等腰直角三角形模型三垂直模型
2023届初中数学中考复习-一线三垂直与一线三等角

一线三垂直与一线三等角一、基础知识回顾1) 三角形内角和定理:三角形三个内角和等于180°2)1 平角= 180 度二、模型的概述:1) 一线三垂直模型[模型概述] 只要出现等腰直角三角形,可以过直角点作一条直线,然后过45°顶点作直线的垂线,构造三垂直,所得两个直角三角形全等。
根据全等三角形倒边,得到线段之间的数量关系。
基础构造1构造2一线三垂直模型一:如图A B ⊥BC,AB = BC,CE ⊥DE,AD ⊥DE,则∆ABD ≌∆BCE,DE =AD +EC证明:∵CE ⊥DE,AD ⊥DE,AB ⊥BC∴∠CEB = ∠ADB = ∠ABC = 90°∴∠1 + ∠2 = 90°, ∠2 + ∠3 = 90°∴∠1 = ∠3∠1 = ∠3在∆ABD 和∆BCE 中,〈∠CEB = ∠ADB = 90°AB = BC∴∆ABD ≌∆BCE(AAS)∴AD = BE,EC = BD则DE = BE + BD = AD + EC一线三垂直模型二:如图A B ⊥BC,AB = BC,CE ⊥DE,AD ⊥DE,则∆ABD ≌∆BCE,DE =AD - EC证明:∵CE ⊥DE,AD ⊥DE,AB ⊥BC∴∠CEB = ∠ADB = ∠ABC = 90°∴∠A + ∠ABD = 90°, ∠ABD + ∠CBE = 90°∴∠A = ∠CBE∠A = ∠CBE在∆ABD 和∆BCE 中,〈∠CEB = ∠ADB = 90°AB = BC∴∆ABD ≌∆BCE(AAS)∴AD = BE,EC = BD则DE = BE - BD = AD - EC一线三垂直其它模型1) 图1,已知∠AOC = ∠ADB = ∠CED = 90°, AB = DC,得∆ADB ≌∆DEC2) 图2,延长DE 交AC 于点F,已知∠DBE = ∠ABC = ∠EFC = 90°, AC = DE,得∆ABC ≌∆DBE图1图22) 一线三等角模型[模型概述] 三个等角的顶点在同一条直线,这个角可以是直角,也可以是锐角或钝角。
三垂直模型

三垂直模型知识导航三垂直模型是经典的全等三角形模型之一,综合性较强。
解题方法通常是根据三垂直倒角来证明题目中有一对边相等的两个全等三角形。
一线三等角是三垂直模型的变式,包括一线三等锐角、一线三直角、一线三等钝角,这类型题型通常是利用三垂直模型原理进行倒角,证明两个三角形全等。
【核心考点】三垂直模型1. 如图,AC CE =,90ACE ∠=︒,AB BD ⊥,ED BD ⊥,6AB cm =,2DE cm =,则BD等于( )A .6cmB .8cmC .10cmD .4cm【解答】 解:AB BD ⊥,ED BD ⊥,90B D ACE ∴∠=∠=∠=︒,90BAC ACB ∴∠+∠=︒,90ACB ECD ∠+∠=︒, BAC ECD ∴∠=∠,在Rt ABC ∆与Rt CDE ∆中, B D BAC DCE AC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, Rt ABC Rt CDE(AAS)∴∆≅∆,2BC DE cm ∴==,6CD AB cm ==, 268BD BC CD cm ∴=+=+=,故选:B .2. 如图,已知ABC CDE ∆≅∆,90B D ∠=∠=︒,且B ,C ,D 三点在同一条直线.(1)试说明:BD AB ED =+.(2)试判定ACE ∆的形状, 并说明理由 .【解答】证明:(1)Rt ABC Rt CDE ∆≅∆,BC DE ∴=,AB CD =, BD CD CB =+, BD AB ED ∴=+.(2)结论:ACE ∆是等腰直角三角形 . 理由:Rt ABC Rt CDE ∆≅∆,90B D ∠=∠=︒,ACB CED ∴∠=∠,BAC ECD ∠=∠,AC EC =, 90BAC ACB ∠+∠=︒, 90ECD ACB ∴∠+∠=︒, 90ACB ∴∠=︒,ACE ∴∆是等腰直角三角形 .3. 已知在平面直角坐标系中,ABC ∆的顶点A 、C 分别在y 轴、x 轴上,90ACB ∠=︒,AC BC =.如图,当(0,2)A -,(1,0)C ,点B 在第四象限时,则点B 的坐标为_______.【解答】解:作BD x ⊥轴,90ACO CAO ∠+∠=︒,90ACO BCD ∠+∠=︒, CAO BCD ∴∠=∠,在AOC ∆和CDB ∆中, 90AOC CDB CAO BCDAC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()AOC CDB AAS ∴∆≅∆,1DB OC ∴==,2CD AO ==, 3OD ∴=,∴点B 的坐标为(3,1)-.故答案为(3,1)-.4. 如图,四边形ABCD ,EFGH ,NHMC 都是正方形,边长分别为2,3,m ,A ,B ,N ,E ,F 五点在同一直线上,则正方形CNHM 的边长m 是多少?【解答】解:四边形ABCD 、EFGH 、NHMC 都是正方形,90CNB ENH ∴∠+∠=︒,又90ENH NHE ∠+∠=︒,CNB EHN ∴∠=∠,在CBN ∆和NEH ∆中, CBN NEH CNB NHE CN NH ∠=∠⎧⎪∠=∠⎨⎪=⎩CBN NEH ∴∆≅∆, HE BN b ∴==,故在Rt CBN ∆中,222BC BN CN +=, 又2a =,3b =,m ∴=则正方形CNHM 的边长m5. 已知:在平面直角坐标系中,等腰直角ABC ∆顶点A 、C 分别在y 轴、x 轴上,且90ACB ∠=︒,AC BC =.(1)如图1,当(0,2)A -,(1,0)C ,点B 在第四象限时,先写出点B 的坐标,并说明理由. (2)如图2,当点C 在x 轴正半轴上运动,点(0,)A a 在y 轴正半轴上运动,点(,)B m n 在 第四象限时,作BD y ⊥轴于点D ,试判断a ,m ,n 之间的关系,请证明你的结论.【解答】解:(1)点B 的坐标为(3,1)-. 理由如下:作BD x ⊥轴于D ,90BOC BDC ∴∠=︒=∠, 90OAC ACO ∴∠+∠=︒, 90ACB ∠=︒,AC BC =, 90ACO BCD ∴∠+∠=︒, OAC BCD ∴∠=∠,在AOC ∆和CDB ∆中,90OAC BCDAOC CDB AC BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,()AOC CDB AAS ∴∆≅∆,AO CD ∴=,OC BD =,(0,2)A -,(1,0)C ,2AO CD ∴==,1OC BD ==,3OD ∴=,B 在第四象限,∴点B 的坐标为(3,1)-;(2)0a m n ++=. 证明:作BE x ⊥轴于E ,90BEC AOC ∴∠=∠=︒, 1290∴∠+∠=︒, 90ACB ∠=︒, 1390∴∠+∠=︒, 23∴∠=∠,在CEB ∆和AOC ∆中,23BEC AOC AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()CEB AOC AAS ∴∆≅∆,AO CE a ∴==,BE CO =, BE x ⊥轴于E ,//BE y ∴轴,BD y ⊥轴于点D ,EO y ⊥轴于点O ,EO BD m ∴==, BE n ∴=-,a m n ∴+=-,0a m n ∴++=.6. 如图1,ABC ∆中,90BAC ∠=︒,AB AC =,直线l 经过点A ,分别过点B ,C 作直线l 的垂线,垂足分别为D ,E ,求证:DE BD CE =+;(1)将直线l 绕点A 逆时针旋转到直线l 与BC 相交,且45BAD ∠<︒(如图2)时,其它条件不变,请你探索DE ,BD ,CE 之间的数量关系,并证明之;(2)继续旋转,使4590BAE ︒<∠<︒(如图3),其它条件不变,此时(1)中的结论还成立吗?若成立,给出证明;若不成立,DE ,BD ,CE 之间又怎样的数量关系?(不需证明).【解答】证明:如图1,BD l ⊥,CE l ⊥,90BDA CEA ∴∠=∠=︒, 90ABD DAB ∴∠+∠=︒. 90BAC ∠=︒, 90DAB CAE ∴∠+∠=︒, ABD CAE ∴∠=∠.在ABD ∆和CAE ∆中 BDA CEA ABD CAE AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABD CAE AAS ∴∆≅∆,AD CE ∴=,BD AE =.DE AD AE =+, DE CE BD ∴=+;(1)DE CE BD =-理由:如图2,BD l ⊥,CE l ⊥,90BDA CEA ∴∠=∠=︒,90ABD DAB ∴∠+∠=︒. 90BAC ∠=︒, 90DAB CAE ∴∠+∠=︒,ABD CAE ∴∠=∠.在ABD ∆和CAE ∆中 BDA CEA ABD CAE AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABD CAE AAS ∴∆≅∆,AD CE ∴=,BD AE =DE AD AE =-, DE CE BD ∴=-;(2)DE BD CE =-.理由:如图3,BD l ⊥,CE l ⊥,90BDA CEA ∴∠=∠=︒, 90ABD DAB ∴∠+∠=︒. 90BAC ∠=︒, 90DAB CAE ∴∠+∠=︒, ABD CAE ∴∠=∠.在ABD ∆和CAE ∆中 BDA CEA ABD CAE AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABD CAE AAS ∴∆≅∆,AD CE ∴=,BD AE =DE AE AD =-, DE BD CE ∴=-.7. 如图所示,已知ABC ∆中,90ABC ∠=︒,AB BC =,三角形的顶点分别在相互平行的三条直线1l 、2l 、3l 上,且115∠=︒,则2∠=_________度.【解答】解:123////l l l ,13∴∠=∠,24∠=∠, 1234∴∠+∠=∠+∠. 90ABC ∠=︒,AB BC =, 45BAC BCA ∴∠=∠=︒. 34BAC ∠+∠=∠, 3445∴∠+∠=︒, 1245∴∠+∠=︒. 115∠=︒, 230∴∠=︒.故答案为:30.8.问题背景:(1)如图①,已知ABC∠=︒,AB AC=,直线m经过点A,BAC∆中,90=+.BD⊥直线m,CE⊥直线m,垂足分别为点D、E,求证:DE BD CE拓展延伸:(2)如图②,将(1)中的条件改为:在ABC=,D、A、E∆中,AB AC 三点都在直线m上,并且有BDA AEC BAC∠=∠=∠请写出DE、BD、CE三条线段的数量关系.(不需要证明)实际应用:(3)如图③,在ACB-,=,点C的坐标为(2,0)∆中,90∠=︒,AC BCACB点A的坐标为(6,3)-,请直接写出B点的坐标.【解答】(1)证明:BD AD ⊥,90ABD BAD ∴∠+∠=︒,90BAC ∠=︒,90CAE BAD ∴∠+∠=︒,ABD CAE ∴∠=∠,在ABD ∆和CAE ∆中,90ABD CAEADB CEA AB CA∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,()ABD CAE AAS ∴∆≅∆AE BD ∴=,AD CE =,DE AD AE BD CE ∴=+=+;(2)解:DE BD CE =+,理由如下:在ABD ∆中,180ABD ADB BAD ∠=︒-∠-∠, 180CAE BAC BAD ∠=︒-∠-∠,BDA AEC ∠=∠, ABD CAE ∴∠=∠,在ABD ∆和CAE ∆中,ABD CAEBDA AEC AB CA∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABD CAE AAS ∴∆≅∆AE BD ∴=,AD CE =,DE AD AE BD CE ∴=+=+;(3)解:如图③,作AE x ⊥轴于E ,BF x ⊥轴于F , 由(1)可知,AEC CFB ∆≅∆,3CF AE ∴==,4BF CE OE OC ==-=, 1OF CF OC ∴=-=,∴点B 的坐标为(1,4).。
专题 全等三角形模型——三垂直与三等角(解析版)

全等三角形模型——三垂直与三等角三垂直模型如右图已知:∠ D=∠ E=∠ BCA=90,BC=BA ;求证:△BCD ≌△CAE.∵∠D+∠ DCB+∠ B=180°,∠BCA+∠ DCB+∠ ACE=180°,且∠ D=∠BCA.∴∠ B=∠ ACE .又 ∵∠ D=∠ E ,BC=BA.∴△BCD ≌△CAE.常见的三垂直模型:1.如图,ABC D 是等腰直角三角形,DE 过直角顶点A ,90D E Ð=Ð=°,则下列结论正确的个数有( )①CD AE =;②12Ð=Ð;③34Ð=Ð;④AD BE =.A .1个B .2个C .3个D .4个【分析】根据直角三角形的性质推出23Ð=Ð,然后利用AAS 证明ABE D 和CAD D 全等,根据全等三角形对应边相等,全等三角形对应角相等即可对各小题进行判断.【解答】解:90D Ð=°Q ,1390\Ð+Ð=°,ABC D Q 是等腰直角三角形,A 为直角顶点,121809090\Ð+Ð=°-°=°,AB AC =,23\Ð=Ð,在ABE D 和CAD D 中,2390D E AB AC Ð=ÐìïÐ=Ð=°íï=î,()ABE CAD AAS \D @D ,CD AE \=,AD BE =,14Ð=Ð,故①小题正确,②小题错误,③小题错误,④小题正确,所以结论正确的有①④共2个.故选:B .2.(2022秋•文登区期中)在ABC D 中,90ACB Ð=°,BC AC =.(1)如图①,DE 是过点C 的一条直线,且A ,B 在DE 的同侧,AD DE ^于D ,BE DE ^于E .写出AD ,BE ,ED 间的数量关系,并写明理由;(2)如图②,DE 是过点C 的一条直线,且A ,B 在DE 的两侧,AD DE ^于D ,BE DE ^于E .写出AD ,BE ,ED 间的数量关系,并写明理由.【分析】(1)由“AAS ”可证ADC CEB D @D ,可得CD BE =,AD CE =,可求DE AD BE =+;(2)由“AAS ”可证ADC CEB D @D ,可得CD BE =,AD CE =,可求AD BE DE =+.【解答】解:(1)AD BE ED +=.理由如下:AD DE ^Q ,BE DE ^,90ADC CEB \Ð=Ð=°,90DAC ACD \Ð+Ð=°,90ACB Ð=°Q ,90BCE ACD \Ð+Ð=°,DAC BCE\Ð=Ð,Q,AC CB=\D@DADC CEB AAS()=,\=,AD CECD BE\=+=+.ED EC CD AD BE=+.(2)AD DE BE^,Q,BE DE^AD DEADC CEB\Ð=Ð=°,90\Ð+Ð=°,DAC ACD90Q,Ð=°90ACB\Ð+Ð=°,BCE ACD90\Ð=Ð,DAC BCEQ,AC CB=\D@D()ADC CEB AAS=,\=,AD CECD BE\==+=+.AD CE CD DE DE BE3.(2020秋•通河县期末)综合与实践.积累经验(1)我们在第十二章《全等三角形》中学习了全等三角形的性质和判定,在一些探究题中经常用以上知识转化角和边,进而解决问题.例如:我们在解决:“如图1,在ABC=,线段DEÐ=°,AC BCD中,90ACB^于点E.求证:AD CE经过点C,且AD DE^于点D,BE DE=”这个问题时,只要证明=,CD BED@D,即可得到解决,请写出证明过程;ADC CEB类比应用(2)如图2,在平面直角坐标系中,ABC D 中,90ACB Ð=°,AC BC =,点A 的坐标为(0,2),点C 的坐标为(1,0),求点B 的坐标.拓展提升(3)如图3,ABC D 在平面直角坐标系中,90ACB Ð=°,AC BC =,点A 的坐标为(2,1),点C 的坐标为(4,2),则点B 的坐标为 .【分析】(1)证明()ADC CEB AAS D @D ,由全等三角形的性质可得出答案;(2)过B 作BD x ^轴于D ,先证CAO BCD Ð=Ð,再证明AOC CDB D @D ,可得1DB OC ==,2CD AO ==,即可解决问题;(3)过点C 作CF x ^轴于点F ,过点B 作BE CF ^交FC 的延长线于点E ,过点A 作AD CF ^于点D ,由全等三角形的性质得出BE CD =,AD CE =,则可得出答案.【解答】(1)证明:90ACB Ð=°Q ,90ACD BCE \Ð+Ð=°,而AD DE ^于D ,BE DE ^于E ,90ADC CEB \Ð=Ð=°,90BCE CBE Ð+Ð=°,ACD CBE \Ð=Ð,在ADC D 和CEB D 中,ADC CEB ACD CBE AC CB Ð=ÐìïÐ=Ðíï=î,()ADC CEB AAS \D @D ,AD CE \=,DC BE =;(2)解:过B 作BD x ^轴于D ,如图2所示:(0,2)A Q ,(1,0)C ,2OA \=,1OC =,90ACO CAO Ð+Ð=°Q ,90ACO BCD Ð+Ð=°,CAO BCD \Ð=Ð,在AOC D 和CDB D 中,90AOC CDB CAO BCDAC CB Ð=Ð=°ìïÐ=Ðíï=î,()AOC CDB AAS \D @D ,1DB OC \==,2CD AO ==,3OD OC CD \=+=,\点B 的坐标为(3,1).(3)解:如图3,过点C 作CF x ^轴于点F ,过点B 作BE CF ^交FC 的延长线于点E ,过点A 作AD CF ^于点D ,同(1)(2)可得ACD CBE D @D ,BE CD \=,AD CE =,(2,1)A Q ,(4,2)C ,2AD CE \==,1DF =,1CD BE \==,\点B 的纵坐标为224CE CF +=+=,横坐标为413-=,(3,4)B \.故答案为:(3,4).4.(2021秋•临沂期末)如图,90ACB Ð=°,AC BC =,AD CE ^,BE CE ^,垂足分别为D ,E ,2.5AD cm =,1BE cm =,求DE的长.【分析】先证明BCE CAD D @D ,得1BE CD cm ==, 2.5CE AD cm ==,然后根据线段和差定义即可解决.【解答】解:AD CE ^Q ,BE CE ^,90ADC E \Ð=Ð=°,90ACD CAD \Ð+Ð=°,90ACB Ð=°Q ,90ACD BCE \Ð+Ð=°,BCE CAD \Ð=Ð,在BCE D 和CAD D 中,90E ADC BCE CAD CB CA Ð=Ð=°ìïÐ=Ðíï=î,()BCE CAD AAS \D @D ,1()CD BE cm \==, 2.5()CE AD cm ==,2.51 1.5()DE CE CD cm \=-=-=.5.(2020秋•赫山区期末)如图所示,直线MN 一侧有一个等腰Rt ABC D ,其中90ACB Ð=°,CA CB =.直线MN 过顶点C ,分别过点A ,B 作AE MN ^,BF MN ^,垂足分别为点E ,F ,CAB Ð的角平分线AG 交BC 于点O ,交MN 于点G ,连接BG ,恰好满足AG BG ^.延长AC ,BG 交于点D .(1)求证:CE BF =;(2)求证:AC CO AB +=.【分析】(1)证得EAC FCB Ð=Ð,根据AAS 证明AEC CFB D @D 即可.(2)证明()ACO BCD ASA D @D ,由全等三角形的性质得出CO CD =.证得AD AB =,则可得出结论.【解答】证明:(1)AE MN ^Q ,BF MN ^,又90ACB Ð=°Q ,90EAC ECA FCB ECA \Ð+Ð=Ð+Ð=°.EAC FCB \Ð=Ð.在AEC D 和CFB D 中,90AEC CFB EAC FCBAC CB Ð=Ð=°ìïÐ=Ðíï=î,()AEC CFB AAS \D @D ,CE BF \=;(2)90ACB Ð=°Q ,AG BG ^,CAO CBD \Ð=Ð.在ACO D 和BCD D 中,90ACO BCD AC BCCAO CBD Ð=Ð=°ìï=íïÐ=Ðî,()ACO BCD ASA \D @D ,CO CD \=.AC CO AC CD AD \+=+=.AG Q 平分CAB Ð,AG BG ^,D ABD \Ð=Ð.AD AB \=.综上,AC CO AB +=.6.(2022春•清苑区期末)通过对下面数学模型的研究学习,解决下列问题:【模型呈现】(1)如图1,90BAD Ð=°,AB AD =,过点B 作BC AC ^于点C ,过点D 作DE AC ^于点E .由12290D Ð+Ð=Ð+Ð=°,得1D Ð=Ð.又90ACB AED Ð=Ð=°,可以推理得到ABC DAE D @D .进而得到AC = ,BC = .我们把这个数学模型称为“K 字”模型或“一线三等角”模型;【模型应用】(2)①如图2,90BAD CAE Ð=Ð=°,AB AD =,AC AE =,连接BC ,DE ,且BC AF ^于点F ,DE 与直线AF 交于点G .求证:点G 是DE 的中点;②如图3,在平面直角坐标系xOy 中,点A 的坐标为(2,4),点B 为平面内任一点.若AOB D 是以OA 为斜边的等腰直角三角形,请直接写出点B 的坐标.【分析】(1)根据全等三角形的对应边相等解答;(2)①作DM AF ^于M ,EN AF ^于N ,证明ABF DAM D @D ,根据全等三角形的性质得到EN DM =,再证明DMG ENG D @D ,根据全等三角形的性质证明结论;②过点B 作DC x ^轴于点C ,过点A 作DE y ^轴于点E ,仿照①的证明过程解答.【解答】解:(1)12290D Ð+Ð=Ð+Ð=°Q ,1D \Ð=Ð,在ABC D 和DAE D 中,1D ACB DEA AB AD Ð=ÐìïÐ=Ðíï=î,()ABC DAE SAS \D @D AC DE \=,BC AE =,故答案为:DE ;AE ;(2)①如图2,作DM AF ^于M ,EN AF ^于N ,BC AF ^Q ,90BFA AMD \Ð=Ð=°,90BAD Ð=°Q ,12190B \Ð+Ð=Ð+Ð=°,2B \Ð=Ð,在ABF D 与DAM D 中,BFA AMD Ð=Ð,2BFA AMD B AB AD Ð=ÐìïÐ=Ðíï=î,()ABF DAM AAS \D @D ,AF DM \=,同理,AF EN =,EN DM \=,DM AF ^Q ,EN AF ^,90GMD GNE \Ð=Ð=°,在DMG D 与ENG D 中,DMG ENG DGM EGNDM EN Ð=ÐìïÐ=Ðíï=î()DMG ENG AAS \D @D ,DG EG \=,即点G 是DE 的中点;②如图3,ABO D 和△AB O ¢是以OA 为斜边的等腰直角三角形,过点B 作DC x ^轴于点C ,过点A 作DE y ^轴于点E ,两直线交于点D ,则四边形OCDE 为矩形,DE OC \=,OE CD =,由①可知,ADB BCO D @D ,AD BC \=,BD OC =,22BD OC DE AD BC \===+=+,24BC BC \++=,解得,1BC =,3OC =,\点B 的坐标为(3,1),同理,点B ¢的坐标为(1,3)-,综上所述,AOB D 是以OA 为斜边的等腰直角三角形,点B 的坐标为(3,1)或(1,3)-.7.如图,(2,0)A -.(1)如图①,在平面直角坐标系中,以A 为顶点,AB 为腰在第三象限作等腰Rt ABC D ,若(0,4)B -,求C 点的坐标;(2)如图②,P 为y 轴负半轴上一个动点,以P 为顶点,PA 为腰作等腰Rt APD D ,过D 作DE x ^轴于E 点,当P 点沿y 轴负半轴向下运动时,试问OP DE -的值是否发生变化?若不变,求其值;若变化,请说明理由.(3)如图③,已知点F 坐标为(4,4)--,G 是y 轴负半轴上一点,以FG 为直角边作等腰Rt FGH D ,H 点在x 轴上,90GFH Ð=°,设(0,)G m ,(,0)H n ,当G 点在y 轴的负半轴上沿负方向运动时,m n +的和是否变化?若不变,求其值;若变化,请说明理由.【分析】(1)作CD x ^轴于D ,证明ACD BAO D @D ,根据全等三角形的性质得到2DC OA ==,4AD OB ==,计算即可;(2)作DF y ^轴于F ,证明APO DPF D @D ,得到2PF OA ==,DF OP =,结合图形计算;(3)作PM x ^轴于M ,PN y ^轴于N ,仿照(2)的证明过程解答.【解答】解:(1)作CD x ^轴于D ,90ACD CAD \Ð+Ð=°,90CAB Ð=°Q ,90BAO CAD \Ð+Ð=°,BAO ACD \Ð=Ð,在ACD D 和BAO D 中,90ADC BOA ACD BAOAC BA Ð=Ð=°ìïÐ=Ðíï=î,ACD BAO \D @D ,2DC OA \==,4AD OB ==,6OD \=,C \点的坐标为(6,2)--;(2)OP DE -的值不变,值为2,理由如下:作DF y ^轴于F ,90PDF DPF \Ð+Ð=°,90APD Ð=°Q ,90APO DPF \Ð+Ð=°,APO PDF \Ð=Ð,在APO D 和DPF D 中,APO DPF AOP PFD PA PD Ð=ÐìïÐ=Ðíï=î,APO DPF \D @D ,2PF OA \==,DF OP =,2OP DE OP OF PF \-=-==;(3)m n +的和不变,值为8-,理由如下:作PM x ^轴于M ,PN y ^轴于N ,由(2)可知,HMF GNF D @D ,GN MH \=,4FN FM OM ===,()()()8m n OG OH GN ON MH OM ON OM +=--=-+-+=-+=-.三等角模型“一线三等角”是一个常见的全等模型,指的是有三个等角的顶点在同一条直线上构成的全等模型,这个角可以是直角,也可以是锐角或钝角.三等角的推导过程:已知:∠ A=∠ B=∠ CPD ,AC=PB ;求证:△ACP ≌△BPD.∵∠A+∠ APC+∠ C=180°,∠CPD+∠ APC+∠ DPB=180°,且∠ A=∠CPD.∴∠ C=∠ DPB .又∵∠ A=∠ B ,AC=PB.∴△ACP ≌△BPD.常见的一线三等角模型:8.如图,点D ,A ,E 在一条直线上,AB AC =,60ADB AEC BAC Ð=Ð=Ð=°,试探究BD ,CE 与DE之间的数量关系.【分析】由题意可证BAD ACE Ð=Ð,ABD CAE Ð=Ð,且AB AC =,可证ABD CAE D @D ,可得AD CE =,BD AE =,即可求BD ,CE 与DE 之间的数量关系.【解答】解:DE BD CE=+理由如下:BAE D ABD BAC CAE Ð=Ð+Ð=Ð+ÐQ ,且60ADB AEC BAC Ð=Ð=Ð=°,ABD CAE\Ð=ÐDAC DAB BAC AEC ACE Ð=Ð+Ð=Ð+ÐQ ,且60ADB AEC BAC Ð=Ð=Ð=°,BAD ACE \Ð=Ð,且ABD CAE Ð=Ð,AB AC=()ABD CAE ASA \D @D AD CE \=,BD AE=DE AD AE=+Q DE CE BD\=+9.(2022•鹿城区二模)如图,在ABC D 中,AB AC =,点D 在BC 边上,点E 在AC 边上,连接AD ,DE .已知12Ð=Ð,AD DE =.(1)求证:ABD DCE D @D ;(2)若3BD =,5CD =,求AE 的长.【分析】(1)根据AAS 可证明ABD DCE D @D ;(2)得出5AB DC ==,3CE BD ==,求出5AC =,则AE 可求出.【解答】(1)证明:AB AC =Q ,B C \Ð=Ð,在ABD D 与DCE D 中,12B C AD DE Ð=ÐìïÐ=Ðíï=î,()ABD DCE AAS \D @D ;(2)解:ABD DCE D @D Q ,5AB DC \==,3CE BD ==,AC AB =Q ,5AC \=,532AE AB EC \=-=-=.10.如图,D ,A ,E 三点都在一条直线上,且BDA AEC BAC Ð=Ð=Ð,AB AC =,试探究BD ,CE 与DE 之间的数量关系.【分析】由“AAS ”可证ABD CAE D @D ,可得AD CE =,BD AE =,可得结论.【解答】解:DE BD CE =+,理由如下:BAE D ABD BAC CAE Ð=Ð+Ð=Ð+ÐQ ,且ADB AEC BAC Ð=Ð=Ð,ABD CAE \Ð=Ð,在ABD D 和CAE D 中,ABD CAE ADB CEA AB AC Ð=ÐìïÐ=Ðíï=î,()ABD CAE AAS \D @D ,AD CE \=,BD AE =,DE AD AE =+Q ,DE CE BD \=+.11.(2021秋•东至县期末)如图,在ABC D 中,AB AC =,D 、A 、E 三点都在直线m 上,并且有BDA AEC BAC a Ð=Ð=Ð=,若10DE =,3BD =,求CE 的长.【分析】由AEC BAC a Ð=Ð=,推出ECA BAD Ð=Ð,再根据AAS 证明BAD ACE D @D 得CE AD =,3AE BD ==,即可得出结果.【解答】解:AEC BAC a Ð=Ð=Q ,180ECA CAE a \Ð+Ð=°-,180BAD CAE a Ð+Ð=°-,ECA BAD \Ð=Ð,在BAD D 与ACE D 中,BDA AEC BAD ACE AB AC Ð=ÐìïÐ=Ðíï=î,()BAD ACE AAS \D @D ,CE AD \=,3AE BD ==,10DE AD AE =+=Q ,1037AD DE AE DE BD \=-=-=-=.7CE \=.12.(2020秋•江津区期末)问题1:如图①,在四边形ABCD 中,90B C Ð=Ð=°,P 是BC 上一点,PA PD =,AB BP BC +=.求证:90APD Ð=°;问题2:如图②,在三角形ABC 中,45B C Ð=Ð=°,P 是AC 上一点,PE PD =,且90EPD Ð=°.求AE AP PC+的值.【分析】问题1:证明Rt ABP Rt PCD(HL)D @D ,由全等三角形的性质得出APB PDC Ð=Ð,则可得出结论;问题2:过D 点作DF AC ^于点F ,证明()APE FDP AAS D @D ,由全等三角形的性质得出AE PF =,AP DF =,证出AP FC =,则可得出答案.【解答】问题1:证明:BP PC BC +=Q ,BP AB BC +=,PC AB \=,在Rt ABP D 与Rt PCD D 中,AP PDAB PC =ìí=î,Rt ABP Rt PCD(HL)\D @D ,APB PDC \Ð=Ð,180180()1809090APD APB DPC PDC DPC \Ð=°-Ð-Ð=°-Ð+Ð=°-°=°;问题2:过D 点作DF AC ^于点F ,在ABC 中,18090A B C Ð=°-Ð-Ð=°,A PFD \Ð=Ð,9090APE DPF AEP APE Ð+Ð=°Ð+Ð=°Q ,DPF AEP \Ð=Ð,在APE D 与FDP D 中,A DFPDPE AEP PE PDÐ=ÐìïÐ=Ðíï=î,()APE FDP AAS \D @D ,AE PF \=,AP DF =,在DPF D 中,90904545FDC C Ð=°-Ð=°-°=°,DF FC \=,AP FC \=,PC PF FC AE AP \=+=+,\1AE APPC +=.13.如图①,点B 、C 在MAN Ð的边AM 、AN 上,点E ,F 在MAN Ð内部的射线AD 上,1Ð、2Ð分别是ABE D 、CAF D 的外角.已知AB AC =,12BAC Ð=Ð=Ð.求证:ABE CAF D @D .应用:如图②,在ABC D 中,AB AC =,AB BC >,点D 在边BC 上,且2CD BD =,点E ,F 在线段AD 上.12BAC Ð=Ð=Ð,若ABC D 的面积为15,求ABE D 与CDF D 的面积之和.【分析】(1)由“ASA ”可证ABE CAF D @D ;(2)由“ASA ”可证ABE CAF D @D ,由全等三角形的性质可得ABE CAF S S D D =,由三角形的面积关系可求解.【解答】证明:(1)12BAC Ð=Ð=ÐQ ,且1BAE ABE Ð=Ð+Ð,2FAC FCA Ð=Ð+Ð,BAC BAE FAC Ð=Ð+Ð,BAE FCA \Ð=Ð,ABE FAC Ð=Ð,且AB AC =,()ABE CAF ASA \D @D (2)12BAC Ð=Ð=ÐQ ,且1BAE ABE Ð=Ð+Ð,2FAC FCA Ð=Ð+Ð,BAC BAE FAC Ð=Ð+Ð,BAE FCA \Ð=Ð,ABE FAC Ð=Ð,且AB AC =,()ABE CAF ASA \D @D ABE CAF S S D D \=,2CD BD =Q ,ABC D 的面积为15,10ACD ABE CDF S S S D D D \==+.14.如图,在等腰三角形ABC D 中,AC BC =,D ,E 分别为AB ,BC 上一点,CDE A Ð=Ð.(1)如图1,若BC BD =,求证:CD DE =;(2)如图2,过点C 作CH DE ^,垂足为H ,若CD BD =,4EH =,求DE BE -的值.【分析】(1)根据ASA 判定ADC BED D @D ,即可得到CD DE =;(2)先证DCB CDE Ð=Ð,得CE DE =,再在DE 上取点F ,使得FD BE =,进而判定()CDF DBE SAS D @D ,得CF DE CE ==,然后由等腰三角形性质得4FH HE ==,即可求解.【解答】解:(1)AC BC =Q ,CDE A Ð=Ð,A B CDE \Ð=Ð=Ð,ACD BDE \Ð=Ð,又BC BD =Q ,BD AC \=,在ADC D 和BED D 中,ACD BDE AC BDA B Ð=Ðìï=íïÐ=Ðî,()ADC BED ASA \D @D ,CD DE \=;(2)解:CD BD =Q ,B DCB \Ð=Ð,又CDE B Ð=ÐQ ,DCB CDE \Ð=Ð,CE DE \=,如图2,在DE 上取点F ,使得FD BE =,在CDF D 和DBE D 中,DF BE CDE B CD DB =ìïÐ=Ðíï=î,()CDF DBE SAS \D @D ,CF DE CE \==,又CH EF ^Q ,FH HE \=,28DE BE DE DF EF EH \-=-===.15.(2021春•榆次区校级期末)综合与实践(1)观察理解:如图1,ABC D 中,90ACB Ð=°,AC BC =,直线l 过点C ,点A ,B 在直线l 同侧,BD l ^,AE l ^,垂足分别为D ,E ,由此可得:90AEC CDB Ð=Ð=°,所以90CAE ACE Ð+Ð=°,又因为90ACB Ð=°,所以90BCD ACE Ð+Ð=°,所以CAE BCD Ð=Ð,又因为AC BC =,所以(AEC CDB D @D AAS );(请填写全等判定的方法)(2)理解应用:如图2,AE AB ^,且AE AB =,BC CD ^,且BC CD =,利用(1)中的结论,请按照图中所标注的数据计算图中实线所围成的图形的面积S = ;(3)类比探究:如图3,Rt ABC D 中,90ACB Ð=°,4AC =,将斜边AB 绕点A 逆时针旋转90°至AB ¢,连接B C ¢,求△AB C ¢的面积.(4)拓展提升:如图4,点B ,C 在MAN Ð的边AM 、AN 上,点E ,F 在MAN Ð内部的射线AD 上,1Ð、2Ð分别是ABE D 、CAF D 的外角.已知AB AC =,12BAC Ð=Ð=Ð.求证:CF EF BE +=;(5)拓展应用:如图5,在ABC D 中,AB AC =,AB BC >.点D 在边BC 上,2CD BD =,点E 、F 在线段AD 上,12BAC Ð=Ð=Ð.若ABC D 的面积为15,则ACF D 与BDE D 的面积之和为 .【分析】(1)根据AAS证明三角形全等即可.(2)利用“三垂模型”证明三角形全等,利用全等三角形的性质,解决问题即可.(3)如图3,过B¢作B E AC¢^于E,构造全等三角形解决问题即可.D@D,可得结论.(4)证明()ABE CAF ASA(5)利用(4)中结论,解决问题即可.【解答】解:(1)如图1中,Q,BD DE^,^AE DE\Ð=Ð=°,AEC CDB90\Ð+Ð=°,90CAE ACE又90ACBQ,Ð=°\Ð+Ð=°,90BCD ACE\Ð=Ð,CAE BCD在AEC D 和CDB D 中,CAE BCD AEC CDB AC CB Ð=ÐìïÐ=Ðíï=î,()AEC CDB AAS \D @D 故答案为:AAS .(2)如图2中,AE AB =Q ,90EAB Ð=°,BC CD =,90BCD Ð=°,由(1)得:EFA AGB D @D ,BGC CHD D @D ,6AG EF \==,3AF BG ==,4CG DH ==,3CH BG ==,\()11122461626324380181250222AEF CHD EFHD S S S S D D =--=+´-´´´-´´´=--=梯形.故答案为50.(3)如图3,过B ¢作B E AC ¢^于E ,由旋转得:AB AB =¢,90BAB ¢Ð=°Q ,由(1)可知AEB BCA ¢D @D ,4AC B E ¢\==,\1144822AB C S AC B E ¢¢=×=´´=V .(4)如图4中,12BAC Ð=Ð=ÐQ ,1BAE ABE Ð=Ð+Ð,BAC BAE CAF Ð=Ð+Ð,2FCA CAF Ð=Ð+Ð,ABE CAF \Ð=Ð,BAE FCA Ð=Ð,在ABE D 和CAF D 中,ABE CAF AB ACBAE ACF Ð=Ðìï=íïÐ=Ðî,()ABE CAF ASA \D @D ,BE AF \=,CF AE =,CF EF AE EF AF BE \+=+==.(5)如图5中,ABC D Q 的面积为15,2CD BD =,ABD \D 的面积是:11553´=,由图4中证出ABE CAF D @D ,ACF \D 与BDE D 的面积之和等于ABE D 与BDE D 的面积之和,即等于ABD D 的面积,是5,故答案为:5.。
三垂直模型及练习题

2. 如图 1,等腰 Rt△ABC 中,AB=CB,∠ABC=90º,点 P 在线段 BC 上(不与 B、C 重合), 以 AP 为腰长作等腰直角△PAQ,QE⊥AB 于 E ,连 CQ 交 AB 于 M。 (1)求证:M 为 BE 的中点
(2)若 PC=2PB,求 PC 的值 MB
1
2
变式 1:如图,在 R t △ABC 中,∠ACB=45º,∠BAC=90º,AB=AC,点 D 是 AB 的中点,AF⊥CD
于 H 交 BC 于 F,BE∥AC 交 AF 的延长线于 E,求证:BC 垂直且平分 DE.
变式 2:等腰 Rt△ABC 中,AC=AB,∠BAC=90°,点 D 是 AC 的中点,AF⊥BD 于点 E, 交 BC 于点 F,连接 DF,求证:∠1=∠2。
9
6、如图,在等腰 Rt△ABC 中,∠ACB=90°,D 为 BC 的中点,DE⊥AB,垂足为 E,过点 B 作 BF∥AC 交 DE 的延长线于点 F,连接 CF. (1)求证:AD⊥CF; (2)连接 AF,求证:AF=CF.
8
7、已知:如图所示,在△ABC 中,AB=AC,∠BAC=90°,D 为 AC 中点,AF⊥BD 于点 E,交 BC 于 F,连接 DF . 求证:∠ADB=∠CDF .
变式 1、已知:如图所示,在△ABC 中,AB=AC,AM=CN,AF⊥BM 于 E,交 BC 于 F, 连接 NF . 求证:(1)∠AMB=∠CNF;(2)BM=AF+FN .
变式 2、在变式 1 的基础上,其他条件不变,只是将 BM 和 FN 分别延长交于点 P, 求证:(1)PM=PN;(2)PB=PF+AF .
★模型一 等腰三垂直全等模型
(1)以原等腰直角三角形的两直角边为对应斜边,必定可以构造一对全等的直角三角形:
三角形全等11大解题模型汇总

三角形全等11大解题模型汇总类别 1:角平分线模型应用模型 1:角平分性质模型:辅助线:过点 G 作 GE ⊥射线 AC【例题详解】①如图1,在中ABC ∆,,cm 4,6,900==∠=∠BD cm BC CAB AD C 平分,那么点D 到直线AB 的距离是cm.②如图2,已知,21∠=∠,43∠=∠.BAC AP ∠平分求证:.图1图2①2 (提示:作 DE ⊥AB 交 AB 于点 E)②21∠=∠ ,PN PM =∴,43∠=∠ ,PQ PN =∴,BAC PA PQ PM ∠∴=∴平分,.模型2:角平分线+垂线,等腰三角形比呈现辅助线:延长ED 交射线OB 于F 辅助线:过点E 作EF∥射线OB【例题详解】已知:如图2,在中ABC ∆,,,AD AB D BC AD BAC =∠且于交的角平分线)(21.AC AB AM M AD AD CM +=⊥求证:的延长线于交作分析:此题很多同学可能想到延长线段CM,但很快发现与要证明的结论毫无关系。
而此题突破口就在于 AB=AD,由此我们可以猜想过 C 点作平行线来构造等腰三角形.证明:过点 C 作 CE∥AB 交 AM 的延长线于点 E.例题变形:如图,21∠=∠,的中点为AC B ,.,N FB AN M FB CM 于于⊥⊥模型3:角分线,分两边,对称全等要记全两个图形的辅助线都是在射线OA 上取点B ,使OB=OA ,从而使OAC ∆≌△OBC.【例题详解】①、在△ABC 中,∠BAC=60°,∠C=40°,AP 平分∠BAC 交BC 于P,BQ 平分∠ABC 交AC 于Q,求证:AB+BP=BQ+AQ。
思路分析:1)题意分析:本题考查全等三角形常见辅助线的知识:作平行线。
2)解题思路:本题要证明的是AB+BP=BQ+AQ。
形势较为复杂,我们可以通过转化的思想把左式和右式分别转化为几条相等线段的和即可得证。
可过O 作BC 的平行线。
解题技巧专题:利用等腰三角形的“三线合一”作辅助线压轴题三种模型全攻略(解析版)

解题技巧专题:利用等腰三角形的'三线合一'作辅助线压轴题三种模型全攻略【考点导航】目录【典型例题】【类型一等腰三角形中底边有中点时,连中线】【类型二等腰三角形中底边无中点时,作高线】【类型三巧用“角平分线+垂线合一”构造等腰三角形】【典型例题】【类型一等腰三角形中底边有中点时,连中线】1如图,在△ABC 中,∠A =90°,AB =AC ,D 为BC 的中点,过D 作直线DE 交直线AB 与E ,过D 作直线DF ⊥DE ,并交直线AC 与F .(1)若E点在线段AB 上(非端点),则线段DE 与DF 的数量关系是;(2)若E 点在线段AB 的延长线上,请你作图(用黑色水笔),此时线段DE 与DF 的数量关系是,请说明理由.【答案】(1)DE =DF(2)图见解析,DE =DF ,理由见解析【分析】(1)连接AD ,先根据等腰直角三角形的性质可得AD =BD =CD ,∠B =∠DAF =45°,AD ⊥BC ,再根据垂直的定义、等量代换可得∠BDE =∠ADF ,然后根据三角形全等的判定证出△BDE ≅△ADF ,根据全等三角形的性质即可得出结论;(2)分①当点E 在线段AB 的延长线上,且在BC 的下方时,②当点E 在线段AB 的延长线上,且在BC 的上方时两种情况,参考(1)的思路,根据三角形全等的判定与性质即可得出结论.【详解】(1)解:如图,连接AD ,∵在△ABC 中,∠A =90°,AB =AC ,D 为BC 的中点,∴AD =BD =CD ,∠B =∠DAF =45°,AD ⊥BC ,∴∠BDE +∠ADE =90°,∵DF ⊥DE ,∴∠ADF+∠ADE =90°,∴∠BDE =∠ADF ,在△BDE 和△ADF 中,∠B =∠DAFBD =AD ∠BDE =∠ADF,∴△BDE ≅△ADF ASA ,∴DE =DF ,故答案为:DE =DF .(2)解:DE =DF ,理由如下:①如图,当点E 在线段AB 的延长线上,且在BC 的下方时,如图,连接AD ,∵在△ABC 中,∠A =90°,AB =AC ,D 为BC 的中点,∴AD =BD ,∠ABD =∠DAC =45°,AD ⊥BC ,∴∠DBE =∠DAF =135°,∠ADF +∠BDF =90°,∵DF ⊥DE ,∴∠BDE +∠BDF =90°,∴∠BDE =∠ADF ,在△BDE 和△ADF 中,∠DBE =∠DAFBD =AD ∠BDE =∠ADF,∴△BDE ≅△ADF ASA ,∴DE =DF ;②如图,当点E 在线段AB 的延长线上,且在BC 的上方时,如图,连接AD ,∵在△ABC 中,∠A =90°,AB =AC ,D 为BC 的中点,∴AD =CD ,∠ACD =∠DAB =45°,AD ⊥BC ,∴∠DCF =∠DAE =135°,∠ADE +∠CDE =90°,∵DF ⊥DE ,∴∠CDF +∠CDE =90°,∴∠ADE =∠CDF ,在△ADE 和△CDF 中,∠DAE =∠DCFAD =CD ∠ADE =∠CDF,∴△ADE ≅△CDF ASA ,∴DE =DF ;综上,线段DE 与DF 的数量关系是DE =DF ,故答案为:DE =DF .【点睛】本题考查了等腰直角三角形的性质、三角形全等的判定与性质等知识点,通过作辅助线,构造全等三角形是解题关键.【变式训练】1如图,在等腰直角三角形ABC 中,∠C =90°,AC =a ,点E 为边AC 上任意一点,点D 为AB 的中点,过点D 作DF ⊥DE 交BC 于点F .求证:CE +CF为定值.【答案】证明见解析【分析】连接CD ,证明△CDE ≌△BDF ,得CE =BF ,进一步证明CE +CF =BC =AC =a ,从而得到结论.【详解】证明:连接CD ,如图,∵△ABC 是等腰直角三角形,且D 为AB 的中点,∴CD ⊥AB ,CD 平分∠ACB ,AD =BD =CD∴∠DCA =∠DCB =∠DBC =45°又DE ⊥DF∴∠EDC +∠FDC =90°而∠FDC +∠FDB =90°∴∠EDC =∠FDB在△CDE 和△BDF 中,∠DCE =∠DBFCD =CD∠EDC =∠BDF∴△CDE ≌△BDF∴CE =BF∵BC =AC =a ∴CE +CF =BE +CF =BC =AC =a ,故:CE +CF 为定值.【点睛】此题主要考查了全等三角形的判定与性质以及等腰直角三角形的性质,证明CE =BF 是解答此题的关键.2如图1,在Rt △ABC 中,∠C =90°,AC =BC ,点P 是斜边AB 的中点,点D ,E 分别在边AC ,BC 上,连接PD ,PE ,若PD ⊥PE.(1)求证:PD =PE ;(2)若点D ,E 分别在边AC ,CB 的延长线上,如图2,其他条件不变,(1)中的结论是否成立?并加以证明;(3)在(1)或(2)的条件下,△PBE 是否能成为等腰三角形?若能,请直接写出∠PEB 的度数(不用说理);若不能,请说明理由.【答案】(1)见解析(2)成立,见解析(3)能成为等腰三角形,此时∠PEB 的度数为22.5°或67.5°或90°或45°【分析】(1)连接PC ,根据等腰直角三角形的性质可得∠DCP =45°=∠B ,从而得到CP =BP ,再由PD ⊥PE ,可得∠DPC =∠EPB ,可证得△DPC ≌△EPB ,即可求证;(2)连接PC ,根据等腰直角三角形的性质可得∠ECP =45°=∠ABC =∠A =∠ACP ,从而得到CP =AP ,再由∵PD ⊥PE ,CP ⊥AB ,可得∠APD =∠CPE ,可证得△APD ≌△CPE ,即可;(3)根据等腰三角形的性质,分四种情况讨论,即可求解.【详解】(1)明∶连接PC,∵∠ACB =90°,AC =BC ,∴∠A =∠B =45°,∵P 为斜边AB 的中点,∴CP ⊥AB ,∴∠DCP =45°=∠B ,∴CP =BP ,∵PD ⊥PE ,∴∠DPC +∠CPE =∠CPE +∠EPB =90°,∴∠DPC =∠EPB ,在△DPC 和△EPB 中,∠DCP =∠BPC =PB ∠DPC =∠EPB,∴△DPC ≌△EPB ASA ,∴PD =PE ;(2)解:PD =PE 仍成立,理由如下:连接CP,∵∠C =90°,AC =BC ,∴∠A =∠ABC =45°,∵P 为斜边AB 的中点,∴CP ⊥AB ,∴∠ECP =45°=∠ABC =∠A =∠ACP ,∴CP =AP ,又∵PD ⊥PE ,CP ⊥AB ,∴∠DPE =∠CPA =90°,∴∠DPE +∠CPD =∠CPA +∠CPD ,∴∠APD =∠CPE ,在△APD 和△CPE 中,∠PAD =∠PCEPC =PA ∠APD =∠CPE,∴△APD ≌△CPE ASA ,∴PD =PE ;(3)解:△PBE 能成为等腰三角形,①当BE =BP ,点E 在CB 的延长线上时,则∠E =∠BPE ,又∵∠E +∠BPE =∠ABC =45°,∴∠PEB =22.5°;②当BE =BP ,点E 在CB 上时,则∠PEB =∠BPE =12180°-45° =67.5°;③当EP =EB 时,则∠B =∠BPE =45°,∴∠PEB =180°-∠B -∠BPE =90°;④当EP =PB ,点E 和C 重合,∴∠PEB =∠B =45°;综上所述,△PBE 能成为等腰三角形,∠PEB 的度数为22.5°或67.5°或90°或45°.【点睛】本题主要考查了等腰三角形的性质,全等三角形的判定和性质,熟练掌握等腰三角形的性质,全等三角形的判定和性质,利用分类讨论思想解答是解题的关键.3在Rt△ABC中,AC=BC,∠ACB=90°,点O为AB的中点.(1)若∠EOF=90°,两边分别交AC,BC于E,F两点.①如图1,当点E,F分别在边AC和BC上时,求证:OE=OF;②如图2,当点E,F分别在AC和CB的延长线上时,连接EF,若OE=6,则S△EOF=.(2)如图3,若∠EOF=45°,两边分别交边AC于E,交BC的延长线于F,连接EF,若CF=3,EF=5,试求AE的长.【答案】(1)①见解析;②18(2)2【分析】(1)①由“ASA”可证△AOE≌△COF,可得OE=OF;②由“ASA”可证△COE≌△BOF,可得OE=OF=6,即可求解;(2)由“ASA”可证△COF≌△AOH,可得CF=AH=3,OF=OH,由“SAS”可证△EOF≌△EOH.,可得EF=EH=5,即可求解.【详解】(1)①证明:如图1,连接OC,∵AC=BC,∠ACB=90°,∴∠=∠B=45°.∵点O为AB的中点,∴∠AOC=∠EOF=90°,∴△AOC和△BOC是等腰直角三角形,∴AO=CO=BO,∴∠AOE=∠COF,∴△AOE≌△COF(ASA),∴OE=OF;②解:如图2,连接OC,同理可证:AO=CO=BO,∠ABC=∠ACO=45°,∴∠OCE=∠OBF=135°,∵∠AOC=∠EOF=90°,∴∠COE=∠BOF,∴△COE≌△BOF(ASA),∴OE=OF=6,×OE⋅OF=18,∴SΔEOF=12故答案为:18;(2)解:如图3,连接CO,过点O作HO⊥FO,交CA的延长线于点H,∵AC=BC,∠ACB=90°,点O为AB的中点,∴AO=CO=B0,∠AOC=∠FOH=90°,∠BAC=∠BCO=45°,∴.∠COF=∠AOH,∠OCF=∠OAH=135°,∴△COF≌△AOH(ASA),∴CF=AH=3,OF=OH,∵∠EOF=45°,∠FOH=90°,∴∠EOF=∠EOH=45°,又∵OF=OH,EO=EO,∴△EOF≌△EOH(SAS),∴EF=EH=5,∴.AE=EH-AH=2.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是解题的关键.【类型二等腰三角形中底边无中点时,作高线】1如图,点D,E在△ABC的边BC上,AB=AC,AD=AE.(1)如图1,求证:BD=CE;(2)如图2,当AD=CD时,过点C作CM⊥AD于点M,如果DM=2,求CD-BD的值.【答案】(1)见解析(2)4【分析】(1)过A作AH⊥BC于点H,根据三线合一可得:BH=CH,DH=EH,即可证明;(2)过A作AH⊥BC于点H,易证△AHD≌△CMD,可得MD=DH,即可求解.【详解】(1)证明:如图过A作AH⊥BC于点H,∵AB=AC,AH⊥BC,∴BH=CH,∵AD=AE,∴DH=EH,∴BD=CE;(2)解:过A作AH⊥BC于点H,在△AHD 和△CMD 中,∠CDM =∠ADH∠CMD =∠AHD =90°CD =AD∴△AHD ≌△CMD AAS ,∴DH =MD ,∴CD -BD =CH +DH -BH -DH =2DH =2MD =4.【点睛】本题考查了全等三角形的性质与判定,等腰三角形的性质“三线合一”,熟练掌握全等三角形的判定方法是解题的关键.【变式训练】1如图,△ADB 与△BCA 均为等腰三角形,AD =AB =CB ,且∠ABC =90°,E 为DB 延长线上一点,∠DAB =2∠EAC.(1)若∠EAC =20°,求∠CBE 的度数;(2)求证:AE ⊥EC ;(3)若BE =a ,AE =b ,CE =c ,求△ABC 的面积(用含a ,b ,c 的式子表示).【答案】(1)20°(2)见解析(3)12a 2+12bc 【分析】(1)先,是等腰三角形性质与三角形内角和定理求出∠D =∠DBA =70°,即可由∠CBE =180°-∠DBA -∠ABC 求解;(2)过点A 作AF ⊥DE 于点F ,过点C 作CG ⊥DE 于点G ,证明△BAF ≌△CBG AAS ,得出AF =BG ,BF =CG ,进而求得∠AEF =∠ACB =45°,∠CEG =∠AEF =45°,即可得出∠AEC =90°,从而得出结论;(3)由(2)可知CG =BF ,AF =EF ,从而有CG =BF =EF -BE =AF -BE ,再根据S △ABC =S △AEB +S △AEC -S △BEC ,则有S △ABC =12BE ⋅AF +12AE ⋅EC -12BE ⋅CG =12BE AF -CG +12AE ⋅EC =12BE ⋅BE +12AE ⋅EC ,即可求解.【详解】(1)解:∵∠EAC =20°,∠DAB =2∠EAC ,∴∠BAD =40°,∵AD =AB ,∴∠D =∠DBA =12180°-∠BAD =12180°-40° =70°,又∵∠ABC =90°,∴∠CBE =180°-70°-90°=20°.(2)证明:过点A 作AF ⊥DE 于点F ,过点C 作CG ⊥DE 于点G ,∴∠AFB =∠ABC =∠CGB =90°,又∵AD =AB =CB ,∴∠BAC =∠ACB =45°,∠FAB =12∠DAB =∠CAE ,∵∠FAB +∠FBA =∠FBA +∠CBG =90°,∴∠FAB =∠CBG =∠CAE ,∴在△BAF 和△CBG 中,∠BAF =∠CBG∠AFB =∠CGB AB =BC,∴△BAF ≌△CBG AAS ,∴AF =BG ,BF =CG ,∵∠CBG =∠CAE ,设AE 、BC 交于点O ,则∠AEF =180°-∠CBG -∠BOE∠ACB =180°-∠CAE -∠AOC又∠BOE =∠AOC ,∴∠AEF =∠ACB =45°,∴AF =EF =BG ,BF =CG ,∴BF =EG =CG ,∴∠CEG =∠AEF =45°,∴∠AEC =90°,∴AE ⊥EC .(3)解:由(2)可知CG =BF ,AF =EF ,∴CG =BF =EF -BE =AF -BE ,∵S △ABC =S △AEB +S △AEC -S △BEC ,∴S △ABC =12BE ⋅AF +12AE ⋅EC -12BE ⋅CG .=12BE AF -CG +12AE ⋅EC =12BE ⋅BE +12AE ⋅EC =12a 2+12bc .【点睛】本题考查等腰三角形的性质与判定,等腰直角三角形的性质,三角形内角和,三角形外角性质,全等三角形的判定与性质,三角形面积,属三角形综合题目,难度适中.2已知OP 平分∠MON ,如图1所示,点B 在射线OP 上,过点B 作BA ⊥OM 于点A ,在射线ON 上取一点C ,使得BC =BO .(1)若线段OA =3cm ,求线段OC 的长;(2)如图2,点D 是线段OA 上一点,作∠DBE ,使得∠DBE =∠ABO ,∠DBE 的另一边交ON 于点E ,连接DE .①∠OBC =2∠DBE 是否成立,请说明理由;②请判断三条线段CE ,OD ,DE 的数量关系,并说明理由.【答案】(1)6cm(2)①∠OBC =2∠DBE 成立,理由见解析;②CE =OD +DE ,理由见解析【分析】(1)如图所示,过点B作BH⊥OC于H,由三线合一定理得到OC=2OH,由角平分线的定义得到∠BOA=∠BOH,进一步证明△BAO≌△BHO,得到OH=OA=3cm,则OC=2OH=6cm;(2)①如图所示,过点B作BH⊥OC于H,由三线合一定理得到∠OBC=2∠OBH,同(1)可得△BAO≌△BHO,则∠OBH=∠OBA,由∠DBE=∠ABO,即可推出∠OBC=2∠OBH=2∠DBE;②如图所示,在CE上截取CQ=OD,连接BQ,先证明∠BOD=∠BCQ,进而证明△BOD≌△BCQ,得到BD=BQ,∠OBD=∠CBQ,进一步证明∠EBQ=∠EBD,从而证明△EBD≌△EBQ,得到DE=QE,由CE=CQ+QE可证明CE=OD+DE.【详解】(1)解:如图所示,过点B作BH⊥OC于H,∵BC=OB,BH⊥OC,∴OH=CH,即OC=2OH,∵OP平分∠MON,∴∠BOA=∠BOH,∵BA⊥OM,BH⊥OC,∴∠BAO=∠BHO=90°,又∵OB=OB,∴△BAO≌△BHO AAS,∴OH=OA=3cm,∴OC=2OH=6cm(2)解:①∠OBC=2∠DBE成立,理由如下:如图所示,过点B作BH⊥OC于H,∵BC=OB,BH⊥OC,∴∠OBH=∠CBH,即∠OBC=2∠OBH,同(1)可得△BAO≌△BHO,∴∠OBH=∠OBA,∵∠DBE=∠ABO,∴∠DBE=∠OBH,∴∠OBC=2∠OBH=2∠DBE;②CE=OD+DE,理由如下:如图所示,在CE上截取CQ=OD,连接BQ,∵OB=BC,∴∠BOC=∠BCO,∵△BAO≌△BHO,∴∠BOA=∠BOH,∴∠BOD=∠BCQ,∴△BOD≌△BCQ SAS,∴BD=BQ,∠OBD=∠CBQ,∠OBC,∵∠DBE=12∠OBC,∴∠OBD+∠ODE=12∴∠CBQ+∠ODE=1∠OBC,∴∠EBQ =12∠OBC ,∴∠EBQ =∠EBD ,又∵EB =EB ,∴△EBD ≌△EBQ SAS ,∴DE =QE ,∵CE =CQ +QE ,∴CE =OD +DE .【点睛】本题主要考查了全等三角形的性质与判定,三线合一定理,正确作出辅助线构造全等三角形是解题的关键.【类型三巧用“角平分线+垂线合一”构造等腰三角形】1如图,在△ABC 中,AD 平分∠BAC ,E 是BC 的中点,过点E 作FG ⊥AD 交AD 的延长线于H ,交AB 于F ,交AC 的延长线于G .求证:(1)AF =AG ;(2)BF =CG .【答案】(1)见解析(2)见解析【分析】(1)根据ASA 证明△AHF ≌△AHG ,即可得出AF =AG ;(2)过点C 作CM ∥AB 交FG 于点M ,由△AHF ≌△AHG 可得∠AFH =∠G ,根据平行线的性质得出∠CMG =∠AFH ,可得∠CMG =∠G ,进而得出CM =CG ,再根据据ASA 证明△BEF ≌△CEM ,得出BF =CM ,等量代换即可得到BF =CG .【详解】(1)证明:∵AD 平分∠BAC ,∴∠FAH =∠GAH ,∵FG ⊥AH ,∴∠AHF =∠AHG =90°,在△AHF 和△AHG 中,∠FAH =∠GAHAH =AH ∠AHF =∠AHG,∴△AHF ≌△AHG ASA,∴AF =AG ;(2)证明:过点C 作CM ∥AB 交FG 于点M ,∵△AHF ≌△AHG ,∴∠AFH =∠G ,∵CM ∥AB ,∴∠CMG =∠AFH ,∴∠CMG =∠G ,∴CM =CG ,∵E 是BC 的中点,∴BE =CE ,∵CM ∥AB ,∴∠B =∠ECM ,在△BEF 和△CEM 中,∠B =∠ECMBE =CE ∠BEF =∠CEM,∴△BEF ≌△CEM ASA ,∴BF =CM ,∴BF =CG .【点睛】此题考查了全等三角形的判定与性质,等角对等边,平行线的性质,熟记全等三角形的判定定理、性质定理及作出合适的辅助线是解此题的关键.【变式训练】1如图所示,D 为△ABC 内一点,CD 平分∠ACB ,BD ⊥CD ,∠A =∠ABD ,若BD =1,BC =3,求:线段AC的长.【答案】5【分析】延长BD 交AC 于点E ,由题意可推出BE =AE ,依据等角的余角相等,即可得等腰三角形BCE ,可推出BC =CE ,AE =BE =2BD ,根据BD =1,BC =3,即可求出AC 的长度.【详解】解∶延长BD 交AC 于点E ,∵∠A =∠ABD ,∴BE =AE ,∵BD ⊥CD ,∴BE ⊥CD ,∴∠BDC =∠EDC =90°,∴∠BCD +∠EBC =∠ECD +∠BEC =90°,∵CD 平分∠ACB ,∴∠BCD =∠ECD ,∴∠EBC =∠BEC ,∴BC =CE,∵BE ⊥CD ,∴BE =2BD ,∵BD =1,BC =3,∴BE =2,CE =3,∴AE =BE =2,∴AC =AE +EC =2+3=5.【点睛】本题主要考查等腰三角形的判定与性质,解题的关键在于正确地作出辅助线,构建等腰三角形,通过等量代换,即可推出结论.2如图,AD 为△ABC的角平分线.(1)如图1,若CE ⊥AD 于点F ,交AB 于点E ,AB =8,AC =5.则BE =.(2)如图2,若∠C =2∠B ,点E 在AB 上,且AE =AC ,AB =a ,AC =b ,求CD 的长;(用含a 、b 的式子表示)(3)如图3,BG ⊥AD ,点G 在AD 的延长线上,连接CG ,若△ACG 的面积是7,求△ABC 的面积.【答案】(1)3(2)a -b(3)14【分析】(1)利用ASA 证明△AEF ≌△ACF ,得出AE =AC =5,再利用BE =AB -AE 即可求得答案;(2)利用SAS 证明△AED ≌△ACD ,得出∠AED =∠C ,ED =CD ,由题意可得出BE =AB -AE =a -b ,再利用等角对等边证得DE =BE ,即可得出答案;(3)延长AC 、BG 交于H ,先证明△ABG ≌△AHG ,得出:BG =GH ,S △ABG =S △AHG ,利用等底等高的两个三角形面积相等可得S △CBG =S △CGH ,设S △CBG =S △CGH =x ,即可得出答案.【详解】(1)解:∵AD 平分∠BAC ,∴∠EAF =∠CAF ,∵CE ⊥AD ,∴∠AFE =∠AFC =90°,在△AEF 和△ACF 中,∠EAF =∠CAFAF =AF ∠AFE =∠AFC,∴△AEF ≌△ACF ASA ∴AE =AC =5,∵AB =8,∴BE =AB -AE =8-5=3;故答案为:3.(2)解:∵AD 平分∠BAC ,∴∠EAD =∠CAD ,在△AED 和△ACD 中,AE =AC∠EAD =∠CAD AD =AD,∴△AED ≌△ACD SAS ,∴∠AED =∠C ,ED =CD ,∵AE =AC ,AB =a ,AC =b ,∴BE =AB -AE =a -b ,在△BDE 中,∠AED =∠B +∠BDE ,∴∠C =∠B +∠BDE ,∵∠C =2∠B ,∴∠B =∠BDE ,∴DE =BE =a -b ,∴CD =a -b ;(3)解:如图,延长AC 、BG 交于H ,∵AD 平分∠BAC ,∴∠BAG =∠HAG ,∵BG ⊥AD ,∴∠AGB =∠AGH =90°,在△ABG 和△AHG 中,∠BAG =∠HAGAG =AG ∠AGB =∠AGH,∴△ABG ≌△AHG ASA ,∴BG =GH ,S △ABG =S △AHG ,∴S △CBG =S △CGH ,设S △CBG =S △CGH =x ,∵S △ACG =7,∴S △AGH =S △ACG +S △CGH =7+x ,∴S △ABG =S △AHG =7+x ,∴S △ABH =27+x =14+2x ,∴S △ABC =S △ABH -S △CBG +S △CGH =14+2x -x +x =14.【点睛】本题考查了角平分线定义,三角形面积,全等三角形的判定和性质,等腰三角形判定和性质等,熟练掌握全等三角形的判定和性质是解题关键.3△ABC 中,∠ACB =90°,AC =BC ,点D 是BC 边上的一个动点,连接AD 并延长,过点B 作BF ⊥AD 交AD 延长线于点F.(1)如图1,若AD 平分∠BAC ,AD =6,求BF 的值;(2)如图2,M 是FB 延长线上一点,连接AM ,当AD 平分∠MAC 时,试探究AC 、CD 、AM 之间的数量关系并说明理由;(3)如图3,连接CF ,①求证:∠AFC =45°;②S △BCF =354,S △ACF =21,求AF 的值.【答案】(1)3(2)AC +CD =AM ,理由见解析(3)①证明见解析;②12【分析】(1)如图,分别延长AC ,BF 交于点E .证明△ADC ≌△BEC ASA ,得到BE =AD =6,再证明△ABF ≌△AEF ,即可得到BF =EF =12BE =3;(2)如图,分别延长BF ,AC 交于点E ,由(1)可得△ACD ≌△BCE ,得CD =CE ,再证△AFM ≌△AFE 得到AM =AE ,由此可得结论;(3)如图所示,在AD 上截取AH =BF ,证明△ACH ≌△BCF ,得到CH =CF ,∠ACH =∠BCF ,进一步证明∠HCF =90°,则∠CFH =∠CHF =180°-∠HCF 2=45°;②如图所示,过点C 作CG ⊥HF 于G ,则△CGH 、△CGF 都是等腰直角三角形,可得GH =GF =GC ,由全等三角形的性质得到S △ACH =S △BCF =354则S △CHF =S △ACF -S △ACH =494,据此求出HF =7,则CG =3.5,进一步求出AH =5则AF =AH +HF =12.【详解】(1)解:如图,分别延长AC ,BF 交于点E .∵BF ⊥AD ,∴∠AFB =∠ACB=90°,又∵∠ADC =∠BDF ,∴∠DAC =∠EBC .在△ADC 和△BEC 中,∠DAC =∠EBCAC =BC∠ACD =∠BCE =90°∴△ADC ≌△BEC ASA .∴BE =AD =6;∵BF ⊥AD ,∴∠AFB =∠AFE =90°,∵AD 平分∠BAC ,∴∠BAF =∠EAF .在△ABF 和△AEF 中,∠BAF =∠EAFAF =AF∠AFB =∠AFE∴△ABF ≌△AEF ASA .∴BF =EF =12BE =3;(2)解:AC +CD =AM ,理由如下:如图所示,延长MF ,AC 交于点E .由(1)可得,△ADC ≌△BCE ,∴CD =CE .∵BF ⊥AD ,∴∠AFM =∠AFE =90°,∵AF 平分∠MAE ,∴∠MAF =∠EAF .在△AMF 和△AEF 中,∠MAF =∠EAFAF =AF∠AFM =∠AFE∴△AFM ≌△AFE ASA .∴AM =AE .∵AE =AC +CE =AC +CD .∴AC +CD =AM .(3)解:①如图所示,在AD 上截取AH =BF ,在△ACH 和△BCF 中,AH =BF∠CAH =∠CBF AC =BC,∴△ACH ≌△BCF SAS ,∴CH =CF ,∠ACH =∠BCF ,∵∠ACH +∠BCH =90°,∴∠BCF +∠BCH =90°,即∠HCF =90°,∴∠CFH =∠CHF =180°-∠HCF 2=45°;②如图所示,过点C 作CG ⊥HF 于G ,∴∠GCH =GCF =45°,∴△CGH 、△CGF 都是等腰直角三角形,∴GH =GF =GC ,∵△ACH ≌△BCF ,∴S △ACH =S △BCF =354∴S △CHF=S △ACF -S △ACH =494,∴12HF ⋅CG =494,即12HF ⋅12HF =494,∴HF =7,∴CG=3.5,∴1 2AH×3.5=354,∴AH=5,∴AF=AH+HF=12.【点睛】本题主要考查了全等三角形的性质与判定,角平分线的定义,三角形内角和定理,三角形面积,等腰直角三角形的性质与判定等等,正确作出辅助线构造全等三角形是解题的关键.4(2022春·河北石家庄·八年级校考期中)(1)【问题情境】利用角平分线构造全等三角形是常用的方法,如图1,OP平分∠MON.点A为OM上一点,过点A作AC⊥OP,垂足为C,延长AC交ON于点B,可根据证明△AOC≌△BOC,则AO=BO,AC= BC(即点C为AB的中点).(2)【类比解答】如图2,在△ABC中,CD平分∠ACB,AE⊥CD于E,若∠EAC=63°,∠B=37°,通过上述构造全等的办法,可求得∠DAE=.(3)【拓展延伸】如图3,△ABC中,AB=AC,∠BAC=90°,CD平分∠ACB,BE⊥CD,垂足E在CD的延长线上,试探究BE和CD的数量关系,并证明你的结论.(4)【实际应用】如图4是一块肥沃的三角形土地,其中AC边与灌渠相邻,李伯伯想在这块地中划出一块直角三角形土地进行水稻试验,故进行如下操作:①用量角器取∠ACB的角平分线CD;②过点A作AD⊥CD于D.已知BC=13,AC=10,△ABC面积为20,则划出的△ACD的面积是多少?请直接写出答案.【答案】(1)ASA(2)26°(3)BE=12CD,证明见解析(4)△ACD的面积是10013【分析】(1)证△AOC≌△BOC(ASA),得AO=BO,AC=BC即可;(2)延长AE交BC于点F,由问题情境可知,AC=FC,再由等腰三角形的性质得∠EFC=∠EAC=63°,然后由三角形的外角性质即可得出结论;(3)拓展延伸延长BE、CA交于点F,证△ABF≌△ACD(ASA),得BF=CD,再由问题情境可知,BE=FE =12BF ,即可得出结论;(4)实际应用延长AD 交BC 于E ,由问题情境可知,AD =ED ,EC =AC =10,则S △ACD =S △ECD ,再由三角形面积关系得S △ACE =1013S △ABC =20013,即可得出结论.【详解】(1)解:∵OP 平分∠MON ,∴∠AOC =∠BOC ,∵AC ⊥OP ,∴∠ACO =∠BCO ,∵OC =OC ,∴△AOC ≌△BOC (ASA ),∴AO =BO ,AC =BC ,故答案为:ASA ;(2)解:如图2,延长AE 交BC 于点F ,由可知,AC =FC ,∴∠EFC =∠EAC =63°,∵∠EFC =∠B +∠DAE ,∴∠DAE =∠EFC -∠B =63°-37°=26°,故答案为:26°;(3)解:BE =12CD ,证明如下:如图3,延长BE 、CA 交于点F ,则∠BAF =180°-∠BAC =90°,∵BE ⊥CD ,∴∠BED =90°=∠BAC ,∵∠BDC =∠ABF +∠BED =∠ACD +∠BAC ,∴∠ABF =∠ACD ,又∵AB =AC ,∴△ABF ≌△ACD (ASA ),∴BF =CD ,由问题情境可知,BE =FE =12BF ,∴BE =12CD ;(4)解:如图4,延长AD 交BC 于E ,由问题情境可知,AD =ED ,EC =AC =10,∴S △ACD =S △ECD ,∵S △ABC =20,∴S △ACE =1013S △ABC =20013,∴S △ACD =12S △ACE =10013,答:△ACD 的面积是10013.【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、等腰三角形的性质、三角形的外角性质、角平分线定义以及三角形面积等知识,本题综合性强,熟练掌握等腰三角形的性质,证明三角形全等是解题的关键,属于中考常考题型.。
中考数学几何经典模型之“三垂直模型”.doc

中考数学几何经典模型之“三垂直模型”两个全等的三角形△ACD≌△BEC,拼成如图形状,使得A、C、B三点共线。
条件:△ACD≌△BEC结论:1、△DCE是等腰直角三角形2、AB=AD+BE二、模型变形:条件:△ABD≌△BEC结论:1、BD⊥CE2、AC=BE-AD三、模型应用:在下列各图中构造出三垂直模型:1、△OCD为等腰直角三角形2、四边形OABC为正方形“三垂直模型”是一个应用非常广泛的模型,它可以应用在三角形,矩形,平面直角坐标系,网格,一次函数,反比例函数,三角函数,二次函数以及圆等诸多的中考重要考点之中,所以掌握好这一模型会使你在中考中技高一筹,下面看一道典型例题,从这道题大家可以体会到“三垂直模型”的强大之处。
例题分析:如图,在△ABC中,∠C=90°,D、E分别为BC、AC上一点,BD=AC,DC=AE,BE与AD交于点P,求∠ADC+∠BEC.如图,过点B作BF⊥BC,且BF=AE=CD,连接AF,∠FBC=90°∵∠C=90°,∴AC⊥BC,∠FBC=∠DCA.∴BF∥AC,∴四边形AFBE为平行四边形.∴∠BFA=∠AEB.在△BDF和△CAD中,BF=CD∠FBC=∠DCABD=CA∴△BDF≌△CAD(SAS).∴∠BFD=∠ADC,∠BDF=∠DAC,DF=DA.∵∠ADC+∠DAC=90°,∴∠ADC+∠BDF=90°,∴∠ADF=90°,∴∠DFA=∠DAF=45°.∵∠AEB+∠BEC=180°,∴∠AFB+∠BEC=180°,∴∠BFD+∠DFA+∠BEC=180°,∴∠ADC+∠AFD+∠BEC=180°,∠ADC+∠BEC=135°.故答案为:135.。
三垂直全等模型

三垂直全等模型模型 三垂直全等模型如图:∠D =∠BCA =∠E =90°,BC =AC .结论:Rt △BCD ≌Rt △CAE .模型分析说到三垂直模型,不得不说一下弦图,弦图的运用在初中直角三角形中占有举足轻重的地位,很多利用垂直求角,勾股定理求边长,相似求边长都会用到从弦图支离出来的一部分几何图形去求解.图①和图②就是我们经常会见到的两种弦图. 图①图②三垂直图形变形如下图③、图④,这也是由弦图演变而来的.图③A图④DE ABC例1 如图,AB ⊥BC ,CD ⊥BC ,AE ⊥DE ,AE =DE ,求证:AB +CD =BC . DAB证明:∵AE ⊥DE ,AB ⊥BC ,DC ⊥BC ,∴∠AED =∠B =∠C =90°.∴∠A +∠AEB =∠AEB +∠CED =90°.∴∠BAE =∠CED .在△ABE 和△ECD 中,B C A CED AE ED ∠=∠⎧⎪∠=∠⎨⎪=⎩ ∴△ABE ≌△ECD . A∴AB =EC ,BE =CD .∴AB +CD =EC +BE =BC.例2 如图,∠ACB =90°,AC =BC ,BE ⊥CE ,AD ⊥CE 于D ,AD =2.5cm ,BE =0.8cm ,则DE 的长为多少? EDA解答:∵BE ⊥CE ,AD ⊥CE ,∴∠E =∠ADC =90°.∴∠EBC +∠BCE =90°.∵∠BCE +∠ACD =90°,∴∠EBC =∠DCA .在△CEB 和△ADC 中,E ADC EBC DCA BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△CEB ≌△ADC .∴BE =DC =0.8cm ,CE =AD =2.5cm .∴DE =CE -CD =2.5-0.8=1.7cm .例3 如图,在平面直角坐标系中,等腰Rt △ABC 有两个顶点在坐标轴上,求第三个顶点的坐标. xy图①BA (0,3)C (-2,0)O x y 图②C (0,3)A O B (-1,0)解答:(1)如图③,过点B 作BD ⊥x 轴于点D .∴∠BCD +∠DBC =90°.由等腰Rt △ABC 可知,BC =AC ,∠ACB =90°,∴∠BCD +∠ACO =90°.∴∠DBC =∠ACO .在△BCD 和△CAO 中,BDC AOC DBC ACO BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BCD ≌△CAO .∴CD =OA ,BD =OC .∵OA =3,OC =2.∴CD =3,BD =2.∴OD =5.∴B (-5,2). xy图③BA (0,3)C (-2,0)OD(2)如图④,过点A 作AD ⊥y 轴于点D .在△ACD 和△CBO 中,ADC COB DAC OCB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△CBO .∴CD =OB ,AD =CO .∵B (-1,0),C (0,3)∴OB =1,OC =3.∴AD =3,OD =2.∴OD =5.∴A (3,2). xy图④C (0,3)A OB (-1,0)D1.如图,正方形ABCD ,BE =CF .求证:(1)AE =BF ;(2)AE ⊥BF .FA证明:(1)∵四边形ABCD 是正方形,∴AB =BD ,∠ABC =∠BCD =90°.在△ABE 和△BCF 中,AB BC ABE BCF BE CF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△BCF .∴AE =BF .(2)∵△ABE ≌△BCF .∴∠BAE =∠CBF .∵∠ABE =90°,∴∠BAE +∠AEB =90°.∴∠CBF +∠AEB =90°.∴∠BGE =90°,∴AE ⊥BF .2.直线l 上有三个正方形a 、b 、c ,若a 、c 的面积分别是5和11,则b 的面积是_____. c b aD A解答:∵a 、b 、c 都是正方形,∴AC =CD ,∠ACD =90°.∵∠ACB +∠DCE =∠ACB +∠BAC =90°,∴∠BAC =∠DCE .在△ABC 和△CBE 中,ABC CED BAC DCE AC CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACB ≌△CDE .∴AB =CE ,BC =DE .在Rt △ABC 中,2AC =2AB +2BC =2AB +2DE即b S =a S +c S =5+11=16.3.已知,△ABC 中,∠BAC =90°,AB =AC ,点P 为BC 上一动点(BP <CP ),分别过B 、C 作BE ⊥AP 于E 、CF ⊥AP 于F .(1)求证:EF =CF -BE ;(2)若P 为BC 延长线上一点,其它条件不变,则线段BE 、CF 、EF 是否存在某种确定的数量关系?画图并直接写出你的结论.FC A BPP解答:∵BE ⊥AP ,CF ⊥AP ,∴∠AEB =∠AFC =90°.∴∠F AC +∠ACF =90°,∵∠BAC =90°,∴∠BAE +∠F AC =90°,∴∠BAE =∠ACF .在△ABE 和△CAF 中,AEB AFC BAE ACF AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CAF .∴AE =CF ,BE =AF .∵EF =AE -AF ,∴EF =CF -BE .(2)如图,EF =BE +CF .理由:同(1)易证△ABE ≌△CAF .∴AE =CF ,BE =AF .∵EF =AE +AF ,∴EF = BE + CF . FA4.如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =3,设∠BCD =α,以D 为旋转中心,将 腰DC 绕点D 逆时针旋转90°至DE .(1)当α=45°时,求△EAD 的面积;(2)当α=45°时,求△EAD 的面积;(3)当0°<α<90°,猜想△EAD 的面积与α大小有无关系?若有关,写出△EAD 的面积S 与α的关系式;若无关,请证明结论.D解答:(1)1;(2)1;(3)过点D 作DG ⊥BC 于点G ,过点E 作EF ⊥AD 交AD 延长线于点F .∵AD ∥BC ,DG ⊥BC ,∴∠GDF =90°.又∵∠EDC =90°,∴∠1=∠2.在△CGD 和△EFD 中,12DGE DFE CD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DCG ≌△DEF∴EF =CG ,∵AD ∥BC ,AB ⊥BC ,AD =2,BC =3,∴BG =AD =2,∴CG =1.∴EAD S =12AD ·EF =1. ∴△EAD 的面积与α大小无关. 12FD5.向△ABC 的外侧作正方形ABDE 、正方形ACFG ,过A 作AH ⊥BC 于H ,AH 的反向延长线与EG 交于点P . 求证:BC =2AP . PE AG解答:过点G 作GM ⊥AP 于点M ,过点E 作EN ⊥AP 交AP 延长线于点N .∵四边形ACFG 是正方形,∴AC =AG ,∠CAG =90°.∴∠CAH +∠GAM =90°.又∵AH ⊥BC ,∴∠CAH +∠ACH =90°.∴∠ACH =∠GAM .在△ACH 和△GAM 中,AHC GMA ACH GAM AC GA ∠=∠⎧⎪∠=∠⎨⎪=⎩ ∴△ACH ≌△GAM∴CH =AM ,AH =GM .同理可证△ABH ≌△EAN∴BH =AN ,AH =EN .∴EN =GM .在△EPN 和△GPM 中, EPN GPM ENP GMP EN GM ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△EPN ≌△GPM . ∴NP =MP ,∴BC =BH +CH=AN +AM=AP +PN +AP -PM =2AP . P EAG M。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形的经典模型(一)题型一:等腰直角三角形模型思路导航等腰直角三角形数学模型思路:⑴利用特殊边特殊角证题(AC=BC或90° 45 ,45).如图1;⑵常见辅助线为作高,利用三线合一的性质解决问题•如图2;图3 图4典题精练【例1】已知:如图所示,Rt△ ABC中,AB=AC, BAC 90° O为BC的中点, ⑴写出点O到厶ABC的三个顶点A、B、C的距离的关系(不要求证明)⑵如果点M、N分别在线段AC、AB上移动,且在移动中保持AN=CM.试判断△ OMN的形状,并证明你的结论.⑶如果点M、N分别在线段CA、AB的延长线上移动,且在移动中保持AN=CM,试判断⑵中结论是否依然成立,如果是请给出证明.【解析】⑴OA=OB=OC⑵连接OA,••• OA=OC BAO C 45° AN=CM• △ ANO 也厶CMO•ON=OMNOA MOCNOA BON MOC BON90NOM90• △ OMN 是等腰直角三角形⑶也ONM依然为等腰直角三角形,证明:•••/ BAC=90°, AB=AC, O 为BC 中点•••/ BAO = Z OAC=Z ABC=Z ACB=45°,••• AO = BO=OC,•••在△ ANO和厶CMO中,AN CMBAO CAO CO•△ ANO ◎△ CMO (SAS)•ON = OM, / AON= / COM ,又•••/ COM / AOM =90°,•△ OMN为等腰直角三角形.【例2】两个全等的含30°, 60°角的三角板ADE和三角板ABC,如图所示放置,E,A,C三点在一条直线上,连接BD,取BD的中点M ,连接ME , MC .试判断△ EMC的形状,并说明理由.【解析】△ EMC是等腰直角三角形.证明:连接AM .由题意,得DE AC, DAE BAC 90°, DAB 90°•△ DAB为等腰直角三角形•••• DM MB ,MMDE MAC 105° , ••• △ EDM 也△CAM . ••• EM MC, DME AMC .又 EMC EMA AMC EMA DME 90°. • CM EM ,• △ EMC 是等腰直角三角形.• △ ABM CAF . • AM CF . 在 △ ADM 和△ CDF 中, AD CD DAM C AM CF• △ ADM ◎△ CDF . •- ADB CDF .证法二:如图,作 CM AC 交AF 的延长线于 M . T AF BD , • 3 2 90° •/ BAC 90° , • 1 2 90° • 13.在△ ACM 和△ BAD 中,13AC ABACM BAD 90°• △ ACM ◎△ BAD . • M ADB , AD CM••• AD DC , • CM CD . 在△ CMF 和△ CDF 中, CF CFMCF DCF 45° CM CD【例3】 已知: 点,A 求证: 如图,△ ABC 中,AB AC , \F BD 于E ,交BC 于F ,连接BACDF .ADBCDF . 【解析】 证法一 ':如图,过点 A 作AN BC 于N,交••• AB AC , BAC 90° ,• 3DAM 45°.••• C 45 ° • 3 C .••• AF BD , 1BAE 90°••• BAC 90° , • 2 BAE 90° .• 12 .在△ ABM 和△ CAF 中,1 2AB AC3 CACM••• △ CMF ◎△ CDF • ••• M CDF ••• ADB CDF •【例4】 如图,等腰直角 △ ABC 中,AC BC , ACB 90°, P 为△ ABC 内部一点,满足PB PC , AP AC ,求证:BCP 15 •【解析】补全正方形ACBD ,连接DP ,易证△ ADP 是等边三角形, DAP 60 , BAD 45 ,• BAP 15 , PAC 30 , • ACP 75 ,• BCP 15 •【探究对象】等腰直角三角形添补成正方形的几种常见题型在解有关等腰直角三角形中的一些问题, 若遇到不易解决或解法比较复杂时, 可将等腰直角三角形引辅助线转化成正方形,再利用正方形的一些性质来解,常常可以起到化难为易的效果, 从而顺利地求解。
例 4为求角度的应用,其他应用探究如下: 【探究一】证角等【备选1】如图,Rt △ ABC 中,/ BAC=90° , AB =AC , M 为AC 中点,连结 BM ,作AD 丄BM 交BC 于点D ,连结 DM ,求证:/ AMB= / CMD •【解析】 作等腰Rt △ ABC 关于BC 对称的等腰 Rt △ BFC ,延长AD 交CF 于点N ,•/ AN 丄BM ,由正方形的性质,可得 AN=BM , 易证 Rt △ ABM 也 Rt △ CAN ,AMB= / CND , CN=AM ,•/ M 为 AC 中点,• CM = CN , •••/ 仁/2,可证得△ CMD ◎△ CND , •••/ CND = / CMD , •••/ AMB = / CMD •CF【探究二】判定三角形形状【备选2】如图,Rt △ ABC 中,/ BAC= 90 ° AB=AC , AD=CE , AN 丄BD 于点 M ,延长BD 交NE 的延长线于点F ,试判定厶DEF 的形状.【解析】 作等腰Rt △ ABC 关于BC 对称的等腰 Rt △ BHC ,可知四边形 ABHC 为正方形,延长 AN 交HC 于点K , •/ AK 丄 BD ,可知 AK=BD ,易证:Rt △ ABD 也 Rt △ CAK ,•••/ ADB=Z CKN , CK=AD , •/ AD = EC , • CK=CE ,易证△ CKN 也厶 CEN , CKN = / CEN , 易证/ EDF = / DEF ,DEF 为等腰三角形.【探究三】利用等积变形求面积 【备选 3】如图,Rt △ ABC 中,/ A=90° , AB=AC, D 为 BC 上一点,DE // AC, DF // AB ,且 BE=4,CF=3,求 S 矩形 DFAE .【解析】 作等腰Rt △ ABC 关于BC 的对称的等腰 可知四边形 ABGC 为正方形,分别延长 Rt △ GCB ,FD 、ED 交 BG 、CG 于点 N 、M , 可知 DN = EB=4 , DM =FC=3,由正方形对称性质, 可知S 矩形DFAE =S 矩形DMGN = DM DN=3 4=12.【探究四】求线段长【备选4】如图,△ ABC 中,AD 丄BC 于点D ,/ BAC=45° , BD=3, CD=2,求AD 的长.【分析】此题若用面积公式结合勾股定理再列方程组求解是可以的,但解法太繁琐,本题尽管已知条件不是等腰直角三角形, 但•••/ BAC=45°,若分别以AB 、AC 为对称轴作 Rt △ ADB的对称直角三角形和 Rt △ ADC 的对称直角三角形,这样就出现两边相等且夹角为 90°的图形,满足等腰直角三角形的条件,然后再引辅助线使之转化为正方形.【解析】 以AB 为轴作Rt △ ADB 的对称的Rt △ AEB ,再以AC 为轴作Rt △ ADC 的对称的Rt △ AFC .可知 BE=BD=3, FC=CD=2 ,延长 EB 、FC 交点 G , •••/ BAC=45° , 由对称性,可得 / EAF =90°,且AE=AD=AF , 易证四边形AFGE 为正方形,且边长等于 AD , 设 AD=x ,贝U BG=x — 3, CG=x — 2, 在Rt △ BCG 中,由勾股定理,得 x 2 2 x 3 2 52 ,解得x=6,即AD=6.【探究五】求最小值【备选5】如图,Rt △ ABC 中,/ ACB=90° , AC=BC=4, M 为AC 的中点,P 为斜边 AB 上的动 点,求PM + PC 的最小值.【解析】 将原图形通过引辅助线化归为正方形,即作 Rt △ ACB 关于AB 对称的Rt △ ADB ,可知四边形ACBD 为正方形,连接 CD ,可知点C 关于AB 的对称点D ,连接MD 交AB 于 点P ,连接CP ,贝U PM+PC 的值为最小,最小值为 :PM+PC=DM= . 42 22 2. 5.A BAG题型二:三垂直模型例题精讲【引例】已知AB丄BD , ED丄BD, AB=CD , BC=DE,⑴求证:AC 一⑵若将△ CDE沿CB方向平移得到①②③④等不同情形,,③④【解析】⑴••• AB丄BD , ED丄BDB D 90 在厶ABC与厶CDE中AB CDB DBC DE••• △ ABC CDE ( SAS)••• 1 E2 E 90• ACE 90,即AC 丄CE⑵图①②③④四种情形中,结论永远成立,证明方法与⑴完全类似,只要证明△ ABC C1DEACB C1EDC1ED DC1E 90 DC1E ACB 90••• AC 丄 C i E典题精练【例5】 正方形ABCD 中,点A 、B 的坐标分别为 0, 10 , 8, 4,点C 在第一象限.求正方 形边长及顶点C 的坐标.(计算应用:在直角三角形中,两条直角边的平方和等于斜边 的平方.)【解析】 过点C 作CG 丄x 轴于G ,过B 作BE 丄y 轴于E ,并反向延长交 CG 于F点A 、B 的坐标分别为 0, 10 , 8 , 4• BE=8, AE=6, • AB=10•/四边形ABCD 是正方形,• AB=BC1 3 9023 90••• 1 2•/ AEB BFC 90• △ AEB ◎△ BFC • CF=BE=8, BF=AE=6 • CG=12 EF=14• C(14, 12),正方形的边长为 10【例6】 如图所示,在直角梯形ABCD 中, ABC 90 AD // BC , AB BC , E 是 AB 的中点,CE BD . ⑴求证:BE AD ;⑵ 求证:AC 是线段ED 的垂直平分线; ⑶ △ DBC 是等腰三角形吗?请说明理由.【解析】⑴••• ABC 90 , BD EC ,ECBDBC 90 , ABD DBC 90 , • ECB ABD ,••• ABC DAB 90 , AB BC , • △ BAD CBE , • AD BE .⑵T E 是AB 中点,• EB EA由⑴得:AD BE , • AE AD【点评】此题中三垂直模型:「……AEB C••• AD // BC , ••• CAD ACB 45 ,••• BAC 45 , • BAC DAC由等腰三角形的性质,得: EM MD , AM DE 即AC 是线段ED 的垂直平分线. ⑶厶DBC 是等腰三角形,CD BD由⑵得:CD CE ,由⑴得:CE BD • CD BD , • △ DBC 是等腰三角形.巅峰突破D 、E 分别是 AB 、BC 上的点,且 BD=CE ,连接AE 、CD 相交于点P .请你补全图形,并直接写出/APD 的度数=;⑵如图 2, Rt A ABC 中,/ B=90° M 、N 分别是 AB 、BC 上的点,且 AM=BC 、BM=CN , 连接AN 、CM 相交于点P .请你猜想/ APM = _______________ °并写出你的推理过程.• △ EMC 是等腰直角三角形,MCE 又厶AEC CAN ( SAS )ECA NAC.EC // AN.APM ECM 45 .【例7】 ⑴如图1,A ABC 是等边三角形, 【解析】⑴图略,60°⑵45°证明:作AE 丄AB 且AE CN BM 可证△ EAM 也A MBC• ME MC , AME BCM. •/ CMB MCB 90 , • CMBEMC 90 .复习巩固题型一等腰直角三角形模型巩固练习【练习1】如图,△ ACB、△ ECD均为等腰直角三角形,则图中与△ BDC全等的三角形为 _________ .【解析】△ AEC【练习2】如图,已知Rt A ABC中ACB 90°AC BC,D是BC的中点,CE AD,垂足为E • BF II AC,交CE的延长线于点F •求证:AC 2BF .【解析】••• ACB 90°, BF II AC ,••• ACD CBF 90°, ADC CAD 90°•••• CE AD,B •FCB ADC 90°,•CAD FCB •又••• AC CB ,•△ADCCFB ••DC FB •••• D是BC的中点,•BC 2BF ,即AC 2BF •题型二三垂直模型巩固练习【练习3】已知:如图,四边形ABCD是矩形(AD> AB),点E在BC上,且AE =AD, DF丄AE,垂足为F •请探求DF与AB有何数量关系?写出你所得到的结论并给予证明.【解析】经探求,结论是:DF = AB • 证明如下:•••四边形ABCD是矩形,•/ B= 90o, AD II BC,•/ DAF = / AEB ••/ DF 丄AE, • / AFD = 90°,•/ AE = AD ,•△ABEDFA •• AB = DF•【练习4】如图,△ ABC中,AC BC , BCA 90°, D是AB上任意一点,AE CD交CD延长线于E , BF CD于F .求证:EF BF AE • 【解析】根据条件,ACE、CBF都与BCF互余,• ACE CBF •在△ACE和△CBF中,AC CB , AEC CFB 90° , ••• △ ACE ◎△ CBF •则 CE BF , AE CF ,• EF CE CF BF AE •【练习5】四边形ABCD 是正方形.⑴如图1点G 是BC 边上任意一点(不与B 、C 两点重合),连接AG ,作BF 丄AG 于点 F , DE 丄 AG 于点 E .求证:△ ABF DAE ;⑵在⑴中,线段 EF 与AF 、BF 的等量关系是 __________________ (直接写出结论即可,不 需要证明);⑶如图2,点G 是CD 边上任意一点(不与C 、D 两点重合),连接AG ,作BF 丄AG 于 点F , DE 丄AG 于点E .那么图中全等三角形是 _________________________ ,线段EF 与AF 、BF 的等量关系是 ________________________________ (直接写出结论即可,不需要证明 ).BAF DAE 90°Q BAFABF 90 • ABF DAE在厶ABF 和厶DAE 中ABF DAE,AFB DEA,AB DA,•- △ ABF ◎△ DAE (AAS )⑵ EF AF BF⑶也 ABF ◎△ DAEEF BF AF【解析】 90° ⑴在正方形D C BAD DGC课后测测试1. 问题:已知 △ ABC 中, BAC 2 ACB ,点 D 是厶ABC 内的一点,且 AD CD ,BD BA .探究 DBC 与 ABC 度数的比值.请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.当BAC 90时,依问题中的条件补全右图.观察图形,AB 与AC 的数量关系为 ___________ ;当推出 DAC 15时,可进一步推出 DBC 的度数为 _______________可得到 DBC 与 ABC 度数的比值为 ______________ .ACB 90 , CD AB 于点 D ,点 E 在 AC 上,CE=BC ,过E 点作AC 的垂线,交 CD 的延长线于点 F.求证:AB=FC.【解析】••• FE AC 于点E , ACB 90°,FEC ACB 90° .F ECF 90° .又I CD AB 于点D ,A ECF 90 ° .••• A F .在△ ABC 和△ FCE 中,A F,ACB FEC,BC CE,• △ ABC ◎△ FCE .• AB FC .测试 3. 如图, Rt △ ABC 中,/ C=90° , AC 10cm , BC 5cm ,一条线段PQ=AB , P , Q 两点分别在 AC 上和过A 点且垂直于 AC 的射线AM 上运动.当厶ABC 和厶APQ 全等时,点Q 到点A 的距离为 ___________ .【解析】5cm 或10cm.【解析】相等;15° ; 1:3测试2. 已知:如图,在△ ABC 中,。