数控直流恒流源的设计

合集下载

数控恒流源设计

数控恒流源设计

数控恒流源设计题目任务要求1、任务设计并制作数控直流电流源。

输入交流200~240V,50Hz;输出直流电压≤10V。

其原理示意图如下所示。

2、要求1>差不多要求(1)输出电流范畴:200mA~2000mA;(2)可设置并显示输出电流给定值,要求输出电流与给定值偏差的绝对值≤给定值的1%+10 mA;(3)具有“+”、“-”步进调整功能,步进≤10mA;(4)改变负载电阻,输出电压在10V以内变化时,要求输出电流变化的绝对值≤输出电流值的1%+10 mA;(5)纹波电流≤2mA;(6)自制电源。

2>发挥部分(1)输出电流范畴为20mA~2000mA,步进1mA;(2)设计、制作测量并显示输出电流的装置(可同时或交替显示电流的给定值和实测值),测量误差的绝对值≤测量值的0.1%+3个字;(3)改变负载电阻,输出电压在10V以内变化时,要求输出电流变化的绝对值≤输出电流值的0.1%+1 mA;(4)纹波电流≤0.2mA;(5)其他。

总体方案用单片机和FPGA数控恒流源。

通过键盘预置电流值,单片机输出相应的数字信号给D/A转换器,D/A转换器输出的模拟信号送到运算放大器,操纵主电路电流大小。

实际输出的电流再通过采样电阻采样变成电压信号,A/D转换后将信号反馈到单片机中。

单片机将反馈信号与预置值比较,依照两者间的差值调整输出信号大小。

如此就形成了反馈调剂,提高输出电流的精度。

本方案可实现题目要求,当负载在一定范畴内变化时具有良好的稳固性,而且精度较高。

具体电路设计1.电源电路操纵部分供电电源电路还需要大功率供电电源,专门为VMOS管供电。

因为负载中最大电流要达到2A,输出直流电压≤10V,因此该电源的输出功率至少要大于210=20W。

作为大功率电源,我们选用220V-16V/50W的变压器,稳压芯片是金属封装的三端可调稳压芯片LM317K STEEL P+,理论上安装散热片后最大输出电流可达3.4A,经实际测试,能够输出2A电流的指标。

数控直流恒流源方案

数控直流恒流源方案

一、方案论证根据题目要求,下面对整个系统的方案进行论证。

方案一:采用开关电源的恒流源采用开关电源的恒流源电路如图1.1所示。

当电源电压降低或负载电阻Rl降低时,采样电阻RS上的电压也将减少,则SG3524的12、13管脚输出方波的占空比增大,从而BG1导通时间变长,使电压U0回升到原来的稳定值。

BG1关断后,储能元件L1、E2、E3、E4保证负载上的电压不变。

当输入电源电压增大或负载电阻值增大引起U0增大时,原理与前类似,电路通过反馈系统使U0下降到原来的稳定值,从而达到稳定负载电流Il的目的。

图1.1 采用开关电源的恒流源优点:开关电源的功率器件工作在开关状态,功率损耗小,效率高。

与之相配套的散热器体积大大减小,同时脉冲变压器体积比工频变压器小了很多。

因此采用开关电源的恒流源具有效率高、体积小、重量轻等优点。

缺点:开关电源的控制电路结构复杂,输出纹波较大,在有限的时间内实现比较困难。

方案二:采用集成稳压器构成的开关恒流源系统电路构成如图1.2所示。

MC7805为三端固定式集成稳压器,调节,可以改变电流的大小,其输出电流为:,式中为MC7805的静态电流,小于10mA。

当较小即输出电流较大时,可以忽略,当负载电阻变化时,MC7805改变自身压差来维持负载通过的电流不变。

优点:该方案结构简单,可靠性高缺点:无法实现数控。

方案三:单片机控制电流源方案恒流源电路由N沟道的MOSFET、高精度运算放大器、采样电阻等组成,其电路原理图如图1.3所示。

利用功率MOSFET的恒流特性,再加上电流反馈电路,使得该电路的精度很高。

图1.3 恒流源电路该电流源电路可以结合单片机构成数控电流源。

通过键盘预置电流值,单片机输出相应的数字信号给D/A转换器,D/A转换器输出的模拟信号送到运算放大器,控制主电路电流大小。

实际输出的电流再通过采样电阻采样变成电压信号,A/D转换后将信号反馈到单片机中。

单片机将反馈信号与预置值比较,根据两者间的差值调整输出信号大小。

(数控加工)数控直流电流源设计报告精编

(数控加工)数控直流电流源设计报告精编

(数控加工)数控直流电流源设计报告数控直流电流源一、设计任务和技术要求1.设计壹个数控直流电流源。

2.输出电流0~99mA,手动步进1mA增、减可调,误差不大于0.01mA。

3.具有输出电流大小的数码显示。

4.负载供电电压+12V,负载等效阻值100Ω。

5.电路应具有对负载驱动电流较好的线性控制特性。

6.设计电路工作的直流供电电源电路。

二、系统原理概述本设计要求设计出壹个数控的直流电源,且且输出电流为0~99mA,能够手动控制增减。

在此采用数模转换的原理,只要产生和0~99mA电流相对应的数字量(我们取数字量为0~99),再使用D/A转换器转换为模拟电压量,最后再用V/I转换器将电压量转换为和电压量相对应的电流量即可。

为控制输出电流手动步进为1mA增、减可调,我们只要保证数字量(0~99)——电压量(0~9.9V)——电流量(0~99mA)相对应,通过控制数字量手动增减步进为1可调即可。

综上,整个系统的原理框图如图壹所示:图一系统原理框图三、方案论证1.直流稳压电源电路单元小功率稳压电源由电源变压器、整流电路、滤波电路和稳压电路四个部分组成。

如图二所示:图二稳压电源组成示意图方案壹:输出可调的开关电源开关电源的功能元件工作在开关状态,因而效率高,输出功率大;且容易实现短路保护和过流保护,可是电路比较复杂,设计繁琐,在低输出电压时开关频率低,纹波大,稳定度极差,因此在本设计中不适合此方案。

方案二:由固定式三端稳压器组成由固定式三端稳压器(7805、7812、7912)输出脚V0、输入脚V i和接地脚GND组成,它们的输入端接电容能够进壹步滤波,输出端接电容能够改善负载的瞬间影响,且且此电路也比较稳定,实现简单。

因此在此采用方案二,电路原理图如图三所示:图三固定三端式直流稳压电源电路2.手动增减数字量产生单元方案壹:74LS163为可预置的4位二进制同步加法计数器。

采用俩片74LS163运用反馈清零或者反馈置数法构成十进制计数器,再将俩片73LS163构成2位十进制加法计数器。

电子设计大赛_数控直流恒流电源设计

电子设计大赛_数控直流恒流电源设计

数控直流恒流电源(E)一、任务设计并制作一个数控直流恒流电源,其原理示意图如下图所示。

二、要求1.基本要求(1)24VDC供电(可以使用成品稳压电源或者自制),输出电流范围: 0mA~1000mA;(2)带负载能力:≥10Ω(在负载电阻5Ω时,效率≥70%);(3)具有“+”、“-”步进调整按键,能够调整输出电流,设置范围0mA~1000mA,其步进值为10mA;(4)能够数字显示输出电流给定值和实际输出电流值,要求实际输出电流与显示的电流值之差的差值小于5mA;(5)改变负载电阻大小(10Ω~15Ω之间可调节),要求输出电流稳态误差值小于5mA。

2.发挥部分(1)输出电流范围扩展为0mA~2000mA,步进为1mA;(2)具有供电电源电压值、电流值、输出电流值、负载两端电压值显示功能(要求实际输出电流与显示电流值的差值小于1个读数值);(3)改变负载电阻(10Ω~5Ω之间可调节)时,实际输出电流值与给定电流值间的差值小于1mA;(4)改变输入电源电压(增加或减少20%),直流数控恒流源输出变化应小于2%;(5)进一步提高数控直流恒流源效率使其达到85%以上;(6)恒流电源具有开路、短路保护及报警功能;(7)创新性。

三、评分标准四、说明1. 需留出恒流电源输出电流和电压测量端子。

目录目录 (1)摘要 (2)方案讨论 (3)理论分析与论证 (4)硬件电路设计与参数计算 (4)电压转换恒定电流电路 (5)DC-DC转换电路 (5)采样测试电路 (6)软件设计 (6)系统测试结果与分析 (7)创新点论述 (8)摘要本作品设计的数控直流恒流电源是由DC-DC转换模块,电压转换电流模块,采样测试模块,键盘及显示模块和单片机控制模块组成。

负载中输出的电流可以设定并且可以从0开始进行手动调节,在10欧负载的条件下的最大输出电流可以达到2A。

利用MC434063构成升压和降压电路来实现对不同模块的供电。

OP07引入电流串联负反馈将电压转换成电流,把三极管2N3055和5069进行复合来增大输出负载的电流,利用ATMEGA128单片机进行D/A转换来输出不同的电压,从而实现对输出电流的控制。

数控恒流源设计报告参考模板

数控恒流源设计报告参考模板

数控恒流源的设计摘要:本设计采用STC单片机STC12C5A60S2作为直流恒流源的控制、显示和输出电流检测核心,实现了0A到2A数控可调直流恒流源。

系统的显示部分采用数码管实时显示设定电流值和实测电流值;输出电流控制采用STC12C5A60S2单片机的D/A口输出模拟量;电流测量采用基本没有温度漂移的康锰铜电阻丝作为精密取样电阻,利用TLV2543的A/D输入口进行电流检测和监控。

硬件电路恒流部分的控制端采用多个精密运算放大OP07接成闭环反馈控制形式,受控部分采用达林顿管进行扩流、精确输出设定电流。

电源部分采用大功率变压器供电,多级电容滤除纹波干扰;电源输出采用三端稳压芯片进行稳压,并且利用大功率达林顿管进行扩流以满足后级功率需求。

关键字:STC12C5A60S2 恒流源一、方案论证如题目要求,系统主要由控制器模块、电源模块、电流源模块、负载模块及键盘显示模块构成,下面分别论证这几个模块的选择。

1、控制模块的选择方案方案一:采用AT89C51单片机进行控制。

本设计需要使用的软件资源比较简单,只需要完成数控部分、键盘输入以及显示输出功能。

采用AT89C51进行控制比较简单,但是51单片机内存只有2k,程序比较多时可能存储不够。

方案二:采用STC12C5A60S2单片机进行控制。

STC12C5A60S2单片机具有强大功能的16位微控制器,它内部集成10位ADC和2通道10位 DAC,可以直接用于电流测量时的数据采集,以及数字控制输出;I/O口资源丰富,可以直接完成对键盘输入和显示输出的控制;存储空间大,能配合LCD液晶显示的字模数据存储。

采用SPCE061A单片机,能将相当一部分外围器件结合到一起,使用方便,抗干扰性能提高。

鉴于上面分析,本设计采用方案二。

2、电流源模块的选择方案方案一:由晶体管构成镜像恒流源该电路的缺点之一在于电流的测量精度受到两个晶体管的匹配程度影响,其中涉及到比较复杂的工艺参数。

数控直流恒流源设计报告

数控直流恒流源设计报告

数控直流恒流源设计报告本系统以直流电流源为核心,AT89s52单片机为主控制器,通过键盘来设置直流电源的输出电流,设置步进等级可达1mA,并可由液晶显示电流设定值和实际输出电流值。

本系统由单片机程控设定数字信号,经过D/A转换器(tlv5618)输出模拟量,再经过运算放大器隔离放大,控制输出功率管的基极,随着功率管基极电压的变化而输出不同的电流。

单片机系统还兼顾对恒流源进行实时监控,输出电流经过电流/电压转换后,通过A/D转换芯片,实时把模拟量转化为数据量,再经单片机分析处理,通过数字量形式的反馈环节,使电流更加稳定,这样构成稳定的压控电流源。

实际测试结果表明,本系统能有效应用于需要高稳定度的小功率恒流源的领域关键字压控恒流源智能化电源闭环控制设计任务与要求1.1设计任务设计并制作一个数控直流电流源。

输入的交流电压220~240V,50Hz;输出的直流电压≤10V。

其原理示意图1如下所示。

图1 设计任务示意图1.2技术指标基本要求:(1)要求电压输出范围:200~2000mA;(2)可设置并输出电流给定值,要求输出电流和给定电流的偏差的绝对值≤给定值的1%+10mA;(3)具有“+”、“-”步进调整功能,步进≤10mA;(4)改变负载电阻,输出电压在10V以内变化时,要求输出电流的变化的绝对值≤ 输出电流的1%+10mA;(5)纹波电流≤ 2mA;(6)自制电源。

发挥部分:(1)输出电流范围为20~2000mA,步进为1mA;(2)设计、制作测量并显示输出电流的装置(可同时或交替显示电流的给定值或实测值),测量误差的绝对值≤测量值的0.1%+3个字;(3)改变负载电阻,输出电压在10V以内变化时,要求输出电流变化的绝对值≤ 输出电流的0.1%+1mA;(4)纹波电流≤0.2mA;(5)其他。

2.方案比较与论证2.1.1各种方案比较与选择方案一:采用中小规模集成电路构成的控制电路。

由三段可调式集成稳压器构成的恒流源。

数控直流电流源设计

数控直流电流源设计

数控直流电流源设计一.总体设计方案经初步分析设计要求,得出总体电路由以下几部分组成:电源模块,控制模块(包括AD、DA转换)恒流源模块,键盘模块,显示模块。

以下就各电路模块给出设计方案。

1 控制部分方案方案一:采用FPGA作为系统的控制模块。

FPGA可以实现复杂的逻辑功能,规模大,稳定性强,易于调试和进行功能扩展。

FPGA采用并行输入输出方式,处理速度高,适合作为大规模实时系统的核心。

但由于FPGA集成度高,成本偏高,且由于其引脚较多,加大了硬件设计和实物制作的难度。

方案二:采用单片机作为控制模块核心。

单片机最小系统简单,容易制作PCB,算术功能强,软件编程灵活,方便的实现程序的更新,自由度大,较好的发挥C语言的灵活性,可用编程实现各种算法和逻辑控制,同时其具有功耗低、体积小、技术成熟和成本低等优点。

基于以上分析,选择方案二,利用MSP430单片机将电流步进值或设定值通过换算由D/A转换,驱动恒流源电路实现电流输出。

输出电流经处理电路作A/D转换反馈到单片机系统,通过补偿算法调整电流的输出,以此提高输出的精度和稳定性。

在器件的选取中,D/A转换器选用12位优质D/A转换芯片 TLV5618,直接输出电压值,且其输出电压能达到参考电压的两倍,A/D转换器则可直接使用430单片机开发板内部的ADC12直接编程进行使用。

2.恒流源模块设计方案方案一:由三端可调式集成稳压器构成的恒流源;这样设计的电路结构简单,调试方便,价格便宜,但是精密的大功率数控电位器难购买。

方案二:由数控稳压器构成的恒流源;方案三:采用集成运放的线性恒流源;该恒流源输出的电流与负载无关, 通过使用两块构成比较放大环节,功率管构成调整环节,利用晶体管平坦的输出特性和深度的负反馈电路可以得到稳定的恒流输出和高输出阻抗,实现了电压—电流转换。

综合考虑,采用方案三3 显示模块设计方案方案一:使用LED数码管显示。

数码管采用BCD编码显示数字,对外界环境要求低,易于维护。

数控直流恒流源的设计与制作

数控直流恒流源的设计与制作

数控直流恒流源的设计与制作数控直流恒流源的设计与制作本数控直流恒流源系统输出电流稳定,输出电流可在20mA~2000mA范围内任意设定,不随负载和环境温度变化,并具有很高的精度,输出电流误差范围±4mA,因而可实际应用于需要高稳定度小功率直流恒流源的领域。

1 系统原理及理论分析1.1单片机最小系统组成单片机系统是整个数控系统的核心部分,它主要用于键盘按键管理、数据处理、实时采样分析系统参数及对各部分反馈环节进行整体调整。

主要包括AT89S52单片机、模数转换芯片ADC0809、12位数模转换芯片AD7543、数码管显示译码芯片74LS47与74LS138等器件。

1.2系统性能本系统的性能指标主要由两大关系所决定,设定值与A/D采样显示值(系统内部测量值)的关系。

内部测量值与实际测量值的关系,而后者是所有仪表所存在的误差。

1.3恒流原理数模转换芯片AD7543是12位电流输出型,其中OUT1和OUT2是电流的输出端。

为了实现数控的目的,可以通过微处理器控制AD7543的模拟量输出,从而间接改变电流源的输出电流。

从理论上来说,通过控制AD7543的输出等级,可以达到1mA的输出精度。

但是本系统恒流源要求输出电流范围是20mA~2000mA,而当器件处于2000mA的工作电流时,属于工作在大电流状态,晶体管长时间工作在这种状态,集电结发热严重,导致晶管值下降,从而导致电流不能维持恒定。

为了克服大电流工作时电流的波动,在输出部分增加了一个反馈环节来控制电流稳定,减小电流的波动,此反馈回路采用数字形式反馈,通过微处理器的实时采样分析后,根据实际输出对电流源进行实时调节。

经测试表明,采用常用的大功率电阻作为采样电阻R0,输出电流波动比较大,而选用锰铜电阻丝制作采样电阻,电流稳定性得到了改善。

电路反馈原理如下图所示。

2 总体方案论证与比较方案一:采用各类数字电路来组成键盘控制系统,进行信号处理,如选用CPLD等可编程逻辑器件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数控直流恒流源的设计摘要直流恒流源是提供稳定直流电流的电源装置,是科学实验和设备调试中的一种必备设备。

本文介绍了采用AT89C51单片机为主控制器,通过键盘来设置直流恒流源的输出电流,并由数码管显示电流设定值的数控直流恒流源。

本系统由单片机程控设定数字信号经过D/A转换器输出模拟量,再经过V/I转换电路的转换输出不同的电流。

输出电流范围为10~100mA,电流设置步进为1mA,输出电流调整率≤2%。

本文主要分析了数控直流恒流源系统的设计需求,阐述了数控直流恒流源的软硬件的设计原则,介绍了数控直流恒流源各模块电路的功能及设计思路,完成了数控直流恒流源系统的全部设计,给出了完整的电路图和程序。

本文设计的重点是单片机主控系统和D/A转换电路,设计的难点是高线性、高稳定度的电压/电流转换电路(V/I转换电路)。

测试结果表明,本系统能满足需要高稳定度的小功率直流恒流源领域的应用要求。

关键词数控恒流源 V/I转换ABSTRACTNumerical control DC constant current source is to provide a stable DC power devices, and equipment for scientific experiments debugging necessary equipment. This paper instructed the numerical control DC constant current source which makes use of the AT89C51 version single chip microcontroller is the main controller in this system, while the set value and the real output current can be displayed by LED. In this system, the digitally programmable signal from Single Chip Micro controller is converted to analog value by D/A converter, and then transited by voltage/current converter circuit, so adjustable output different current. Output current range of 10~100mA, current set of 1mA step, the output current adjustment rate of less than 2%.This paper analyzes the numerical control DC constant current source system design needs, expounded numerical-controlled DC constant current source of the hardware and software design principles, instructed the numerical-controlled DC constant current source circuit of the module function and design ideas, completed the numerical-controlled DC current source of all design, and the circuit is complete and procedures. This paper focuses on the design of the control system microcontroller and D/A Conversion Circuit, The difficulty in the design of high linearity, high stability of the voltage/current converter circuit (V/I Conversion Circuit). The test results have showed that it can be applied in need areas of constant current source with high stability and low power.KEY WORDS numerical control constant current source V/I convert目录前言 (1)第1章系统总体设计 (2)1.1 系统设计任务与要求 (2)1.1.1 系统设计任务 (2)1.1.2 系统设计要求 (2)1.2 重点研究内容与实现方法 (2)1.2.1 重点研究内容 (2)1.2.2 实现途径及方法 (3)1.3 系统总体方案设计 (3)1.3.1 主控模块 (3)1.3.2 键盘与显示模块 (4)1.3.3 恒流源模块 (4)1.3.4 存储器扩展模块 (4)1.3.5 电源模块 (5)1.3.6 系统原理框图 (5)第2章系统硬件各功能模块的设计 (6)2.1 主控模块的设计 (6)2.1.1 AT89C51单片机简介 (6)2.1.2 D/A转换电路的设计 (7)2.1.3 恒流源电路的设计 (9)2.1.4 数据存储器的扩展 (10)2.1.5 系统资源分配 (11)2.2 人机接口的设计 (12)2.2.1 键盘的设计 (12)2.2.2 显示电路的设计 (14)2.3 系统抗干扰设计 (15)2.3.1 看门狗电路的设计 (15)2.3.2 电源供电系统的设计 (16)2.3.3 基准电压的设计 (17)第3章控制软件的设计 (19)3.1 主程序的设计 (19)3.1.1 读写EEPROM子程序的设计 (19)3.1.2 键盘处理子程序的设计 (20)3.1.3 D/A转换子程序的设计 (20)3.2 键盘中断服务程序的设计 (21)3.3 显示中断服务程序的设计 (21)3.1.1 正常显示程序模块 (21)3.1.2 闪烁显示程序模块 (21)第4章系统调试 (28)4.1 硬件仿真调试 (28)4.2 软件的调试 (31)4.3 数据测试及误差分析 (35)第5章结论 (41)致谢 (42)参考文献 (43)附录1:电路原理图 (44)附录2:源程序 (48)附录3:英文原文 (62)附录4:中文译文 (69)前言直流恒流源是提供稳定直流电流的电源装置,是科学实验和设备调试中的一种必备设备。

所谓恒流源,是指对应于一定的负载变化其所产生的电流变化趋于零。

它能在外部电路的阻抗特性发生变化时,仍输出恒定的电流,具有很高的动态输出电阻。

目前使用的直流恒流源大部分都是利用分立器件组成,其体积大,效率低,可靠性差,操作使用不方便,自我保护功能不够完善,故障率较高。

随着电子技术的发展和数字电路应用领域的扩展,现今社会产品智能化、数字化已成为其发展的趋势。

数控直流恒流源作为测试/调试仪器在生产实际中有着广泛的用途,如:工业上的电控调节阀,其阀门开度受输入的控制电流大小控制,对于Ⅰ型表来说这个电流是0-10mA,对于Ⅱ型表来说这个电流是4-20mA。

恒流源成为这些设备调试的必备工装。

在科学实验、电磁学测量、传感器供电等领域都需要恒流源提供稳定的标准电流。

以单片机系统为核心而设计的新一代数控直流恒流源不但电路简单、结构紧凑、价格低廉,而且单片机具有计算和控制能力,可对各种采样数据进行处理,控制其输出电路,从而可减少或排除由于干扰信号引起的输出电流波动,提高输出电流的稳定性。

目前国内一般使用的恒流电流源往往是固定的一种电流值,或只能设定有限数值的电流值,普遍存在着调节范围小、热稳定性差等缺点。

本设计结合单片机的控制技术、D/A转换技术和集成电路技术,设计一种数控的直流恒流源。

它利用单片机作为核心控制器,通过键盘设置所需要的电流值。

电流值取值精度高,使用方便灵活,它可以提供10~100mA 的恒流输出,并具有1mA的步进电流调整功能,在0~100Ω负载下输出电流调整率≤2%。

基于单片机的数控直流恒流源在科研和生产实际中应用前景广阔,可作为实验仪器或生产的必备工装在各种需要的场合推广使用。

第1章系统总体设计1.1 系统设计任务与要求1.1.1系统设计任务该数控直流恒流源采用51系列单片机为主控芯片,通过D/A转换实现对输出电流的控制。

主要技术指标:输出电流直流10~100mA可调整(0~100Ω负载下,以1mA 为步进单位);在0~100Ω负载下输出电流调整率≤2%。

该恒流源由单片机系统、D/A转换器、受控恒流源、键盘与显示电路、看门狗电路和电源电路等构成。

1.1.2系统设计要求根据设计任务,详细分析数控直流恒流源的设计需求,并进行软硬件的总体设计。

在完成总体设计后,进行硬件功能模块的设计,利用电子CAD软件完成数控直流恒流源全部电路的设计工作,同时进行控制软件的流程设计及编制工作。

利用Keil51软件完成数控直流恒流源全部控制软件的仿真调试工作。

利用Proteus软件完成大部分功能模块的电路仿真。

1.2重点研究内容与实现方法1.2.1重点研究内容本设计包括硬件设计和软件设计。

硬件设计主要包括单片机主控系统、D/A转换器、受控恒流源、键盘与显示电路、看门狗电路和电源电路等,其中硬件设计重点是单片机主控系统和D/A 转换器,设计难点包括高线性、高稳定度的电压/电流转换电路(V/I转换电路)。

软件设计主要包括主控程序和中断服务程序。

主要完成系统初始化、键盘扫描、数据处理、电流值显示、输出电流控制和看门狗电路控制等工作,同时还应考虑如何实现断电后保存最后一次设定的电流值的问题。

1.2.2实现途径及方法本系统主要通过资料查找、系统需求分析、系统总体设计,软硬件总体设计、详细的软件与硬件设计、系统仿真与调试、资料整理等步骤来完成。

本系统利用Protel软件完成硬件电路设计工作,利用Keil51软件完成系统控制软件的编译调试工作,通过Proteus软件完成所有功能模块的电路仿真。

1.3系统总体方案设计按照系统设计要求,在保证实现的基础上,要尽可能降低系统成本。

整个系统从功能上划分为5个模块,并分别对每个模块进行方案论证比较。

1.3.1主控模块方案一:采用各类数字电路来组成键盘控制系统,进行信号处理,如选用CPLD等可编程逻辑器件。

相关文档
最新文档