数学归纳法与不等式

合集下载

数学归纳法证明不等式

数学归纳法证明不等式

例4、已知x> 1,且x0,nN,n2. 求证:(1+x)n>1+nx.
证明: (1)当n=2时,左=(1+x)2=1+2x+x2
∵ x0,∴ 1+2x+x2>1+2x=右
∴n=1时不等式成立 (2)假设n=k时,不等式成立,即 (1+x)k>1+kx 当n=k+1时,因为x> 1 ,所以1+x>0,于是 左边=(1+x)k+1=(1+x)k(1+x)>(1+x)(1+kx)=1+(k+1)x+kx2; 右边=1+(k+1)x. 因为kx2>0,所以左边>右边,即(1+x)k+1>1+(k+1)x. 这就是说,原不等式当n=k+1时也成立. 根据(1)和(2),原不等式对任何不小于2的自然数n都成立.
1 1 1 1 2° 假设 n=k 时命题成立,即 1+ 2+ 2+„+ 2<2- 2 3 k k 1 1 1 1 当 n=k+1 时,1+22+32+„+k2+ 2< (k+1) 1 1 1 1 1 1 1 2- + <2- + =2- + - k (k+1)2 k k(k+1) k k k+1 1 =2- 命题成立. k+1 由 1° 、2° 知原不等式在 n≥2 时均成立.
2.数学归纳法适用范围,主要用于研究与正整数有关 的数学问题。 3. 数学归纳法的关键与难点: 在 “归纳递推 ” 中 , “证明当 n =k+1 时 命题也成立 ”, 必须利用归纳假设 :“当 n= k (k ≥n 0, k ∈ N *时命题成立 ” 否则便不是 , 数学归纳法。

高中数学的解析如何利用数学归纳法解决数学问题

高中数学的解析如何利用数学归纳法解决数学问题

高中数学的解析如何利用数学归纳法解决数学问题数学归纳法是一种常用的数学推理方法,特别适用于解决涉及自然数的问题。

它的基本思想是通过证明某个命题在第一个自然数上成立,并假设该命题在第k个自然数上成立,再利用这一假设证明该命题在第k+1个自然数上也成立。

本文将着重讨论高中数学中一些典型问题,介绍如何使用数学归纳法解决这些问题。

一、等差数列的性质证明等差数列是高中数学中一个重要的概念,其性质证明常常可以使用数学归纳法。

我们以等差数列的前n项和公式为例进行说明。

首先,我们需要证明等差数列前n项和公式在第一个自然数上成立。

当n=1时,等差数列的前n项和显然等于它的第一个项,命题成立。

其次,我们假设等差数列前k项和公式在第k个自然数上成立,即Sn = (2a1 + (k-1)d)k/2 (式1)我们需要证明等差数列前(k+1)项和公式在第(k+1)个自然数上也成立。

通过对等差数列前k+1项求和可以得到:S(k+1) = a1 + a2 + ... + ak + a(k+1)S(k+1) = [(k+1)(a1 + a(k+1))/2] + kd (式2)将式1代入式2中,整理后可得:S(k+1) = [(k+1)(2a1 + (k+1-1)d)/2] + kdS(k+1) = [(k+1)(2a1 + kd)/2] + kdS(k+1) = [(k+1)(2a1 + kd) + 2kd]/2S(k+1) = (2a1 + (k+1)d)(k+1)/2由此可见,假设在第k个自然数上等差数列前k项和公式成立,可以推出在第(k+1)个自然数上该公式也成立。

因此,根据数学归纳法的推理步骤,我们可以得出等差数列前n项和公式对于任意正整数n都成立的结论。

二、数学归纳法解决不等式问题数学归纳法不仅可以用于证明等式的性质,还可以用于解决不等式问题。

我们以证明平方不等式n^2 ≥ n(n ≥ 1)为例。

首先,我们需要证明当n=1时平方不等式成立,即1^2 ≥ 1,命题成立。

数学归纳法、用数学归纳法证明不等式举例 课件

数学归纳法、用数学归纳法证明不等式举例 课件

命题方向1 ⇨数学归纳法证明等式
典例试做 1
1),其中 n∈N+.
用数学归纳法证明(n+1)(n+2)…(n+n)=2n·1·3·…·(2n-
● [分析] 用数学归纳法证明一个与正整数有关的命题,关键是第二步,要注意当n=k+1时, 等式两边的式子与n=k时等式两边的式子的联系.
● [解析] (1)当n=1时,左边=1+1=2,右边=21·1=2,等式成立. ● (2)假设当n=k时等式成立,即 ● (k+1)(k+2)…(k+k)=2k·1·3·…·(2k-1),
● 则当n=k+1时, ● (k+2)(k+3)…(k+1+k)(k+1+k+1)=(k+2)·(k+3)…+(k+k)(2k+1)(2k+2) ● =(k+1)(k+2)…(k+k)·2(2k+1) ● =2k·1·3·…·(2k-1)·2(2k+1) ● =2k+1·1·3…·(2k-1)(2k+1), ● 即当n=k+1时,等式也成立. ● 由(1)(2)可知,对一切n∈N+,等式成立.
n 都成立,求正整数 a 的最大值,并证明你的结论.
[分析] 用数学归纳法证明. 从n=k到n=k+1时,为利用假设需要增加因

1 k+1
,对于除含有n=k的因式外的其余的项需运用不等式的性质证明其大于
零即可.
[解析] 取n=1,1+1 1+1+1 2+3×11+1=2264,令2264>2a4⇒a<26,而a∈N+,
=(k+1 1+k+1 2+…+3k+1 1)+(3k+1 2+3k+1 3+3k+1 4-k+1 1)>2254+[3k+1 2+ 3k+1 4-3k+2 1].
∵3k+1 2+3k+1 4=9k26+k1+8k1+ 8>3k+2 1, ∴3k+1 2+3k+1 4-3k+2 1>0, ∴k+11+1+k+11+2+…+3k+11+1>2254,

数学归纳法课件

数学归纳法课件
关系式的正确分析是应用数学归纳法成功证明问题的保障.
3.在第二步的证明过程中一定要用上归纳假设,否则这样的证明
就不再是数学归纳法.
变式训练2 用数学归纳法证明:1+3×2+5×22+…+(2n-1)×2n1=2n(2n-3)+3(n∈N ).
+
证明:(1)当n=1时,左边=1,右边=2(2-3)+3=1,左边=右边,命题成
=
1
1 +1
1- 2
2
1
1-2
=1-
1 +1
,
2
1
1 1
正解(1)当 n=1 时,左边= ,右边=12
2
=
1
,命题成立.
2
(2)假设当 n=k(k≥1)时命题成立,
1
1
即 + 2
2 2

+
1
1
2
2
3 +…+ =1-
1
1
n=k+1 时, + 2
2 2
1
1
1
=1-

2
+
+
1
,
2
1
1
2
2
3 +…+
反思感悟用数学归纳法证明整除问题时,首先从要证的式子中拼
凑出假设成立的式子,然后证明剩余的式子也能被某式(数)整除.其
中的关键是“凑项”,可采用增项、减项、拆项和因式分解等方法分
析出因子,从而利用归纳假设使问题得到解决.
变式训练1 用数学归纳法证明:an+1+(a+1)2n-1能被a2+a+1整除,

第四讲 数学归纳法证明不等式 知识归纳 课件(人教A选修4-5)

第四讲 数学归纳法证明不等式 知识归纳 课件(人教A选修4-5)
考情分析
通过分析近三年的高考试题可以看出,不但考查用数
学归纳法去证明现成的结论,还考查用数学归纳法证明新 发现的结论的正确性.数学归纳法的应用主要出现在数列
解答题中,一般是先根据递推公式写出数列的前几项,通
过观察项与项数的关系,猜想出数列的通项公式,再用数 学归纳法进行证明,初步形成“观察—归纳—猜想—证明”
2.(2012· 湖北高考)(1)已知函数 f(x)=rx-xr+(1-r)(x>0), 其中 r 为有理数,且 0<r<1.求 f(x)的最小值; (2)试用(1)的结果证明如下命题: 设 a1≥0,a2≥0,b1,b2 为正有理数.若 b1+b2=1,则 a1b1·2b2≤a1b1+a2b2; a (3)请将(2)中的命题推广到一般形式, 并用数学归纳法证 明你所推广的命题. 注:当 α 为正有理数时,有求导公式(xα)′=αxα-1.
b1 b2 2 bk
bk 1
a
… a k a k 1 ≤a1b1+a2b2+…+akbk+ak+1bk+1,
故当 n=k+1 时,③成立. 由(1)(2)可知,对一切正整数 n,所推广的命题成立. 说明:(3)中如果推广形式中指出③式对 n≥2 成立,则后续证明 中不需讨论 n=1 的情况.
不完全归纳的作用在于发现规律,探求结论,但结论
a1b1+a2b2+…+akbk bk ak· = , 1-bk+1 1-bk+1
从而 a 1
b1
a
b2 2
…… a k
bk
a1b1+a2b2+…+akbk 1-b bk 1 a k 1 ≤( ) k+1a k 1 . 1-bk+1
bk 1
又因(1-bk+1)+bk+1=1,由②得 a1b1+a2b2+…+akbk 1-b a1b1+a2b2+…+akbk bk 1 ( ) k+1a k 1 ≤ · 1-bk+1 1-bk+1 (1-bk+1)+ak+1bk+1=a1b1+a2b2+…+akbk+ak+1·k+1, b 从而 a 1

数学归纳法证明不等式

数学归纳法证明不等式

数学归纳法证明不等式数学归纳法是一种证明数学命题的重要方法,它基于数学归纳的思想,通过证明一个命题在一些特定条件下成立,并且在此条件下该命题的下一步也具有同样的性质,从而证明该命题对于一切满足该条件的情况都成立。

在这里,我们将使用数学归纳法来证明一个不等式。

不等式是数学中常见的一种关系式,它描述了两个数或者更多数之间大小关系的性质。

在这里,我们将使用数学归纳法来证明一个形如:$2^n>n^2$的不等式,其中$n$是一个正整数。

首先,我们需要证明当$n=1$时,不等式$2^n>n^2$成立。

当$n=1$时,不等式变为$2^1>1^2$,显然成立。

其次,我们需要证明对于任意一个正整数$k$,如果当$n=k$时不等式$2^k>k^2$成立,那么当$n=k+1$时,不等式$2^{k+1}>(k+1)^2$也成立。

也就是说,我们需要证明如果$2^k>k^2$,那么$2^{k+1}>(k+1)^2$。

根据我们的假设,我们知道$2^k>k^2$。

将不等式两边都乘以2,我们得到$2^{k+1}>2k^2$。

由于$k$是一个正整数,所以$k^2>k$。

将这个不等式代入前面的结果中,我们得到$2^{k+1}>2k^2>k^2+k^2>k^2+k>(k+1)^2$。

也就是说,如果$2^k>k^2$,那么$2^{k+1}>(k+1)^2$。

通过对$n=1$和$n=k+1$的情况都进行证明,我们完成了对于任意正整数$n$的证明。

根据数学归纳法的原理,这意味着不等式$2^n>n^2$对于一切$n$都成立。

综上所述,我们使用数学归纳法成功地证明了不等式$2^n>n^2$,其中$n$是一个正整数。

初中数学知识点:不等式证明的六大方法

初中数学知识点:不等式证明的六大方法

马行软地易失蹄,人贪安逸易失志。

对待生命要认真,对待生活要活泼。

以下是为您推荐初中数学知识点:不等式证明的六大方法。

1、比较法:包括比差和比商两种方法。

2、综合法
证明不等式时,从命题的已知条件出发,利用公理、定理、法则等,逐步推导出要证明的命题的方法称为综合法,它是由因导果的方法。

3、分析法
证明不等式时,从待证命题出发,分析使其成立的充分条件,利用已知的一些基本原理,逐步探索,最后将命题成立的条件归结为一个已经证明过的定理、简单事实或题设的条件,这种证明的方法称为分析法,它是执果索因的方法。

4、放缩法
证明不等式时,有时根据需要把需证明的不等式的值适当放大或缩小,使其化繁为简,化难为易,达到证明的目的,这种方法称为放缩法。

5、数学归纳法
用数学归纳法证明不等式,要注意两步一结论。

在证明第二步时,一般多用到比较法、放缩法和分析法。

6、反证法
证明不等式时,首先假设要证明的命题的反面成立,把它作为条件和其他条件结合在一起,利用已知定义、定理、公理等基本原理逐步推证出一个与命题的
条件或已证明的定理或公认的简单事实相矛盾的结论,以此说明原假设的结论不成立,从而肯定原命题的结论成立的方法称为反证法。

数学归纳法证明不等式的两个技巧

数学归纳法证明不等式的两个技巧

数学归纳法证明不等式的两个技巧数学归纳法是一种数学证明方法,常用于证明自然数的性质。

它的基本思想是:首先证明当n为一些特定的自然数时,不等式成立;然后假设当n为一些自然数时,不等式也成立;最后利用这个假设证明当n为n+1时,不等式仍然成立。

下面将介绍两种常用的数学归纳法证明不等式的技巧。

技巧一:基础情况的证明在使用数学归纳法证明不等式时,首先需要证明基础情况,即当n为一些特定的自然数时,不等式是否成立。

例如,我们想要证明对于任意的正整数n,都有1+2+3+...+n≤n²。

基础情况是n=1时,不等式左边为1,右边为1²=1,不等式成立。

技巧二:归纳假设的运用假设当n为一些自然数时,不等式也成立,即假设1+2+3+...+n≤n²成立。

然后我们要利用这个假设来证明当n为n+1时,不等式仍然成立。

例如,我们要证明对于任意的正整数n,都有1+2+3+...+n+(n+1)≤(n+1)²。

根据归纳假设,我们可以得到1+2+3+...+n≤n²,所以我们可以将不等式右边的(n+1)²展开为n²+2n+1现在,我们需要证明1+2+3+...+n+(n+1)≤n²+2n+1、我们可以逐步将左边拆分成两部分,即(1+2+3+...+n)+(n+1)。

根据归纳假设,我们知道前一部分不大于n²,所以该不等式可以进一步简化为n²+(n+1)≤n²+2n+1最后,可以发现左边的n²+(n+1)小于等于右边的n²+2n+1,因为(n+1)小于等于2n+1、所以,我们得到了当n为n+1时,不等式仍然成立。

综上所述,通过基础情况的证明和归纳假设的运用,可以使用数学归纳法证明不等式。

这两个技巧可以帮助我们在证明过程中合理利用已有的条件和假设,从而简化证明的过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课 题: 数学归纳法与不等式
目的要求:1.了解数学归纳法的原理及适用范围和基本步骤 ; 2.会运用数学归纳法证明含有任意正整数n 的不等式(包括贝努利不等式)
重点难点: 认识数学归纳法的证明思路;运用数学归纳法时,在
“假设与递推”的步骤中发现具体问题中的递推关系。

教学设计: 一、引入:
数学归纳法是一个递推的数学论证方法,论证的第一步是证明命题在n =1(或n 0)时成立,这
是递推的基础;第二步是假设在n =k 时命题成立,再证明n =k +1时命题也成立,这是递推的依据。

实际上它使命题的正确性突破了有限,达到无限。

证明时,关键是k +1步的推证,要有目标意识。

二、范例分析:
例1、证明:23333)321(321n n ++++=++++ 。

例2、设1->x ,*N n ∈,证明贝努利不等式:nx x n +>+1)1(。

例3、设b a ,为正数,*
N n ∈,证明:n
n n b a b a )2
(2+≥+。

例4、设数列{a n }的前n 项和为S n ,若对于所有的自然数n ,都有S n =2
)
(1
n a a
n +,证明{a n }是等差数列。

(94年全国文)
例5、已知数列
811322
··,得,…,
8212122
··n
n n ()()-+,…。

S n 为其前n
项和,求S 1、S 2、S 3、
S 4,推测S n 公式,并用数学归纳法证明。

(93年全国理)
解:计算得S 1=89
,S 2=2425
,S 3=4849
,S 4=8081
, 猜测S n =()
()
211
212
2
n n +-+
(n ∈N)
【注】 从试验、观察出发,用不完全归纳法作出归纳猜想,再用数学归纳法进行严格证明,这是探索性问题的证法,数列中经常用到。

(试值 → 猜想 → 证明)
【另解】 用裂项相消法求和
例6、设a
n =12×+23×+…+n n()+1 (n∈N),证明:1
2
n(n
+1)<a
n <1
2
(n+1)2。

三、小结:
四、练习:
五、作业:
1、设f(log
a x)=a x
x a
()
()
2
2
1
1
-
-
, ①.求f(x)的定义域;②.在y=
f(x)的图像上是否存在两个不同点,使经过这两点的直线与x轴平行?证明你的结论。

③.求证:f(n)>n (n>1且n∈N)。

2、已知数列{a
n }满足a
1
=1,a
n
=a
n-1
cosx+cos[(n-1)x], (x
≠kπ,n≥2且n∈N)。

①.求a
2和a
3
;②.猜测a
n
,并用数
学归纳法证明你的猜测。

相关文档
最新文档