×45)÷(4-2)=28(只)——兔45-28=17(只)——鸡答:鸡有17只,兔子有28只。
小试身手:1、鸡兔同笼,头共20个,足共62只,求鸡与兔各有多少只?2、鸡兔同笼,头共35个,脚共94只,求鸡与兔各有多少个头?例【2】盒子里有大、小两种钢珠共30个,共重266克,已知大钢珠每个11克,小钢珠每个7克。
鸡兔同笼类问题中的各种解法分析小总结

鸡兔同笼类问题中的各种解法分析小总结————————————————————————————————作者:————————————————————————————————日期:鸡兔同笼类问题中的各种解法分析小汇总1.典型鸡兔同笼问题详解例1鸡兔同笼是我国古代的著名趣题。
大约在1500年前,《孙子算经》中就记载着“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”翻译成通俗易懂的内容如下:鸡兔共有35个头,94只脚,问鸡兔各有多少只?经梳理,对于这一类问题,总共有以下几种理解方法。
(1)站队法让所有的鸡和兔子都列队站好,鸡和兔子都听哨子指挥。
那么,吹一声哨子让所有动物抬起一只脚,笼中站立的脚:94-35=59(只)那么再吹一声哨子,然后再抬起一只脚,这时候鸡两只脚都抬起来就一屁股坐地上了,只剩下用两只脚站立的兔子,站立脚:59-35=24(只)兔:24÷2=12(只);鸡:35-12=23(只)(2)松绑法由于兔子的脚比鸡的脚多出了2个,因此把兔子的两只前脚用绳子捆起来,看作是一只脚,两只后脚也用绳子捆起来,看作是一只脚。
那么,兔子就成了2只脚。
则捆绑后鸡脚和兔脚的总数:35×2=70(只)比题中所说的94只要少:94-70=24(只)。
现在,我们松开一只兔子脚上的绳子,总的脚数就会增加2只,不断地一个一个地松开绳子,总的脚数则不断地增加2,2,2,2……,一直继续下去,直至增加24,因此兔子数:24÷2=12(只)从而鸡数:35-12=23(只)(3)假设替换法实际上替代法的做题步骤跟上述松绑法相似,只不过是换种方式进行理解。
假设笼子里全是鸡,则应有脚70只。
而实际上多出的部分就是兔子替换了鸡所形成。
每一只兔子替代鸡,则增加每只兔脚减去每只鸡脚的数量。
兔子数=(实际脚数-每只鸡脚数*鸡兔总数)/(每只兔脚数-每只鸡脚数)与前相似,假设笼子里全是兔,则应有脚120只。
《鸡兔同笼》3种方法PPT课件

不同人对于方法的偏好不同,可以根据自己的习惯和喜好选择合适 的方法。
根据难度要求选择
如果要求解题步骤简洁易懂,建议选择假设法或方程组法;如果要 求解题步骤详细完整,建议选择代数法。
实际应用案例
鸡兔总数为10只,总腿数为26 只,使用代数法可以列出方程组
求解。
鸡兔总数为15只,总腿数为40 只,使用假设法先假设全部为鸡,
02
03
场景1
当问题中存在多个未知数, 且已知条件可以建立等式 关系时,可以使用方程法 求解。
场景2
当问题中存在多个变量, 且需要求解这些变量的具 体数值时,可以使用方程 法。
场景3
在数学、物理、工程等领 域中,当需要求解代数方 程时,可以使用方程法。
方程法的解题步骤
01
02
03
04
步骤1
根据题目的概率和统计问题
假设法可以用于解决多个未知数的方 程组问题,通过假设某个未知数为已 知数,简化问题。
假设法可以用于解决各种概率和统计 问题,例如假设检验、置信区间等, 通过假设某个条件或变量为已知数或 特定值,进行推理和计算。
解决最优化问题
假设法可以用于解决各种最优化问题, 例如最大值、最小值、最优解等,通 过假设某个变量为最优解,进行推理 和计算。
步骤2
根据题目的条件,建立等式关 系。
步骤3
解等式,求得未知数的值。
步骤4
对解进行验证,确保符合题目 的条件。
02
假设法
定义与特点
定义
假设法是一种通过假设某个条件或变 量,然后根据这个假设进行推理和计 算,最终得出结论的数学方法。
特点
假设法是一种非常灵活的数学方法, 可以用于解决各种不同的问题,特别 是那些难以直接计算的问题。
鸡兔同笼问题五种基本公式和例题讲解

鸡兔同笼问题五种基本公式和例题讲解【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。
解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。
(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。
(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。
(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。
鸡兔同笼问题的策略与解决思路

鸡兔同笼问题的策略与解决思路鸡兔同笼问题是一个经典的数学问题,指的是在一个笼子里有若干只鸡和兔子,已知总数量和总腿数,需要求出鸡和兔子分别的数量。
这个问题虽然看似简单,但却是一个很好的练习逻辑思维和数学推理的题目。
下面将介绍几种常用的策略与解决思路。
1. 假设法:假设鸡兔的总数量为n,每只鸡有2条腿,每只兔子有4条腿,在总腿数为m的情况下,可以列出方程式2x + 4y = m,其中x表示鸡的数量,y表示兔子的数量。
根据方程式可以进行求解,找出满足鸡兔总数量的组合。
2. 枚举法:从数量较少的一方开始枚举,假设鸡的数量为0,那么兔子的数量就是总数量。
如果鸡的数量为1,那么兔子的数量就是总腿数减去鸡的腿数除以2。
以此类推,继续增加鸡的数量,直到找到满足条件的组合。
3. 二元一次方程组法:可以建立一个二元一次方程组,同时考虑鸡和兔子的数量。
假设鸡的数量为x,兔子的数量为y,鸡的腿数为2x,兔子的腿数为4y,根据总数量和总腿数可以得到方程组:x + y = n2x + 4y = m通过解这个方程组可以求得鸡和兔子的数量。
4. 矩阵方程法:将鸡的数量和兔子的数量视为未知数,可以将鸡兔同笼问题转化为矩阵方程。
令A为系数矩阵,X为未知数矩阵,B为常数矩阵,则可以得到AX = B的形式。
通过解这个矩阵方程即可求得鸡和兔子的数量。
以上是几种常用的解决鸡兔同笼问题的策略与思路。
对于练习逻辑思维和数学推理有很好的帮助。
在实际解决问题时,可以根据具体情况选择适合的方法,以快速准确地得到答案。
此外,对于鸡兔同笼问题的解决过程中,我们可以思考一些扩展的问题:1. 如何解决总数量和总腿数不为正整数的情况?在解决这种情况下的鸡兔同笼问题时,可以引入小数的概念。
将鸡和兔子的数量视为小数,并按照之前的策略和思路进行求解。
2. 如何解决鸡兔不限于只有两种动物的情况?在拓展为鸡兔不限于只有鸡和兔子的情况时,可以引入更多种动物,并考虑每种动物的腿数。
鸡兔同笼课件ppt

鸡兔同笼问题简介鸡兔同笼问题的数学模型鸡兔同笼问题的解法鸡兔同笼问题的变种和扩展鸡兔同笼问题的实际应用总结与展望
目录
CONTENTS
鸡兔同笼问题简介
这个问题反映了古代人们对日常生活中的数学现象的好奇和探索,是数学与实际生活相结合的典型例子。
随着时间的推移,鸡兔同笼问题逐渐演变成一个经典的代数问题,被广泛用于教学和数学竞赛中。
增强问题解决能力
在计算机科学中,算法设计和数据结构等方面的问题常常涉及到类似鸡兔同笼问题的求解,例如在算法优化和数据挖掘等领域。
计算机科学
在物理学中,类似鸡兔同笼问题的物理现象和问题也时有出现,例如在力学、光学等领域的研究中,需要运用数学和物理知识来解决类似的问题。
物理学
总结与展望
鸡兔同笼问题是一个经典的数学问题,它涉及到了一元一次方程的求解,是代数方程的初步知识。通过解决这个问题,学生可以加深对一元一次方程的理解,掌握代数方程的基本解法。
结果解释
03
所以,笼子里有鸡70只,兔子30只。
鸡兔同笼问题的解法
方程组法概述
方程组的建立
解方程组
示例
01
02
03
04
通过建立多个方程来表示鸡兔同笼问题中的多个未知数,然后解方程组求解未知数。
根据题目条件,建立多个关于鸡和兔的方程,通常涉及三个或更多未知数。
通过消元法或代入法等手段,解出方程组中的未知数,得出鸡和兔的数量。
鸡兔同笼问题起源于中国古代的数学趣题,最早记载于《孙子算经》中。
鸡兔同笼问题具有很高的教学价值,是培养学生逻辑思维和代数思维的重要工具。
通过解决鸡兔同笼问题,学生可以学习到如何运用代数方程来解决实际问题,提高数学应用能力。
第一课 鸡兔同笼

第一课鸡兔同笼一、知识点解答鸡兔同笼问题常用的方法是:先假设要求的两个或几个未知数相等,或假设要求的两个求知量是同一种量,然后按照题中的已知条件来推算,从而求出所要求的结果。
用假设法解答鸡兔同笼问题的关键是首先把题中相当于“鸡”和“兔”的两种量,全部假设看作“鸡”或“兔”,然后找出与实际数量的差,由此求出“鸡”或“兔”。
二、例题讲解1、鸡兔同笼,头共100只,足共340,鸡兔各几只?题意分析:先假设它们全是鸡,根据鸡兔的总数就可以算出在假设下共有几只脚:2×100=200(只),这样得到的脚数与题中已知的脚数进行比较相差:340-200=140(只),每差2只脚就说明有1只兔,于是就可以计算出兔的只数。
兔的只数:(340-2×100)÷(4-2)=140÷2=70(只)鸡的只数:100-70=30(只)2、甲、乙两人进行射击比赛,约定每中一发记8分,脱靶一发扣3分,两人各打了10发,共得116分,其中甲比乙多22分。
问甲、乙两人各中几发?题意分析:先以乙为标准,假设甲、乙得分相同,乙得分:(116-22)÷2=47(分),甲得分:(116+22)÷2=69(分)再分别假设甲、乙两人10发全中:甲得分:8×10=80(分),比实际得分多:80-69=11(分),因每脱靶一发要少得分:3+8=11(分),所以甲脱靶:11÷11=1(发),甲射中:10-1=9(发)乙得分:8×10=80(分)比实际得分多,80-47=33(分),因每脱靶一发要少得分:3+8=11(分),所以乙脱靶:33÷11=3(发),乙射中:10-3=7(发)三、专题训练1、鸡兔同笼,共有头100个,脚316只,那么鸡有多少只?兔有多少只?2、小李爱好集邮,他用10元钱买了6角和8角的两种邮票,共15张,那么他买了6角邮票多少张?8角邮票多少张?3、有苹果和橘子共27盒,共计600个,苹果每盒20个,橘子每盒24个,则苹果有多少盒?橘子有多少盒?4、学校举行数学竞赛,共20道试题,做对一题得5分,没有做一题或做错一题倒扣3分,刘明得了60分,则他做对了几题?5、30枚硬币由2分和5分组成,共值9角9分,两种硬币各多少枚?6、在一个停车场上,现有的车辆数恰好是24辆,其中汽车是4个轮子,摩托车3个轮子,这些车共有86个轮子,那么三轮摩托车有多少辆?7小红花了4元钱买甲乙两种明信片,共14张,已知甲种明信片每张3角5分,乙种明信片2角5分.求小红买了多少张甲种明信片,多少张乙种明信片?8.圆玄小学有100名学生参加数学竞赛,平均分是63分,其中男生平均分是60分,女生平均分是70分,男同学比女同学多多少人?9.一辆卡车运沙石,睛天每天可运16次,雨天每天只能运11次.一共运了17天,共运了222次.求这些天中有几个雨天?10.学校举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题倒扣3分,刘明得了60分,则他做对了几题?11.小明和小强两人参加数学竞赛,每做对一题得10分,每错一题倒扣5分,两人各做了10题,共得110分,其中小明比小强多30分,问小明.小强两人各做对了几题?12.工人运花瓶250个,规定完整运一个到目的地给运费20元,损坏一个倒赔100元,运完这批花瓶后,工人共得4400元,则损坏了多少个?13.有三筐梨共108个,甲筐比乙筐多4个,乙筐比丙筐多1个,求甲.乙.丙筐各有多14.买4角与8角的邮票共花68元,已知8角的邮票比4角的多40张,那么8角的邮票有多少张?15.学校组织197名学生分乘3辆车去郊游,第二辆比第一辆车多坐3人,第三辆车比第二辆少坐10人,求三辆车各坐多少人?16.一件工程甲独做12天完成,乙独做18天完成,现在由甲先做若干天后,再由乙单独完成余下的任务,这样前后共用了16天,甲先做了多少天?17.鸡兔同笼,共有足248只,兔比鸡少52只,那么兔有多少只?鸡有多少只?18.小宝参加数学竞赛,共做25道题,得78分,已知做对一道得4分,不做得0分,错题扣1分,问小宝做对几道题?19.※、一辆公共汽车载客50人,其中一部分在中途下车,每张票价0.6元;另一部分到终点下车,每张票价0.9元。
四年级下册数学 《鸡兔同笼》解题方式技巧

《鸡兔同笼》解题方式技巧(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
或(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
例题:“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解法一:(100-2×36)÷(4-2)=14(只)……兔36-14=22(只)……鸡。
解法二:(4×36-100)÷(4-2)=22(只)……鸡36-22=14(只)……兔(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。
(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。
(4)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:[(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;[(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。
例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。
鸡兔各是多少只?”〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2=20÷2=10(只)……鸡〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2=12÷2=6(只)……兔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鸡兔同笼问题几种不同的解法
英国数学教育家贝克浩斯(Backhousl)在研究“问题解决”时首先提到的是中国古算题,其中包括鸡兔同笼问题、10买100个馒头问题等。
解这些问题需要想象,解者在其情景中有明确的且力所能及的目的,但缺少现成的方法达到此目常常作为夜航船中或纳凉赏月时的一种试智比知式考问的备办学问,一代一代传下来,还传到世界各地,鸡兔问题传到鹤问题。
明代作家张岱曾说:“天下学问,惟夜航船中最难对付”。
又到纳凉的季节,老公公们要用这些问题来试试儿孙怎样?有位小朋友听了老公公提出的问题,觉得难度不大,便满怀信心地对老公公说:慢点,让我打开灯,拿纸和笔。
不用笔就不可以算吗?这一下,许多小朋友都被难住了。
显然老公公解这些难题的技巧肯定不同凡响,那么老公公是怎问题的呢?我们先举个例子说说。
一、鸡兔同笼问题
例1 笼中有若干只鸡和兔,它们共有50个头和140只脚,问鸡兔各有多少只?
解法1 假设法
假设一个未知数是已知的,比如假定50个头全是兔,则共有脚(4×50=)200(只),这与题中已知140只不符,多出(2 60(只),多的原因是鸡当兔后每只鸡多算了2只脚,所以鸡的只数是(60÷2=)30(只),则兔的只数为(50-30=)2
这种解法,思路清晰,但较复杂,不便操作。
能不能形象地画个图呢?让我们试试。
解法2 图形法
从图中看ACDF的面积=4×50=200(只脚),比实际多出GHEF的面积=200-140=60(只脚),AB=GH=(只鸡),BC=AC-AB=50-30=20(只兔)
解法2比解法1高级,算理是一样的。
这里答案是图上算出的,显然这两种解法都要用纸和笔。
不用纸和笔肯定是用口的公式,这是老公公的传家宝。
解法3 公式法
老公公讲:只要用哨子一吹,并喊一声口令:“全体肃立”。
这时每只鸡呈金鸡独立之状,每只兔呈玉兔拜月状,着之和有(140÷2=)70(只),其中鸡的头数与脚数相等,由于每只兔的脚比头数多1,因此兔的头数为(70-50=)2即兔有20只,则鸡有(50-20=)30(只)。
这个故事实际上老公公用了如下的公式。
脚数和÷2-头数和=兔子数。
小孙子们听了兴趣为之大增,纷纷叫老公公再出几道题。
老公公又出了
(1)30个头,80只脚……。
(兔10,鸡20)。
(2)100只脚,40个头……。
(兔10,鸡30)。
(3)80个头,200只脚……。
(兔20,鸡60)
小孙子们个个都愉快地答出来了。
这个公式简洁好用,它是祖代传下来的还是老公公想出来的呢?我们中华文化博大精深,这两种可能性都是有的。
是碰巧做对还是符合算理的呢?这是十分重要的。
数学家高斯说过:“数学中许多方法与定理是靠归纳发现的,证明只是手续而已。
”现在我们就来补行这个手续。
2鸡头=鸡脚。
4兔头=兔脚。
得:兔脚+鸡脚=2鸡头+4兔头
=2(鸡头+2兔头)。
这就证明了老公公归纳的公式。
说到鸡兔同笼问题,常常大家精神就紧张起来,以为是难题来了。
现在掌握了规律其实不难,所以凡事都应去摸索规律办事。
鸡兔同笼问题在民间是当故事讲的,有没有实际价值呢?我们再来看下面的问题。
二、邮票问题
例2 买3角与5角的邮票共24张,总值9.6元,问两种邮票各买了几张?
解这道题当然可以用假设法和图形法,但用什么样的公式呢?美国数学教育家C·波利亚说:“……不论初等数学、中的发现……特别是不能没有类比。
”用类比很容易发现这个公式是:邮
设3角邮票为A1张,价值A2角;
5角邮票为B1张,价值B2角。
说明数量关系与鸡兔同笼问题相一致。
又3A1=A2,5B1=B2。
得:A2+B2=3A1+5B1,
这就与例1的公式相类似,很容易将这个公式翻译成语言陈述,大家试
(24-12=)12(张)。
如果你认为这个公式不太好记,就不妨用图来解。
(24×5-96)÷2=12(张、3角)
24-12=12
所以解题方法的选用常常是根据具体情况而定的。
再试试
(1)6角与8角的邮票共18张,总价12.4元,问两种邮票各几张?(10,8)
(2)3角与8角的邮票共100张,总价50元,问两种邮票各几张?(60,40)
三、植树问题
例3 一次植树活动,规定大树每人种2棵,小树每人种4棵,全班50人种树140棵,问种这两种树的各有多少人?
这道题可用例1的公式很快解得种大树的有30人,种小树的有20人。
四、运输(工作)问题
例4 有小卡车50辆,大卡车每辆运4吨,小卡车每辆运2吨,共运140吨化肥,问大小卡车各几辆?
难道不是题目看完答案就出来了吗?
五、农药问题
例5 甲种农药每千克兑水20千克,乙种农药每千克兑水40千克,现为了提高药效,根据农科所意见,甲乙两种农药混已知两种农药共50千克,要配药水140千克,问甲、乙两种农药各需多少千克?
用公式解很简单(30,20),如果将这个公式交给农民,那么他们配起农药来就既方便又正确,你能想出这个公式是
还会遇到许多许多的问题,它们的数量关系(应用题的本质)与鸡兔同笼问题相一致,都可以用鸡兔同笼问题的三解,这些问题我们将它们统称为鸡兔同笼问题。
相传大禹治水到黄河,发现一只神龟,背上驮了一张图叫河图(洛书)。
(左图),用阿拉伯数字表示就是右图,竖线、三条横线、二条对角线共八条线上三个数的和都是15,这样的图是怎样造出来的呢?其法一时失传了,于是有人占卜、相风水,进入迷信状态。
后来数学家发现其原理是二进制,说明二进制是中国人最先发明的,近代根据二进制发机,所以有些基础科学的研究成果一时看起来无多大用途,以后渐渐会发现有大用途,鸡兔同笼问题不也是这样吗?因定要重视基础科学的学习和研究。