铸造铝合金的分类 铸造铝合金的优缺点

合集下载

铸造铝合金的物理性能简介

铸造铝合金的物理性能简介

铸造铝合金的物理性能简介铝合金是一种广泛应用于工业生产和日常生活中的材料。

其特点包括轻质、高强度、耐腐蚀、导热性好以及可塑性强等。

本文将简要介绍铸造铝合金的物理性能,帮助读者更好地了解和应用该材料。

1. 密度和重量特性铸造铝合金相对于其他金属材料,具有较低的密度,约为 2.7g/cm³。

它的轻质特性使得铸造铝合金在汽车、飞机等领域中广泛应用,能够减轻整体结构的重量,提高燃油效率。

2. 强度和机械性能铸造铝合金具有较高的强度,能够满足许多工业制造的需求。

铝合金的屈服强度通常在150-380MPa之间,抗拉强度可高达300-550MPa。

此外,铸造铝合金具有良好的抗疲劳性能,在长时间的使用中仍能保持较高的强度。

3. 导热性能铸造铝合金的导热性能优异,远远超过其他常见的金属材料。

这使得铝合金在工业制冷和热交换器等领域得到广泛应用。

铝合金的高导热性能还使得它在制造高速列车和电子设备的散热器时备受青睐。

4. 耐腐蚀性能铸造铝合金具有良好的耐腐蚀性能,能够在潮湿环境中长时间保持表面的光洁和稳定。

这一特性使铝合金成为制造飞机、汽车等需求高耐腐蚀性材料的优选。

5. 可塑性和加工性能铸造铝合金具有良好的可塑性和加工性能,易于进行成型和加工。

它可以通过压铸、锻造、挤压等方法制造成各种复杂形状的零部件。

同时,铝合金也适合进行焊接、切割、钻孔等二次加工操作,能够满足不同应用领域的需求。

6. 磨损和疲劳性能铸造铝合金经过适当处理和合金化可以提高其磨损和疲劳性能。

这使得铝合金在制造高速运动部件、发动机零部件等高磨损和高应力工作环境下的应用更为广泛。

总结:铸造铝合金具有轻质、高强度、耐腐蚀、导热性好以及可塑性强等一系列优良的物理性能。

这些特点使得铝合金在汽车、航空航天、建筑等各个领域得到广泛应用。

同时,针对特定需求,通过合理的合金化和处理方法,铝合金的性能还可以进一步得到改善。

掌握铸造铝合金的物理性能,将有助于更好地应用和发展这一材料,推动创新和进步。

铝合金熔铸工艺及常见的缺陷

铝合金熔铸工艺及常见的缺陷

铝合金熔铸工艺及常见的缺陷一、铸造概论在铸造合金中,铸造铝合金的应用最为广泛,是其他合金所无法比拟的,铝合金铸造的种类如下:由于铝合金各组元不同,从而表现出合金的物理、化学性能均有所不同,结晶过程也不尽相同。

故必须针对铝合金特性,合理选择铸造方法,才能防止或在许可范围内减少铸造缺陷的产生,从而优化铸件。

1、铝合金铸造工艺性能铝合金铸造工艺性能,通常理解为在充满铸型、结晶和冷却过程中表现最为突出的那些性能的综合。

流动性、收缩性、气密性、铸造应力、吸气性。

铝合金这些特性取决于合金的成分,但也与铸造因素、合金加热温度、铸型的复杂程度、浇冒口系统、浇口形状等有关。

(1) 流动性流动性是指合金液体充填铸型的能力。

流动性的大小决定合金能否铸造复杂的铸件。

在铝合金中共晶合金的流动性最好。

影响流动性的因素很多,主要是成分、温度以及合金液体中存在金属氧化物、金属化合物及其他污染物的固相颗粒,但外在的根本因素为浇注温度及浇注压力(俗称浇注压头)的高低。

实际生产中,在合金已确定的情况下,除了强化熔炼工艺(精炼与除渣)外,还必须改善铸型工艺性(砂模透气性、金属型模具排气及温度),并在不影响铸件质量的前提下提高浇注温度,保证合金的流动性。

(2) 收缩性收缩性是铸造铝合金的主要特征之一。

一般讲,合金从液体浇注到凝固,直至冷到室温,共分为三个阶段,分别为液态收缩、凝固收缩和固态收缩。

合金的收缩性对铸件质量有决定性的影响,它影响着铸件的缩孔大小、应力的产生、裂纹的形成及尺寸的变化。

通常铸件收缩又分为体收缩和线收缩,在实际生产中一般应用线收缩来衡量合金的收缩性。

铝合金收缩大小,通常以百分数来表示,称为收缩率。

①体收缩体收缩包括液体收缩与凝固收缩。

铸造合金液从浇注到凝固,在最后凝固的地方会出现宏观或显微收缩,这种因收缩引起的宏观缩孔肉眼可见,并分为集中缩孔和分散性缩孔。

集中缩孔的孔径大而集中,并分布在铸件顶部或截面厚大的热节处。

分散性缩孔形貌分散而细小,大部分分布在铸件轴心和热节部位。

铸造铝合金的分类

铸造铝合金的分类

铸造铝合金的分类一、引言在现代工业中,铝合金是一种被广泛使用的材料,它具有轻、强、耐腐蚀等优点,因此广泛应用于航空航天、汽车制造、船舶制造等领域。

而铸造作为一种常见的制造工艺,也被用于大规模生产各种类型的铝合金零件。

本文将对铸造铝合金进行分类。

二、分类方法铝合金的分类可以根据不同的方法进行,下面将分别介绍几种常见的分类方法。

2.1 按化学成分分类根据铝合金的化学成分不同,可以将铸造铝合金分为以下几类:2.1.1 系列分类• 1 系列:铝纯度较高,具有良好的腐蚀抗性和可焊性,常用于冷加工。

• 2 系列:含铜合金,具有良好的强度和塑性,常用于航空和航天领域。

• 3 系列:含锰合金,具有良好的耐蚀性、可焊性和强度。

• 4 系列:含硅合金,具有较高的热膨胀系数,常用于高温应用。

• 5 系列:含镁合金,具有较高的强度和可塑性,常用于汽车零部件制造。

2.1.2 合金元素分类•铝铜合金:在铝中添加了铜元素,可以提高合金的强度和耐腐蚀性。

•铝锌合金:在铝中添加了锌元素,可以提高合金的强度和硬度。

•铝镁合金:在铝中添加了镁元素,可以提高合金的韧性和可塑性。

2.2 按用途分类根据铝合金的不同用途,也可以将其进行分类,常见的分类如下:2.2.1 航空铝合金航空铝合金是指用于制造飞机和航天器的铝合金,要求具有较高的强度、韧性和耐腐蚀性。

常用的航空铝合金有7系列和2系列。

2.2.2 汽车铝合金汽车铝合金广泛应用于汽车制造中,可以减轻汽车重量,提高燃油效率。

常用的汽车铝合金有6系列和5系列。

2.2.3 建筑铝合金建筑铝合金主要用于建筑结构和幕墙材料,要求具有耐腐蚀性、强度和美观。

常用的建筑铝合金有6系列和5系列。

2.3 按铸造方法分类根据铸造方法的不同,铝合金也可以进行分类,常见的分类如下:2.3.1 砂铸铝合金砂铸铝合金是最常见的铸造方法之一,适用于大规模生产。

砂模铸造可以根据模具的形状和结构来制造各种形状的铝合金件。

2.3.2 压铸铝合金压铸铝合金是将熔化的铝合金注射到模具中,通过高压力来形成所需的形状。

铸造铝硅合金特性和分类

铸造铝硅合金特性和分类

2.3.1 铸造铝合金的一般特性为了获得各种形状与规格的优质精密铸件.用于铸造的铝合金必须具备以下特性,其中最为关键的是流动性和可填充性。

(1) 有填充狭槽窄缝部分的良好流动性;(2) 有适应其他许多金属所要求的低熔点:(3)导热性能好,熔融铝的热量能快速向铸模传递,铸造周期较短;(4) 熔体中的氢气和其他有害气体可通过处理得到有效的控制;(5)铝合金铸造时,没有热脆开裂和撕裂的倾向:(6)化学稳定性好,有高的抗蚀性能;(7)不易产生表面缺陷,铸件表面有良好的光泽和低的表面粗糙度,而且易于进行表面处理;(8)铸造铝合金的加工性能好,可用压模、硬(永久)模、生砂和干砂模、熔模、石膏型祷造模进行铸造生产,也可用真空铸造、低压和高压铸造、挤压铸造、半固态铸造、离心铸造等方法成形,生产不同用途、不同品种规格、不同性能的各种铸件。

2.3.2铸造铝合金的牌号与状态表示方法铸造铝合金可分为热处理强化型和非热处理强化型两大类。

目前,世界各国已开发出了大量洪铸造的铝合金,但目前基本的合金只有以下6类:(1)A1-Cu铸造铝合金;(2)Al-Cu-Si铸造铝合金;(3)Al-Si铸造铝合金;(4)Al-Mg铸造铝合金;(5)A1-zn-Mg铸造铝合金;(6)Al-Sn铸造铝合金:铸造铝合金系目前国际上无统一标准,各国(公司)都有自己的合金命名及术语,下面分别简述如下。

2.3.2.1 中国铸造铝合金的牌号与状态表示方法(1)按GB8063规定,铸造铝合金牌号用化学元素及数字表示,数字表示该元素的平均含量。

在牌号的最前面用“z”表示铸造,例如ZAISi7Mg,表示铸造铝合金,平均含硅量为7%,平均含镁量小于1%。

另外还有用合金代号表示法,合金代号由字母“z”、“L”(分别是“铸”、“铝”的汉语拼音第一个字母)及其后的三位数字组成。

zL后面第一个数字表示台金系列.其中1、2、3、4分别表示铝硅、铝铜,铝镁.铝锌系列合金,ZL舌面第二位、第三位两个数字表示顺字号。

铸造铝合金的分类

铸造铝合金的分类

铸造铝合金的分类
铝合金是一种常用的轻质合金,其优点包括高强度、耐腐蚀、导热性好等特性。

铸造是一种常见的制造方法,可以生产各种形状和大小的铝合金零件。

根据不同的组成和性能,铝合金可以分为多种类型。

以下是铸造铝合金的分类:
1. 铸造硬化铝合金
硬化铝合金通常由两种或更多种元素组成,例如铜、镁、锰和锌等。

这些元素在固溶处理后形成了固溶体,并在自然或人工时效过程中形成了强化相。

硬化铝合金通常具有较高的强度和刚度,适用于制造需要高强度和低重量的零件。

2. 铸造变形铝合金
变形铝合金是通过加工而不是热处理来增加其强度和刚度的。

这些材料通常含有较高比例的镁、锰或锆等元素,以及其他添加剂如钛、锂等。

变形铝合金具有良好的可塑性和焊接性能,适用于制造需要较高韧性和耐腐蚀性能的零件。

3. 铸造铝硅合金
铝硅合金是一种常用的铸造材料,通常含有5-20%的硅。

这些合金具有良好的流动性和耐磨性,适用于制造汽车零件、压力容器和其他高强度应用。

4. 铸造铝镁合金
铝镁合金含有较高比例的镁元素,通常在5-10%之间。

这些合金具有良好的可塑性和焊接性能,适用于制造航空航天零件、汽车零件和其他需要高强度和轻量化的应用。

总之,铸造铝合金可以根据其组成、强度、可塑性等特性进行分类。

选择适当的铝合金材料可以满足不同应用场景下的需求。

各种铸造铝合金牌号的主要特点及应用

各种铸造铝合金牌号的主要特点及应用

各种铸造铝合金牌号的主要特点及应用铝合金是一种常见的铸造材料,具有轻量化、高强度、良好的成形性等优点。

不同牌号的铝合金具有不同的特点和应用,下面将介绍几种常见的铸造铝合金牌号。

1.A380铝合金A380铝合金具有优良的流动性和耐腐蚀性能,是一种常用的铸造铝合金。

它具有良好的加工性,可用于压铸工艺制造各种复杂形状的零件。

A380铝合金还具有较高的机械性能和良好的表面质量,广泛应用于汽车、航空航天等行业的零部件制造。

2.ADC12铝合金ADC12铝合金是一种常用的压铸铝合金,具有优异的强度和耐磨性能。

它具有较高的放热能力和导热性能,适用于制造需要耐高温和抗磨损的零部件。

ADC12铝合金也具有较好的表面质量和良好的抗氧化性能,广泛应用于汽车发动机缸盖、摩托车发动机壳体等高强度零部件的制造。

3.A356铝合金A356铝合金是一种常用的高强度铝合金,具有良好的塑性和可焊性。

它具有较高的比强度和耐热性能,适用于制造要求高强度和高耐热性的零部件。

A356铝合金也具有良好的表面质量和抗氧化性能,常用于制造飞机零件、汽车零部件和船舶零件等。

4.6061铝合金6061铝合金是一种常用的热处理铝合金,具有优异的强度和耐蚀性能。

它具有良好的可焊性和加工性,适用于制造要求高强度和高精度的零部件。

6061铝合金也具有较好的抗氧化性能和耐候性,广泛应用于航空、汽车、船舶和建筑等领域。

5.7075铝合金7075铝合金是一种常用的高强度铝合金,具有优异的机械性能和抗腐蚀性能。

它具有较高的比强度和耐磨性能,适用于制造需要在恶劣环境下工作的零部件。

7075铝合金还具有良好的抗氧化性能和耐候性,广泛应用于航空航天、车辆和运动器材等领域。

总之,不同牌号的铸造铝合金具有不同的特点和应用。

选择合适的铝合金牌号可以满足不同零部件的要求,提高产品的质量和性能。

希望以上信息对您有所帮助。

变形铝合金和铸造铝合金的分类和用途

变形铝合金和铸造铝合金的分类和用途

变形铝合金和铸造铝合金的分类和用途在纯铝中加人合金元素,如硅、铜、镁、猛、铸、铬、钛、镍、锶、钴以及稀土元素等可配制成铝合金,改变其组织结构与性能,使之适宜制造各种铝合金制品,以满足各行各业的使用。

根据加工工艺的特点,铝合金可分为变形铝合金和铸造铝合金两大类。

铸造招合金铸造铝合金是直接用铸造方法浇注或压铸成零件或毛坯的铝合金。

铸造铝合金(ZL)按成分中主要合金元素可分为铝硅系、铝铜系、铝镁系和铝锌系合金四类,代号编码分别为100、200、300、400.(1)铝硅系合金铝硅系合金也叫“硅铝明”或“矽铝明”,有良好铸造性能和耐磨性能,热胀系数小,在铸造铝合金中是品种最多,用量最大的合金,含硅量在10%〜25%。

有时添加0.2%〜0.6%镁的硅铝合金,广泛用于结构件,如壳体、缸体、箱体和框架等。

有时添加适量的铜和镁,能提高合金的力学性能和耐热性。

此类合金广泛用于制造活塞等部件,如ZL108、ZL109是我国目前常用的铸造铝活塞的材料。

铝铜铸造合金的强化相是θ(Al2Cu),有较高的强度和热稳定性,是所有铸造铝合金中耐热性最高的一类合金。

随铜含量的增加,耐蚀性降低,铸造性能变差。

为了改善铸造性能,提高流动性,减少铸后热裂倾向,常加入一定量的硅。

含铜4.5%〜5.3%合金强化效果最佳,适当加人锰和钛能显著提高室温、高温强度和铸造性能。

常用代号有ZL201(ZAlCu5Mn)、ZL203(ZAlCu4)等,铝铜系合金主要用于制造在较高温度下工作的高强零件,如内燃机汽缸头、汽车活塞等。

(3)铝镁系合金它们是密度最小(2.55g/cm3),强度最高(355MPa左右)的铸造铝合金,含镁12%,强化效果最佳。

但由于结晶温度范围宽,故流动性差,形成疏松趋向大、其铸造性能不如铝硅合金好,为改善铸造性能加人适量硅及微量钛等,合金在大气和海水中的抗腐蚀性能好,用于造船、食品及化学工业。

常用代号有ZL301(ZAlMg10)、ZL303(ZAlMg5Sil)等,用于制造外形简单、承受冲击载荷、在腐蚀性介质下工作的零件,如舰船配件、氨用栗体等。

铸造铝合金的特点及用途

铸造铝合金的特点及用途

【ZL101】ZL101的特点是成分简单,容易熔炼和铸造,铸造性能好,气密性好、焊接和切削加工性能也比较好,但力学性能不高。

适合铸造薄壁、大面积和形状复杂的、强度要求不高的各种零件,如泵的壳体、齿轮箱、仪表壳(框架)及家电产品上的零件等。

主要采用砂型铸造和金属型铸造。

【Zl101A】由于是在ZL101的基础上加了微量Ti,细化了晶粒,强化了合金的组织,其综合性能高于Zl101、ZL102,并有较好的抗蚀性能,可用作一般载荷的工程结构件和摩托车、汽车及家电、仪表产品上的各种结构件的优质铸件。

其使用量目前仅次于ZL102。

多采用砂型和金属型铸造。

【Zl102】这种合金的最大特点是流动性好,其它性能与ZL101差不多,但气密性比ZL101要好,可用来铸造各种形状复杂、薄壁的压铸件和强度要求不高的薄壁、大面积、形状复杂的金属或砂型铸件。

不论是压铸件还是金属型、砂型铸件,都是民用产品上用得最多的一个铸造铝合金品种。

【Zl104】因其工晶体量多,又加入了Mn,抵消了材料中混入的Fe有害作用,有较好的铸造性能和优良的气密性、耐蚀性,焊接和切削加工性能也比较好,但耐热性能较差,适合制作形状复杂、尺寸较大的有较大负荷的动力结构件,如增压器壳体、气缸盖,气缸套等零件,主要用压铸,也多采用砂型和金属型铸造。

【Zl105、ZL105A】由于加入了Cu,降低了Si的含量,其铸造性能和焊接性能都比ZL104差,但室温和高温强度、切削加工性能都比ZL104要好,塑性稍低,抗蚀性能较差。

适合用作形状复杂、尺寸较大、有重大负荷的动力结构件。

如增压器壳体、气缸盖、气缸套等零件。

Zl105A是降低了ZL105的杂质元素Fe的含量,提高了合金的强度,具有比ZL105更好的力学性能,多采用铸造优质铸件。

【ZL106】由于提高了Si的含量,又加入了微量的Ti、Mn,使合金的铸造性能和高温性能优于ZL105气密性、耐蚀性也较好,可用作一般负荷的结构件及要求气密性较好和在较高温度下工作的零件,主要采用砂型和金属型铸造。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一般多于相应的变形铝合金的含量。

铸造铝合金的分类铸造铝合金的优缺点一、铸造铝合金的分类据主要合金元素差异有四类铸造铝合金。

(1)铝硅系合金,也叫“硅铝明”或“矽铝明”。

有良好铸造性能和耐磨性能,热胀系数小,在铸造铝合金中品种最多,用量最大的合金,含硅量在4%~13%。

有时添加0.2%~0.6%镁的硅铝合金,广泛用于结构件,如壳体、缸体、箱体和框架等。

有时添加适量的铜和镁,能提高合金的力学性能和耐热性。

此类合金广泛用于制造活塞等部件。

(2)铝铜合金,含铜4.5%~5.3%合金强化效果最佳,适当加入锰和钛能显著提高室温、高温强度和铸造性能。

主要用于制作承受大的动、静载荷和形状不复杂的砂型铸件。

(3)铝镁合金,密度最小(2.55g/cm3),强度最高(355MPa左右)的铸造铝合金,含镁12%,强化效果最佳。

合金在大气和海水中的抗腐蚀性能好,室温下有良好的综合力学性能和可切削性,可用于作雷达底座、飞机的发动机机匣、螺旋桨、起落架等零件,也可作装饰材料。

(4)铝锌系合金,为改善性能常加入硅、镁元素,常称为“锌硅铝明”。

在铸造条件下,该合金有淬火作用,即“自行淬火”。

不经热处理就可使用,以变质热处理后,铸件有较高的强度。

经稳定化处理后,尺寸稳定,常用于制作模型、型板及设备支架等。

铸造铝合金具有与变形铝合金相同的合金体系,具有与变形铝合金相同的强化机理﹙除应变强化外﹚,他们主要的差别在于:铸造铝合金中合金化元素硅的最大含量超过多数变形铝合金中的硅含量。

铸造铝合金除含有强化元素之外,还必须含有足够量的共晶型元素﹙通常是硅﹚,以使合金有相当的流动性,易与填充铸造时铸件的收缩缝。

目前基本的合金只有以下6类;①AI-Cu合金,②AI-Cu-Si合金③AI-Si合金,④AI-Mg合金,⑤AI-Zn-Mg合金,⑥AI-Sn合金。

二、铸造铝合金的优缺点铸造铝合金优点:1、产品质量好:铸件尺寸精度高,一般相当于6~7级,甚至可达4级;表面光洁度好,一般相当于5~8级;强度和硬度较高,强度一般比砂型铸造提高25~30%,但延伸率降低约70%;尺寸稳定,互换性好;可压铸铝薄壁复杂的铸件。

例如,当前锌合金压铸铝件最小壁厚可达0.3mm;铝合金铸件可达0.5mm;最小铸出孔径为0.7mm;最小螺距为0.75mm。

2、生产效率高:机器生产率高,例如国产JⅢ3型卧式冷空压铸铝机平均八小时可压铸铝600~700次,小型热室压铸铝机平均每八小时可压铸铝3000~7000次;压铸铝型寿命长,一付压铸铝型,压铸铝钟合金,寿命可达几十万次,甚至上百万次;易实现机械化和自动化。

3、经济效果优良:由于压铸铝件尺寸精确,表泛光洁等优点。

一般不再进行机械加工而直接使用,或加工量很小,所以既提高了金属利用率,又减少了大量的加工设备和工时;铸件价格便宜;可以采用组合压铸铝以其他金属或非金属材料。

既节省装配工时又节省金属。

铸造铝合金缺点:A 氧化夹渣缺陷特征:氧化夹渣多分布在铸件的上表面,在铸型不通气的转角部位。

断口多呈灰白色或黄色,经x光透视或在机械加工时发现,也可在碱洗、酸洗或阳极化时发现产生原因:1.炉料不清洁,回炉料使用量过多2.浇注系统设计不良3.合金液中的熔渣未清除干净4.浇注操作不当,带入夹渣5.精炼变质处理后静置时间不够防止方法:1.炉料应经过吹砂,回炉料的使用量适当降低2.改进浇注系统设计,提高其挡渣能力3.采用适当的熔剂去渣4.浇注时应当平稳并应注意挡渣5.精炼后浇注前合金液应静置一定时间B 气孔气泡缺陷特征:三铸件壁内气孔一般呈圆形或椭圆形,具有光滑的表面,一般是发亮的氧化皮,有时呈油黄色。

表面气孔、气泡可通过喷砂发现,内部气孔气泡可通过X光透视或机械加工发现气孔气泡在X光底片上呈黑色。

产生原因:1.浇注合金不平稳,卷入气体2.型(芯)砂中混入有机杂质(如煤屑、草根马粪等)3.铸型和砂芯通气不良4.冷铁表面有缩孔5.浇注系统设计不良防止方法:1.正确掌握浇注速度,避免卷入气体。

2.型(芯)砂中不得混入有机杂质以减少造型材料的发气量3.改善(芯)砂的排气能力4.正确选用及处理冷铁5.改进浇注系统设计C 缩松缺陷特征:铝铸件缩松一般产生在内浇道附近飞冒口根部厚大部位、壁的厚薄转接处和具有大平面的薄壁处。

在铸态时断口为灰色,浅黄色经热处理后为灰白浅黄或灰黑色在x光底片上呈云雾状严重的呈丝状缩松可通过X光、荧光低倍断口等检查方法发现。

产生原因:1.冒口补缩作用差2.炉料含气量太多3.内浇道附近过热4.砂型水分过多,砂芯未烘干5.合金晶粒粗大6.铸件在铸型中的位置不当7.浇注温度过高,浇注速度太快防止方法:1.从冒口补浇金属液,改进冒口设计2.炉料应清洁无腐蚀3.铸件缩松处设置冒口,安放冷铁或冷铁与冒口联用4.控制型砂水分,和砂芯干燥5.采取细化品粒的措施6.改进铸件在铸型中的位置降低浇注温度和浇注速度D 裂纹缺陷特征:1.铸造裂纹。

沿晶界发展,常伴有偏析,是一种在较高温度下形成的裂纹在体积收缩较大的合金和形状较复杂的铸件容易出现2.热处理裂纹:由于热处理过烧或过热引起,常呈穿晶裂纹。

常在产生应力和热膨张系数较大的合金冷却过剧。

或存在其他冶金缺陷时产生产生原因:1.铸件结构设计不合理,有尖角,壁的厚薄变化过于悬殊2.砂型(芯)退让性不良3.铸型局部过热4.浇注温度过高5.自铸型中取出铸件过早6.热处理过热或过烧,冷却速度过激防止方法:1.改进铸件结构设计,避免尖角,壁厚力求均匀,圆滑过渡2.采取增大砂型(芯)退让性的措施3.保证铸件各部分同时凝固或顺序凝固,改进浇注系统设计4.适当降低浇注温度5.控制铸型冷却出型时间6.铸件变形时采用热校正法7.正确控制热处理温度,降低淬火冷却速度三、压铸件缺陷之气孔分析压铸件缺陷中,出现最多的是气孔。

气孔特征。

有光滑的表面,形状是圆形或椭圆形。

表现形式可以在铸件表面、或皮下针孔、也可能在铸件内部。

(1)气体来源1)合金液析出气体—a与原材料有关b与熔炼工艺有关2)压铸过程中卷入气体?—a与压铸工艺参数有关b与模具结构有关3)脱模剂分解产生气体?—a与涂料本身特性有关b与喷涂工艺有关(2)原材料及熔炼过程产生气体分析铝液中的气体主要是氢,约占了气体总量的85%。

熔炼温度越高,氢在铝液中溶解度越高,但在固态铝中溶解度非常低,因此在凝固过程中,氢析出形成气孔。

氢的来源:1)大气中水蒸气,金属液从潮湿空气中吸氢。

2)原材料本身含氢量,合金锭表面潮湿,回炉料脏,油污。

3)工具、熔剂潮湿。

(3)压铸过程产生气体分析由于压室、浇注系统、型腔均与大气相通,而金属液是以高压、高速充填,如果不能实现有序、平稳的流动状态,金属液产生涡流,会把气体卷进去。

压铸工艺制定需考虑以下问题:1)金属液在浇注系统内能否干净、平稳地流动,不会产生分离和涡流。

2)有没有尖角区或死亡区存在?3)浇注系统是否有截面积的变化?4)排气槽、溢流槽位置是否正确?是否够大?是否会被堵住?气体能否有效、顺畅排出?应用计算机模拟充填过程,就是为了分析以上现象,以作判断来选择合理的工艺参数。

(4)涂料产生气体分析涂料性能:如发气量大对铸件气孔率有直接影响。

喷涂工艺:使用量过多,造成气体挥发量大,冲头润滑剂太多,或被烧焦,都是气体的来源。

(5)解决压铸件气孔的办法先分析出是什么原因导致的气孔,再来取相应的措施。

1)干燥、干净的合金料。

2)控制熔炼温度,避免过热,进行除气处理。

3)合理选择压铸工艺参数,特别是压射速度。

调整高速切换起点。

4)顺序填充有利于型腔气体排出,直浇道和横浇道有足够的长度(>50mm),以利于合金液平稳流动和气体有机会排出。

可改变浇口厚度、浇口方向、在形成气孔的位置设置溢流槽、排气槽。

溢流品截面积总和不能小于内浇口截面积总和的60%,否则排渣效果差。

5)选择性能好的涂料及控制喷涂量。

1、铝合金铸造工艺性能铝合金铸造工艺性能,通常理解为在充满铸型、结晶和冷却过程中表现最为突出的那些性能的综合。

流动性、收缩性、气密性、铸造应力、吸气性。

铝合金这些特性取决于合金的成分,但也与铸造因素、合金加热温度、铸型的复杂程度、浇冒口系统、浇口形状等有关。

(1) 流动性流动性是指合金液体充填铸型的能力。

流动性的大小决定合金能否铸造复杂的铸件。

在铝合金中共晶合金的流动性最好。

影响流动性的因素很多,主要是成分、温度以及合金液体中存在金属氧化物、金属化合物及其他污染物的固相颗粒,但外在的根本因素为浇注温度及浇注压力(俗称浇注压头)的高低。

(2) 收缩性收缩性是铸造铝合金的主要特征之一。

一般讲,合金从液体浇注到凝固,直至冷到室温,共分为三个阶段,分别为液态收缩、凝固收缩和固态收缩。

合金的收缩性对铸件质量有决定性的影响,它影响着铸件的缩孔大小、应力的产生、裂纹的形成及尺寸的变化。

通常铸件收缩又分为体收缩和线收缩,在实际生产中一般应用线收缩来衡量合金的收缩性。

铝合金收缩大小,通常以百分数来表示,称为收缩率。

①体收缩体收缩包括液体收缩与凝固收缩。

铸造合金液从浇注到凝固,在最后凝固的地方会出现宏观或显微收缩,这种因收缩引起的宏观缩孔肉眼可见,并分为集中缩孔和分散性缩孔。

集中缩孔的孔径大而集中,并分布在铸件顶部或截面厚大的热节处。

分散性缩孔形貌分散而细小,大部分分布在铸件轴心和热节部位。

显微缩孔肉眼难以看到,显微缩孔大部分分布在晶界下或树枝晶的枝晶间。

缩孔和疏松是铸件的主要缺陷之一,产生的原因是液态收缩大于固态收缩。

生产中发现,铸造铝合金凝固范围越小,越易形成集中缩孔,凝固范围越宽,越易形成分散性缩孔,因此,在设计中必须使铸造铝合金符合顺序凝固原则,即铸件在液态到凝固期间的体收缩应得到合金液的补充,是缩孔和疏松集中在铸件外部冒口中。

对易产生分散疏松的铝合金铸件,冒口设置数量比集中缩孔要多,并在易产生疏松处设置冷铁,加大局部冷却速度,使其同时或快速凝固。

②线收缩线收缩大小将直接影响铸件的质量。

线收缩越大,铝铸件产生裂纹与应力的趋向也越大;冷却后铸件尺寸及形状变化也越大。

对于不同的铸造铝合金有不同的铸造收缩率,即使同一合金,铸件不同,收缩率也不同,在同一铸件上,其长、宽、高的收缩率也不同。

应根据具体情况而定。

(3) 热裂性铝铸件热裂纹的产生,主要是由于铸件收缩应力超过了金属晶粒间的结合力,大多沿晶界产生从裂纹断口观察可见裂纹处金属往往被氧化,失去金属光泽。

裂纹沿晶界延伸,形状呈锯齿形,表面较宽,内部较窄,有的则穿透整个铸件的端面。

不同铝合金铸件产生裂纹的倾向也不同,这是因为铸铝合金凝固过程中开始形成完整的结晶框架的温度与凝固温度之差越大,合金收缩率就越大,产生热裂纹倾向也越大,即使同一种合金也因铸型的阻力、铸件的结构、浇注工艺等因素产生热裂纹倾向也不同。

相关文档
最新文档