历届高考压轴题汇编

合集下载

最近两年全国各地高考物理压轴题汇集(详细解析63题)

最近两年全国各地高考物理压轴题汇集(详细解析63题)

最近两年全国各地高考物理压轴题汇集(详细解析63题)最近年全各地高考物理压压压压集;压压解析两国63压, 2009年2月16日星期一P、Q压的距压离L.已知木压B在下滑压程中做速直压压~木压匀运与A相后立刻一起向下压~但不粘压碰运~最近年全各地高考物理压压压压集;压压解析两国63压,它达个运压到一最低点后又向上压~木压B向上压恰好能回到运Q点.若木压A 止于静P点~木压C从Q1;20分,2v向下压~压压同压压程~最后木压运C停在斜面上的R点~求P、R 压的距离L′的点压始以初速度0如压12所示~是一压压压=4 m的压压平板固定在水平地面上~整空压有一平行于个个的匀PRLPR3强压压~在板的右半部分有一垂直于压面向外的强磁压个匀~一压量压个=0,1 kg~压压量压=0,5 EBmq大小。

C的物~板的体从P端由止压始在压压力和摩擦力的作用下向右做加速压~压入磁压后恰能做静匀运匀5如压~足压压的水平压送压始压以大小压v,3m/s的速度向左压~压送压上有一压量压运M,2kg的小木盒速压。

物到板运当体碰R端的压板后被压回~若在撞瞬压撤去压压~物返回压在磁压中仍做速压~碰体匀运A~A与数压送压之压的压摩擦因压μ,0,3~压始压~A与静压送压之压保持相压止。

先后相隔?t,3s有两2 离匀减运压磁压后做速压停在C点~PC=L/4~物平板压的压摩擦因压体与数μ=0,4~取g=10m/s~求,个光滑的压量压,1kg的小球自压送压的左端出压~以,15m/s的速度在压送压上向右压。

第运1球个mBv0;1,判物压压性压~正压荷压是压压荷,断体与即与静木盒相遇后~球立压入盒中盒保持相压止~第2球出压后压压?个t,1s/3而木盒相遇。

求与1;2,物压板撞前后的速度体与碰v和v122;取g,10m/s,;3,磁感压强度B的大小;1,第1球木盒相遇后瞬压~者共同压的速度压多大,个与两运;4,压压强度E 的大小和方向;2,第1球出压后压压多压压压木盒相遇,个与压12;3,自木盒第与1球相遇至第个与2球相遇的压程中~由于木盒压送压压的摩擦而压生的压量个与是多少,2(10分)如压214—所示~光滑水平面上有压桌L=2m的木板C~压量m=5kg~在其正中央排放着并cvA0B两个小滑压A和B~m=1kg~m=4kg~压始压三物都止,在静A、B压有少量塑炸压~爆炸后胶A以速AB度6m,s水平向左压~运A、B中任一压压板撞后~都粘在一起~不压摩擦和撞压压~求,与碰碰(1)滑压当两A、B都压板撞后~与碰C的速度是多大?v (2)到A、B都压板撞压止~与碰C的位移压多少?6如压所示~平行金板两属A、B压l,8cm~板压距两离d,-10-208cm~A板比B板压压高300V~即U,300V。

高考试题压轴题及答案

高考试题压轴题及答案

高考试题压轴题及答案第一部分:语文篇章一:诗歌解析相信在我们的高中生涯中,我们都曾接触过各种各样的诗歌。

诗歌作为一种表现情感、抒发思想的文学形式,对于我们的文学修养和审美能力有着重要的影响。

下面是一首著名的古诗,请根据你的理解回答以下问题:《静夜思》 - 李白床前明月光,疑是地上霜。

举头望明月,低头思故乡。

1. 李白的《静夜思》以何种手法表达了对故乡的思念之情?2. 这首诗的主题是什么?请简要阐述。

3. 通过分析诗的意象和字里行间的表达,诗人想要传达怎样的情感?篇章二:阅读理解阅读以下短文,根据文章内容回答问题。

话题:人工智能随着科技的发展,人工智能(Artificial Intelligence, AI)日益走入人们生活的方方面面。

人工智能已经广泛应用于诸如语音识别、自动驾驶等领域,并对各行各业产生了深远的影响。

人工智能的发展给社会带来了许多便利,但同时也引发了诸多争议。

一方面,人工智能的广泛应用使得人们的工作效率大幅提升,减轻了人们的劳动负担;另一方面,大规模的自动化生产也导致了很多工人的失业。

当前,人工智能正在不断发展,各国纷纷加大对人工智能领域的投入。

但随之而来的问题是,人工智能的发展是否会威胁到人类的生存?1. 人工智能在现代社会中起到了哪些积极作用?请举例说明。

2. 人工智能的发展给我们带来了哪些挑战和问题?3. 你认为人工智能对人类的未来会产生怎样的影响?请谈谈你的看法。

第二部分:数学篇章一:解答数学题作为高考的重要科目之一,数学考试一直是考生们比较头疼的部分。

下面是一道高考数学题,请仔细阅读并回答。

已知函数 f(x) = x^2 + 3x + 2,求函数 f(x) 的零点。

篇章二:应用题数学不仅仅限于纸上的计算,它也广泛应用于实际生活中。

下面是一个与实际问题相关的数学应用题,请结合实际情境回答问题。

某公司生产的一种产品在市场上的日销量服从正态分布,均值为150件,标准差为40件。

高考数学:20道压轴题全汇总(附解析),拿下它,高考冲刺150!

高考数学:20道压轴题全汇总(附解析),拿下它,高考冲刺150!

高考数学:20道压轴题全汇总(附解析),拿下它,高考冲刺150!数学学科是高考最拉分的学科,所以如何在这门学科上取得高分,是很多同学都非常关心的问题。

其实数学想拿高分,就在于压轴大题的突破,高中数学难度虽然较大,但是在高考考试中基础部分题型任然占据了70%左右的分值,因此压轴题成了关键,只要能够把数学压轴题型拿下,那么数学高分肯定不成问题。

可是很多同学对于数学压轴题的第一反应就是,太难了,完全没有解题的思路,如何做拿下呢?其实数学压轴题也没有想象中的那么难了,关键是你要有解决问题的思路。

压轴大题考查的是考生的综合能力,涉及很多知识点,但是中高考都有一定的考查知识点标准。

答题时只有约接近知识点或“踩到”的知识点越多,得分就越多,想要数学大题不丢分,就先要了解阅卷评分准则。

比如:应用题满分套路,应用题一直以来都是难点,很多学生听到应用题估计都会头疼,不知道从何下手,但是做应用题也有一定的方法技巧,只要掌握了这些套路,让你做应用题,也得心应手!推断证明题满分套路,数学推断证明题的考查也是令不少考生头疼,总说掌握不了,看到题目就觉得很难,同学们千万不要被表面吓到!其实大家掌握了技巧,总结证明题的解题经验,你会发现,推断证明一点都不难,完全可以拿满分!所以这一次为了帮助同学们拿下高中数学压轴题难关,老师这次就总结整了了高考数学20道压轴题全汇总(附解析),这20道题是高考数学的高频考点,如果同学们能够拿下它,认真吃透,那么高考数学必定能够取得不错的成绩。

篇幅关系,这里就先整理了高考数学典型题例的部分,有关于2018年各省份的高考数学压轴题,物理压轴大题,各科的真题试卷老师都在整理中,如果家长朋友们觉得有帮助或是需要了解更多,都可以找老师交流,点击下方蓝色字体,查看获取更多优质精彩内容。

暑期将至,近期老师整理不少暑期提升资料,希望可以帮助到大家,篇幅关系资料未能全部呈现,如需完整版本,点击下方蓝色字体找我分享!初中、高中3年各年级各科的学习资料和暑期提升试卷正在整理编辑中,如需其他学科的学习资料都可找我分享。

历届高考压轴题汇总

历届高考压轴题汇总

25.(20分)我国发射的“嫦娥一号”探月卫星沿近似于圆形轨道绕月飞行。

为了获得月球表面全貌的信息,让卫星轨道平面缓慢变化。

卫星将获得的信息持续用微波信号发回地球。

设地球和月球的质量分别为M和m,地球和月球的半径分别为R和R1,月球绕地球的轨道半径和卫星绕月球的轨道半径分别为r和r1,月球绕地球转动的周期为T。

假定在卫星绕月运行的一个周期内卫星轨道平面与地月连心线共面,求在该周期内卫星发射的微波信号因月球遮挡而不能到达地球的时间(用M、m、R、R1、r、r1和T表示,忽略月球绕地球转动对遮挡时间的影响)。

09年全国卷Ⅱ)26. (21分)如图,P、Q为某地区水平地面上的两点,在P点正下方一球形区域内储藏有石油,假定区域周围岩石均匀分布,密度为ρ;石油密度远小于ρ,可将上述球形区域视为空腔。

如果没有这一空腔,则该地区重力加速度(正常值)沿竖直方向;当存在空腔时,该地区重力加速度的大小和方向会与正常情况有微小偏高。

重力加速度在原坚直方向(即PO方向)上的投影相对于正常值的偏离叫做“重力加速度反常”。

为了探寻石油区域的位置和石油储量,常利用P点附近重力加速度反常现象。

已知引力常数为G。

(1)设球形空腔体积为V,球心深度为d(远小于地球半径),P Q=x,求空腔所引起的Q点处的重力加速度反常(2)若在水平地面上半径L的范围内发现:重力加速度反常值在δ与kδ(k>1)之间变化,且重力加速度反常的最大值出现在半为L的范围的中心,如果这种反常是由于地下存在某一球形空腔造成的,试求此球形空腔球心的深度和空腔的体积。

25.(20分)如图,O和O/分别表示地球和月球的中心。

在卫星轨道平面上,A是地月连心线OO/与地月球面的公切线ACD的交点,D、C和B分别是该公切线与地球表面、月球表面和卫星圆轨道的交点。

根据对称性,过A点在另一侧作地月球面的公切线,交卫星轨道于E点。

卫星在BE弧上运动时发出的信号被遮挡。

设探月卫星的质量为m0,万有引力常量为G ,根据万有引力定律有 r T m rMm G 222⎪⎭⎫⎝⎛=π ○1 1210212r Tm r mm G ⎪⎪⎭⎫⎝⎛=π ○2 式中,T 1是探月卫星绕月球转动的周期。

历届高考数学压轴题汇总及答案

历届高考数学压轴题汇总及答案

历届高考数学压轴题汇总及答案1.2019年高考数学上海卷:已知等差数列$\{a_n\}$的公差$d\in(0,\pi]$,数列$\{b_n\}$满足$b_n=\sin(a_n)$,集合$S=\{x|x=b_n,n\in N^*\}$。

1) 若$a_1=0,d=\frac{\pi}{6}$,求集合$S$的元素个数;2) 若$a_1=\frac{2\pi}{3}$,求集合$S$;3) 若集合$S$有三个元素$b_{n+T}=b_n$,其中$T$是不超过$7$的正整数,求$T$的所有可能值。

2.2019年高考数学浙江卷:已知实数$a\neq0$,函数$f(x)=a\ln x+x+1$,$x>0$。

1) 当$a=-1$时,求函数$f(x)$的单调区间;2) 对任意$x\in[\frac{3}{4},+\infty)$,有$f(x)\leq\frac{1}{2}e^{2a}$,求$a$的取值范围。

3.2019年高考数学江苏卷:设$(1+x)=a+a_1x+a_2x^2+\cdots+a_nx^n$,$n^2,n\in N^*$,已知$a_3=2a_2a_4$。

1) 求$n$的值;2) 设$(1+3x)=a+b\sqrt{3}$,其中$a,b\in N^*$,求$a^2-3b^2$的值。

4.2018年高考数学上海卷:给定无穷数列$\{a_n\}$,若无穷数列$\{b_n\}$满足对任意$n\in N^*$,都有$b_n-a_n\leq1$,则称$\{b_n\}$与$\{a_n\}$“接近”。

1) 设$\{a_n\}$是首项为$1$,公比为$\frac{1}{2}$的等比数列,构造一个与$\{a_n\}$接近的数列$\{b_n\}$,并说明理由;2) 设数列$\{a_n\}$的前四项为:$a_1=1,a_2=2,a_3=4,a_4=8$,$\{b_n\}$是一个与$\{a_n\}$接近的数列,记集合$M=\{x|x=b_i,i=1,2,3,4\}$,求$M$中元素的个数$m$;3) 已知$\{a_n\}$是公差为$d$的等差数列,若存在数列$\{b_n\}$满足:$\{b_n\}$与$\{a_n\}$接近,且在$1$的等比数列,$b_n=a_{n+1}+1$,$n\in N^*$,判断数列$\{b_n\}$是否满足$b_2-b_1,b_3-b_2,\cdots,b_{201}-b_{200}$中至少有$100$个为正数,求$d$的取值范围。

历届高考数学压轴题汇总及答案(上海卷)

历届高考数学压轴题汇总及答案(上海卷)

历届高考数学压轴题汇总及答案(上海卷2017-2018)一.填空题1.(上海2017.12题)如图,用35个单位正方形拼成一个矩形,点1P 、2P 、3P 、4P 以及四个标记为“▲”的点在正方形的顶点处,设集合1234{P ,P ,P ,P }Ω=,点P ∈Ω,过P 作直线P l ,使得不在P l 上的“▲”的点分布在P l 的两侧.用1D (P l )和2D (P l )分别表示P l 一侧和另一侧的“▲”的点到P l 的距离之和.若过P 的直线P l 中有且只有一条满足1D (P l )2D =(P l ),则Ω中所有这样的P 为 .2.(上海2018.12题已知实数x x y y ₁、₂、₁、₂满足:22111x y +=,22221x y +=,121212x x y y +=,的最大值为 。

二.选择题3、(上海2017.16题)在平面直角坐标系xOy 中,已知椭圆221:1364x y C +=和222:19y C x +=.P 为1C 上的动点,Q 为2C 上的动点,w 是OP OQ 的最大值.记{(,)}P Q Ω=,P 在1C 上,Q 在2C 上,且OP OQ w =,则Ω中元素个数为( )A .2个B .4个C .8个D .无穷个4.(上海2018.16题)设D 是含数1的有限实数集,()f x 是定义在D 上的函数,若()f x 的图像绕原点逆时针旋转6π后与原图像重合,则在以下各项中,的可能取值只能是( )D.01f ()三.解答题5、(上海2017.20题)在平面直角坐标系xOy 中,已知椭圆22:14x y Γ+=,A 为Γ的上顶点,P 为Γ上异于上、下顶点的动点,M 为x 正半轴上的动点. (1)若P在第一象限,且||OP =P 的坐标;(2)设83,55P ⎛⎫⎪⎝⎭,若以A 、P 、M 为顶点的三角形是直角三角形,求M 的横坐标;(3)若||||MA MP =,直线AQ 与Γ交于另一点C ,且2AQ AC =,4PQ PM =,求直线AQ 的方程.6.(上海2018.20题)(本题满分16分,第1小题满分4分,第2小题满分6分,第2小题满分6分,第3小题满分6分)设常数2t >,在平面直角坐标系xOy 中,已知点0(2)F ,,直线:l x t =,曲线:(0,y 0)x t ≤≤≥,l 与x 轴交于点A ,与τ交于点B P Q ,、分别是曲线τ与线段AB 上的动点。

史上最难高考压轴题

史上最难高考压轴题

史上最难高考压轴题史上最难高考压轴题如下:1. 数学:某数学题考察内容:高等数学、解析几何等题目内容:已知平面上一点P(x,y)满足方程3x^2+4y^2-4xy=7,求点P的坐标。

2. 物理:某物理题考察内容:力学、电磁学等题目内容:一质点自由下落,经过一个高度为H的水平杆时垂直向上抛出一个小球,小球的初速度和垂直向下飞行的质点相同。

已知质点下落时间为t,小球的抛出角度为θ,请计算小球飞出的水平距离。

3. 化学:某化学题考察内容:化学反应、化学平衡等题目内容:已知气体反应2A+3B→4C+2D,在某一温度下反应速率常数k为2.5×10^-3mol/(L·s),反应初速度为0.04mol/(L·s),求在此温度下反应达到平衡时C的浓度。

4. 生物:某生物题考察内容:生物多样性、遗传学等题目内容:某物种具有显性遗传性状A和隐性遗传性状B,A为完全显性。

两个杂交的个体AaBb和AABb进行自交,求自交后得到AA、Aa、aa的比例。

5. 历史:某历史题考察内容:历史事件、历史人物等题目内容:请描述并分析中国历史上的一次重大政治运动(如文化大革命、百花齐放等),阐述其对中国社会和政治的影响。

6. 地理:某地理题考察内容:地球自然环境、人文环境等题目内容:以某城市为例,探讨其城市规划对城市环境、交通流量以及居民生活的影响,提出相关改进建议。

7. 政治:某政治题考察内容:现代政治体制、治理等题目内容:分析中国和美国的政治体制差异,并探讨其对两国政治发展和社会稳定的影响。

请注意,以上仅为示例,并不代表真实的高考压轴题。

真实的高考压轴题因年份和科目而异,题目确定时,请以官方发布为准。

高考数学压轴题100题汇总(含答案)

高考数学压轴题100题汇总(含答案)

高考数学压轴题100题汇总(含答案)1. 设函数f(x) = x^3 3x + 1,求f(x)的极值点和极值。

答案:f(x)的极值点为x = 1和x = 1,极值分别为f(1) = 1和f(1) = 3。

2. 已知等差数列{an}的前n项和为Sn = n^2 + n,求该数列的通项公式。

答案:an = 2n + 1。

3. 已知三角形ABC中,AB = AC = 5,BC = 8,求三角形ABC的面积。

答案:三角形ABC的面积为12。

4. 设直线y = kx + b与圆x^2 + y^2 = 1相切,求k和b的值。

答案:k = ±√3/3,b = ±√6/3。

5. 已知函数f(x) = log2(x^2 + 1),求f(x)的导数。

答案:f'(x) = 2x/(x^2 + 1)ln2。

6. 已知向量a = (2, 3),向量b = (1, 4),求向量a和向量b的夹角。

答案:向量a和向量b的夹角为arccos(1/√5)。

7. 已知矩阵A = [1 2; 3 4],求矩阵A的逆矩阵。

答案:矩阵A的逆矩阵为[4 2; 3 1]。

8. 已知函数f(x) = x^3 6x^2 + 9x + 1,求f(x)的零点。

答案:f(x)的零点为x = 1和x = 3。

9. 已知函数f(x) = sin(x) cos(x),求f(x)在区间[0, π/2]上的最大值。

答案:f(x)在区间[0, π/2]上的最大值为√2。

10. 已知函数f(x) = x^2 + 4x + 4,求f(x)的顶点坐标。

答案:f(x)的顶点坐标为(2, 0)。

高考数学压轴题100题汇总(含答案)11. 已知函数f(x) = e^x 2x,求f(x)的导数。

答案:f'(x) = e^x 2。

12. 已知函数f(x) = x^2 4x + 4,求f(x)的极值点和极值。

答案:f(x)的极值点为x = 2,极值为f(2) = 0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2001—2008届高考物理压轴题汇编一、力学2001年全国理综(江苏、安徽、福建卷)31.(28分)太阳现正处于主序星演化阶段。

它主要是由电子和H 11、He 42等原子核组成。

维持太阳辐射的是它内部的核聚变反应,核反应方程是2e+4H 11→He 42+释放的核能,这些核能最后转化为辐射能。

根据目前关于恒星演化的理论,若由于聚变反应而使太阳中的H 11核数目从现有数减少10%,太阳将离开主序垦阶段而转入红巨星的演化阶段。

为了简化,假定目前太阳全部由电子和H 11核组成。

(1)为了研究太阳演化进程,需知道目前太阳的质量M 。

已知地球半径R =6.4×106 m ,地球质量m =6.0×1024kg ,日地中心的距离r =1.5×1011m ,地球表面处的重力加速度g =10m/s 2,1年约为3.2×107秒。

试估算目前太阳的质量M 。

(2)已知质子质量m p =1.6726×10-27 kg ,He 42质量m α=6.6458×10-27kg ,电子质量m e =0.9×10-30 kg ,光速c =3×108 m/s 。

求每发生一次题中所述的核聚变反应所释放的核能。

(3)又知地球上与太阳光垂直的每平方米截面上,每秒通过的太阳辐射能w =1.35×103 W/m 2。

试估算太阳继续保持在主序星阶段还有多少年的寿命。

(估算结果只要求一位有效数字。

)参考解答:(1)估算太阳的质量M设T 为地球绕日心运动的周期,则由万有引力定律和牛顿定律可知①地球表面处的重力加速度2R m Gg =② 由①、②式联立解得③以题给数值代入,得M =2×1030 kg ④(2)根据质量亏损和质能公式,该核反应每发生一次释放的核能为 △E =(4m p +2m e -m α)c 2⑤ 代入数值,解得 △E =4.2×10-12 J ⑥(3)根据题给假定,在太阳继续保持在主序星阶段的时间内,发生题中所述的核聚变反应的次数为pm MN 4=×10% ⑦ 因此,太阳总共辐射出的能量为 E =N ·△E设太阳辐射是各向同性的,则每秒内太阳向外放出的辐射能为 ε=4πr 2w ⑧所以太阳继续保持在主序星的时间为εEt =⑨由以上各式解得以题给数据代入,并以年为单位,可得 t =1×1010 年=1 百亿年 ⑩评分标准:本题28分,其中第(1)问14分,第(2)问7分。

第(3)问7分。

第(1)问中,①、②两式各3分,③式4分,得出④式4分; 第(2)问中⑤式4分,⑥式3分;第(3)问中⑦、⑧两式各2分,⑨式2分,⑩式1分。

2003年理综(全国卷)34.(22分)一传送带装置示意如图,其中传送带经过AB 区域时是水平的,经过BC 区域时变为圆弧形(圆弧由光滑模板形成,未画出),经过CD 区域时是倾斜的,AB 和CD 都与BC 相切。

现将大量的质量均为m 的小货箱一个一个在A 处放到传送带上,放置时初速为零,经传送带运送到D 处,D 和A 的高度差为h 。

稳定工作时传送带速度不变,CD 段上各箱等距排列,相邻两箱的距离为L 。

每个箱子在A 处投放后,在到达B 之前已经相对于传送带静止,且以后也不再滑动(忽略经BC 段时的微小滑动)。

已知在一段相当长的时间T 内,共运送小货箱的数目为N 。

这装置由电动机带动,传送带与轮子间无相对滑动,不计轮轴处的摩擦。

求电动机的平均抽出功率P 。

参考解答:以地面为参考系(下同),设传送带的运动速度为v 0,在水平段运输的过程中,小货箱先在滑动摩擦力作用下做匀加速运动,设这段路程为s ,所用时间为t ,加速度为a ,则对小箱有s =1/2at 2①v 0=at ② 在这段时间内,传送带运动的路程为s 0=v 0t ③ 由以上可得s 0=2s ④用f 表示小箱与传送带之间的滑动摩擦力,则传送带对小箱做功为A =fs =1/2mv 02⑤传送带克服小箱对它的摩擦力做功A 0=fs 0=2·1/2mv 02⑥两者之差就是克服摩擦力做功发出的热量Q =1/2mv 02⑦可见,在小箱加速运动过程中,小箱获得的动能与发热量相等。

T 时间内,电动机输出的功为W =P T ⑧此功用于增加小箱的动能、势能以及克服摩擦力发热,即W =1/2Nmv 02+Nmgh +NQ ⑨ 已知相邻两小箱的距离为L ,所以v 0T =NL ⑩ 联立⑦⑧⑨⑩,得P =T Nm [222TL N +gh]2004年全国理综25.(20分)柴油打桩机的重锤由气缸、活塞等若干部件组成,气缸与活塞间有柴油与空气的混合物。

在重锤与桩碰撞的过程中,通过压缩使混合物燃烧,产生高温高压气体,从而使桩向下运动,锤向上运动。

现把柴油打桩机和打桩过程简化如下:柴油打桩机重锤的质量为m ,锤在桩帽以上高度为h 处(如图1)从静止开始沿竖直轨道自由落下,打在质量为M (包括桩帽)的钢筋混凝土桩子上。

同时,柴油燃烧,产生猛烈推力,锤和桩分离,这一过程的时间极短。

随后,桩在泥土中向下移动一距离l 。

已知锤反跳后到达最高点时,锤与已停下的桩幅之间的距离也为h (如图2)。

已知m =1.0×103kg ,M =2.0×103kg ,h =2.0m ,l =0.20m ,重力加速度g =10m/s 2,混合物的质量不计。

设桩向下移动的过程中泥土对桩的作用力F 是恒力,求此力的大小。

25.锤自由下落,碰桩前速度v 1向下,gh v 21=①碰后,已知锤上升高度为(h -l ),故刚碰后向上的速度为)(22l h g v -=②设碰后桩的速度为V ,方向向下,由动量守恒,21mv MV mv -=③桩下降的过程中,根据功能关系,Fl Mgl MV =+221④ 由①、②、③、④式得])(22)[(l h h l h Mml mg Mg F -+-+=⑤代入数值,得5101.2⨯=F N ⑥2005年理综(四川、贵州、云南、陕西、甘肃)25.(20分)如图所示,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A 点由静止出发绕O 点下摆,当摆到最低点B 时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处A 。

求男演员落地点C 与O 点的水平距离s 。

已知男演员质量m 1和女演员质量m 2之比m 1/m 2=2秋千的质量不计,秋千的摆长为R ,C 点低5R 。

解:设分离前男女演员在秋千最低点B 的速度为v 0,由机械能守恒定律,22121)(21)(v m m gR m m +=+ 设刚分离时男演员速度的大小为v 1,方向与v 0相同;女演员速度的大小为v 2,方向与v 0相反,由动量守恒,2211021)(v m v m v m m -=+分离后,男演员做平抛运动,设男演员从被推出到落在C 点所需的时间为t ,根据题给条件,由运动学规律,2214gt R =t v x 1=,根据题给条件,女演员刚好回A 点,由机械能守恒定律,222221v m gR m =,已知m 1=2m 2,由以上各式可得x =8R 2006年全国理综(天津卷)25.(22分)神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律。

天文学家观测河外星系麦哲伦云时,发现了LMCX-3双星系统,它由可见星A 和不可见的暗星B 构成,两星视为质点,不考虑其它天体的影响,A 、B 围绕两者连线上的O 点做匀速圆周运动,它们之间的距离保持不变,如图所示。

引力常量为G ,由观测能够得到可见星A 的速率v 和运行周期。

(1)可见得A 所受暗星B 的引力F A 可等效为位于O 点处质量为m /的星体(视为质点)对它的引力,设A 和B 的质量分别为m 1、m 2。

试求m /的(用m 1、m 2表示);(2)求暗星B 的质量m 2与可见星A 的速率v 、运行周期T 和质量m 1之间的关系式; (3)恒星演化到末期,如果其质量大于太阳质量m I 的两倍,它将有可能成为黑洞。

若可见星A 的速率v =2.7m/s ,运行周期T =4.7π×104s ,质量m 1=6m I ,试通过估算来判断暗星B 有可能是黑洞吗?(G =6.67×1011-N ·m/kg 2,m I =2.0×1030kg )解析(1)设A 、B 的圆轨道半径分别为r 1、r 2,由题意知,A 、B 做匀速圆周运动的角速相同,其为ω。

由牛顿运动运动定律,有F A =m 1ω2r 1 F B =m 2ω2r 2 F A =F B设A 、B 之间的距离为r ,又r =r 1+r 2,由上述各式得 r =1212m m r m ① 由万有引力定律,有F A =G122m m r将①代入得F A =G 3122212()m m m m r +令F A =G 121/m m r比较可得3212()/=m m m m +② (2)由牛顿第二定律,有/211211m m v G m r r =③又可见星A 的轨道半径r 1=2vTπ④ 由②③④式可得332212()2m v Tm m Gπ=+ (3)将m 1=6m I 代入⑤式,得33222(6)2I m v Tm m Gπ=+⑤ 代入数据得3222 3.5(6)I I m m m m =+⑥设m 2=nm I ,(n >0),将其代入⑥式,得32222 3.56(6)(1)I I I m nm m m m n==++⑦可见,3222(6)I m m m +的值随n 的增大而增大,试令n =2,得 20.125 3.56(1)I I I n m m m n=<+⑧若使⑦式成立,则n 必须大于2,即暗星B 的质量m 2必须大于2m I ,由此得出结论:暗星B 有可能是黑洞。

2006年全国理综(重庆卷)25.(20分)(请在答题卡上作答)如题25图,半径为R 的光滑圆形轨道固定在竖直面内。

小球A 、B 质量分别为m 、βm (β为待定系数)。

A 球从工边与圆心等高处由静止开始沿轨道下滑,与静止于轨道最低点的B 球相撞,碰撞后A 、B 球能达到的最大高度均为R 41,碰撞中无机械能损失。

重力加速度为g 。

试求: (1)待定系数β;(2)第一次碰撞刚结束时小球A 、B 各自的速度和B 球对轨道的压力; (3)小球A 、B 在轨道最低处第二次碰撞刚结束时各自的速度,并讨论小球A 、B 在轨道最低处第n 次碰撞刚结束时各自的速度。

解析:(1)由mgR =4mgR +4mgRβ得 β=3(2)设A 、B 碰撞后的速度分别为v 1、v 2,则2112mv =4mgR2212mv β=4mgR β 设向右为正、向左为负,解得 v 1=12gR ,方向向左 v 2=12gR ,方向向右 题25图设轨道对B 球的支持力为N ,B 球对轨道的压力为N /,方向竖直向上为正、向下为负。

相关文档
最新文档