Fluent中的多相模型及求解课件
Fluent多相流模型选择

Fluent多相流模型选择FLUENT多相流模型分类1、气液或液液流动气泡流动:连续流体中存在离散的气泡或液泡液滴流动:连续相为气相,其它相为液滴栓塞(泡状)流动:在连续流体中存在尺寸较大的气泡分层自由流动:由明显的分界面隔开的非混合流体流动。
2、气固两相流动粒子负载流动:连续气体流动中有离散的固体粒子气力输运:流动模式依赖,如固体载荷、雷诺数和例子属性等。
最典型的模式有沙子的流动,泥浆流,填充床以及各相同性流流化床:有一个盛有粒子的竖直圆筒构成,气体从一个分散器进入筒内,从床底不断冲入的气体使得颗粒得以悬浮。
3、液固两相流动泥浆流:流体中的大量颗粒流动。
颗粒的stokes数通常小于1。
大于1是成为流化了的液固流动。
水力运输:在连续流体中密布着固体颗粒沉降运动:在有一定高度的盛有液体的容器内,初始时刻均匀散布着颗粒物质,随后,流体会出现分层。
4、三相流以上各种情况的组合多相流动系统的实例气泡流:抽吸、通风、空气泵、气穴、蒸发、浮选、洗刷。
液滴流:抽吸、喷雾、燃烧室、低温泵、干燥机、蒸发、气冷、洗刷。
栓塞流:管道或容器中有大尺度气泡的流动分层流:分离器中的晃动、核反应装置沸腾和冷凝粒子负载流:旋风分离器、空气分类器、洗尘器、环境尘埃流动气力输运:水泥、谷粒和金属粉末的输运流化床:流化床反应器、循环流化床泥浆流:泥浆输运、矿物处理水力输运:矿物处理、生物医学、物理化学中的流体系统沉降流动:矿物处理。
多相流模型的选择原则1、基本原则1)对于体积分数小于10%的气泡、液滴和粒子负载流动,采用离散相模型。
2)对于离散相混合物或者单独的离散相体积率超出10%的气泡、液滴和粒子负载流动,采用混合模型或欧拉模型。
3)对于栓塞流、泡状流,采用VOF模型4)对于分层/自由面流动,采用VOF模型5)对于气动输运,均匀流动采用混合模型,粒子流采用欧拉模型。
6)对于流化床,采用欧拉模型7)泥浆和水力输运,采用混合模型或欧拉模型。
FLUENT 多相流模型中文版资料

沈阳航空工业学院
(2) 混合模型
混合模型的相可以是流体或颗粒,并被看作互相穿插的连续统一体。混合模型求解 混合物动量方程,以设定的相对速度描述弥散相。适用混合模型的应用包括低载粉率的 带粉气流、含气泡流、沉降过程和旋风分离器等。混合模型还可以用于模拟无相对速度 的匀质弥散多相流。
(3) Euler 模型
。
当St 1时,颗粒将紧密跟随连续相,可以使用 DPM 模型、混合模型或 Euler 模型
三者中任何一种;当St 1 时,颗粒的运动将独立于连续相,可以 DPM 模型或 Euler 模 型;当 St 1,则又可以采用三种中的任何一种。具体采用何种模型还要考虑相体积分
数和计算量的大小。
航空发动机轴心通风器油 / 气两相流动中,滑油呈微小油滴,平均直径约数十μm, 局部油滴颗粒含量率最大约 10−4,体积分数最大不超过 10−7,典型情况下St数约 0.01。
入流边界的情况下,稳态的 VOF 计算才是有意义的。例如,旋转杯中自由表面的形状 取决于液体的初始的水平高度,这样的问题必须用瞬态格式求解。而另一个例子是水渠 中的水流,在其上方有空气,且空气有独立的入口,可以用稳态格式求解。
应用 VOF 模型的限制条件: 必须使用基于压力求解器。VOF 模型不能使用基于密度求解器。 所有控制容积必须充满一种流体相或多相的组合。VOF 模型不允许没有流体的空
(5.380)
式中, κ
β γ
αd αc
。不太高的分散相体积分数情况下分散相颗粒间平均距离较大,可以
忽略分散相颗粒压力和粘性应力,因而可以采用 DPM 模型。
可以用 Stokes 数 St 度量颗粒的动量非平衡程度。St 数定义为颗粒响应时间与系统响
应时间之比:
FLUENT多相流模型

FLUENT多相流模型分类1、气液或液液流动气泡流动:连续流体中存在离散的气泡或液泡液滴流动:连续相为气相,其它相为液滴栓塞(泡状)流动:在连续流体中存在尺寸较大的气泡分层自由流动:由明显的分界面隔开的非混合流体流动。
2、气固两相流动粒子负载流动:连续气体流动中有离散的固体粒子气力输运:流动模式依赖,如固体载荷、雷诺数和例子属性等。
最典型的模式有沙子的流动,泥浆流,填充床以及各相同性流流化床:有一个盛有粒子的竖直圆筒构成,气体从一个分散器进入筒内,从床底不断冲入的气体使得颗粒得以悬浮。
3、液固两相流动泥浆流:流体中的大量颗粒流动。
颗粒的sto kes数通常小于1。
大于1是成为流化了的液固流动。
水力运输:在连续流体中密布着固体颗粒沉降运动:在有一定高度的盛有液体的容器内,初始时刻均匀散布着颗粒物质,随后,流体会出现分层。
4、三相流以上各种情况的组合多相流动系统的实例气泡流:抽吸、通风、空气泵、气穴、蒸发、浮选、洗刷。
液滴流:抽吸、喷雾、燃烧室、低温泵、干燥机、蒸发、气冷、洗刷。
栓塞流:管道或容器中有大尺度气泡的流动分层流:分离器中的晃动、核反应装置沸腾和冷凝粒子负载流:旋风分离器、空气分类器、洗尘器、环境尘埃流动气力输运:水泥、谷粒和金属粉末的输运流化床:流化床反应器、循环流化床泥浆流:泥浆输运、矿物处理水力输运:矿物处理、生物医学、物理化学中的流体系统沉降流动:矿物处理。
多相流模型的选择原则1、基本原则1)对于体积分数小于10%的气泡、液滴和粒子负载流动,采用离散相模型。
2)对于离散相混合物或者单独的离散相体积率超出10%的气泡、液滴和粒子负载流动,采用混合模型或欧拉模型。
3)对于栓塞流、泡状流,采用VOF模型4)对于分层/自由面流动,采用VOF模型5)对于气动输运,均匀流动采用混合模型,粒子流采用欧拉模型。
FLUENTMultiphase多相模型

FLUENTMultiphase多相模型1 名词解释学习FLUENT UDF编程,必须要从网格拓扑和数据结构(几何数据、求解数据存储的空间)两方面来理解一些重要概念。
节点node;面face;单元cell。
线 thread:⑴线是一块存储空间,有节点线、面线和单元线三类,存储了存在某种联系的节点组、面组或单元组的信息。
⑵定义线的指针 Thread *t;⑶线对应的是网格拓扑里面的zone,例如某边界就是一个zone,显然它对应的存储空间是面线。
⑷在多相模型中,还要区分超级线superthread和子线subthread。
域 domain:⑴域是比线更大的存储空间,包含了存在某种联系的所有线。
⑵定义域的指针 Domain *d;⑶域对应的是网格拓扑里面的domain, 由网格定义的所有节点、面和单元线索的组合。
⑷在多相模型中,还要区分超级线superdomain和子线subdomain。
总的逻辑关系是,域->线->节点/面/单元,这可以从常用的循环中看出:Domain *domain;Thread *c_thread;cell_t c; /*cell_t 是线索(thread)内单元标识符的*/thread_loop_c(c_thread, domain) /*对域内所有单元线做loop*/{begin_c_loop(c, c_thread) /* 对线内所有单元做循环 */{……}end_c_loop(c, c_thread)}2 Multiphase-specific Data Types 多相专用数据类型除了在Data Types in ANSYS FLUENT中呈献的ANSYS FLUENT 专用的数据类型,还有一些专用于多相UDF的线(thread)和域(domain)数据结构。
当使用多相模型时(Mixture, VOF, or Eulerian),这些数据结构用来存储混合相(mixture of all of the phases)和每个单独相的属性和变量。
fluent多相流模型

fluent多相流模型
Fluent多相流模型是一种广泛应用于多相流模拟的数值求解方法。
这种模型可以模拟具有液体、气体和固体三种组分的多相流动系统,使得流动特性得到更为详尽的描述。
它基于控制单元格(Control Volume),采用有限体积方法(FVM),从而可以计算流体与固体界面的相互作用,以及流体与流体之间的相互作用。
Fluent多相流模型还能够模拟不断变化的流体和悬浮物的运动,能够模拟可燃物燃烧过程,以及其他更为复杂的流动现象。
Fluent多相流模型应用于机械、电子、自动化及工程等方面,其计算精度也属于较高的等级。
Fluent多相流模型通过对流体及悬浮物的实时求解,用以分析多相流动系统中物理和化学现象的发展,从而实现对模型的预测和优化。
它可以求解传热、传质、流体动力和边界层等多相流动系统的最优状态,以及求解各种流体的流动速度、粘度、温度和压力等。
Fluent多相流模型的关键特性在于它可以模拟多相流动系统中不同物理过程的相互作用,从而使得结果非常接近实际应用情况。
fluent多孔介质模型课件

多孔介质模型应用
我们为什么要应用多孔介 质模型?
基于多孔介质模型的数值模拟方 法最初被用于模拟换热器和核反应 堆中流体的流动和传热问题。换热 器中存在大量的换热管道和阻碍片, 要模拟具有500根换热管和10个阻碍 片的换热器中的流动,将需要1.5亿 个网格单元 ,这大大超出了目前计 算机的计算能力。
1432.0 2964.0
采用上表的数据可以拟合出一条“速度-压强降”曲线,其方程 为:
对比上述两式便可求出粘性阻力系数和惯性阻力系数。
实例计算
WALL
进
出
口
口
symmetry
Porous one
Porous three Porous two
上图中的计算区域尺寸如下: 总的计算域:长1m,宽0.1m; Porous two:长0.57m,宽0.02m; (处于正中间) Porous one:宽0.03m,高0.06m; Porous three:宽0.03m,高0.06m;
为此,PatankarSpalding提出了采 用分布阻力的方法,也称为多孔介质 模型的方法。之后sha等采用这种方 法模拟了蒸汽发生器和核反应堆堆 芯中流体的流动, Karayannis等模 拟了换热器中的流动,Prithiviraj 和Andrews模拟了三维换热器中的流 动。
多孔介质模拟 方法是将流动区域 中固体结构的作用 看作是附加在流体 上的分布阻力。
动量方程
能量方程的处理
阻力系数的推导
操作步骤(实例)
后处理
计算流体力学控制方程
div u divgrad S
t
时间项
对流项
扩散项
广义源项
方程
连续性方程 X-动量方程
fluent简介PPT课件

多相流模型
多流体(VOF)模型 离散相(DPM)模型 密相DPM(DDPM)模型 离散元(DEM)模型
流化床中的Leabharlann 泡化学反应模型涡耗散模型 均衡混合颗粒模型 小火焰模拟 大量气体燃烧、煤燃烧、液体燃料燃烧的预混合模型 预测SOx 生成、NOx 生成和分解的特殊模型
低NOx燃烧器
声学模型
Fflow-Williams&Hawkings声学模型
结构网格生成
Fluent求解计算
根据需要选择2d、2ddp、3d、3ddp解算器
输入网格;File -> Read -> Case(读取网格.msh)
检查网格和缩放: Check&Scale
选择物理模型
定义物质属性
定义边界条件
求解方程设置
初始化流场
计算结束、保存结果
后处理(Fluent)
后处理
fluent自带/CFD—post
Fluent 实例应用
模拟气体通过SCR反应器
得到气体通过SCR反应器时:
压力变化趋势 速度变化情况
气体采用氮气 采用标准k-ε标准模型
Fluent 实例应用
Solidworks建模
零件另存为 .x_t格式
ICEM划分网格
导入几何结构和创建part
非结构网格生成
FLUENT 14.0超级学习手册 作 者:唐家鹏 编著 出 版 社人民邮电出版社
ANSYS FLUENT 14.0仿真分析与优化设计 作 者孙帮成,李明高 主编 出 版 社机械工业出版社
仿真论坛:
小木虫论坛: /bbs/index.php 仿真论坛:
压力云图
后处理(Fluent) 速度云图和矢量图
FLUENT通用多相流模型-多相流数据后处理

20.通用多相流模型(General Multiphase Models)本章讨论了在FLUENT中可用的通用的多相流模型。
第18章提供了多相流模型的简要介绍。
第19章讨论了Lagrangian离散相模型,第21章讲述了FLUENT中的凝固和熔化模型。
20.1选择通用多相流模型(Choosing a General Multiphase Model)20.2VOF模型(Volume of Fluid(VOF)Model)20.3混合模型(Mixture Model)20.4欧拉模型(Eulerian Model)20.5气穴影响(Cavity Effects)20.6设置通用多相流问题(Setting Up a General Multiphase Problem)20.7通用多相流问题求解策略(Solution Strategies for General Multiphase Problems)20.8通用多相流问题后处理(Postprocessing for General Multiphase Problems)20.1选择通用的多相流模型(Choosing a General Multiphase Model)正如在Section 18.4中讨论过的,VOF模型适合于分层的或自由表面流,而mixture和Eulerian 模型适合于流动中有相混合或分离,或者分散相的volume fraction超过10%的情形。
(流动中分散相的volume fraction小于或等于10%时可使用第19章讨论过的离散相模型)。
为了在mixture模型和Eulerian模型之间作出选择,除了Section18.4中详细的指导外,你还应考虑以下几点:★如果分散相有着宽广的分布,mixture模型是最可取的。
如果分散相只集中在区域的一部分,你应当使用Eulerian模型。
★如果应用于你的系统的相间曳力规律是可利用的(either within FLUENT or through a user-defined function),Eulerian模型通常比mixture模型能给出更精确的结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
– Droplet flow: Discrete fluid droplets in a continuous gas. E.g.: Atomizers, combustors.
– Slug flow: Large bubbles in a continuous liquid.
– Stratified/free-surface flow: Immiscible fluids separated by a clearly-defined interface. E.g.: Free surface flows.
其中,U为特征速度,L为特征长度,n为流体的运动粘性系 数。该参数反映了流体的粘性作用,其数值反映惯性力和粘 性力的比值。 层流(流速较低)、湍流(流动区域的速度随时间发生不规 则的、脉动的变化)。
5
直接数值模拟方法(Direct Numerical Simulation): 直接求解三维瞬态控制方程的方法,需要划分精细的空间网 格,采用很小的时间步长,计算量很大。 Reynolds平均法:用时间平均值与脉动值之和代替流动变 量,将其代入基本控制方程,并对时间取平均,得到 Reynolds湍流方程,一般形式如下:
11
2. Fluent中的多相流动模型
• 欧拉-拉格朗日方法——流体被处理为连续相,直接求解时 均Navier-Stokes方程;计算流场中大量的粒子,气泡或液 滴的运动轨迹,得到离散相的分布规律。离散相和流体相之 间可以有动量、质量和能量的交换。基本假设:作为离散的 第二相的体积比率很低。
• 欧拉-欧拉方法——不同的相被处理成互相贯穿的连续介质 。引入相体积率的概念,各相的体积率之和等于1。不同的 相均满足守恒方程。从实验数据建立一些关系式,使方程组 封闭。在Fluent中,有三种欧拉-欧拉多相流模型:流体体 积模型(VOF),混合物模型,欧拉模型。
分层的或自由表面流,流动中有相的混合或分离,分散相的体积分数超过10%
12
Flow Regimes
gas-liquid liquid-liquid
• Multiphase Flow Regimes
– Bubbly flow: Discrete gaseous bubbles in a continuous fluid. E.g.: Absorbers, evaporators, sparging devices.
2
主要内容
1. 有限体积法 2. Fluent中的多相流动模型 3. 流场中颗粒的受力分析 4. 单颗粒及颗粒群的阻力 5. 气-液两相流相界面迁移过程的数值模拟
方法 6. 管外多相流 7. 管内多相流
3
1. 有限体积法
不同的CFD方法都基于流体动力学的基本控制方程—— 连续方程、动量方程和能量方程,即满足质量守恒、动量守 恒(Newton第二定律)、能量守恒(热力学第一定律)。
9
最基本的2方程模型是标准k-e模型,分别引入关于湍动能k 和湍动耗散率e的方程,
量纲分析
湍动粘度 可表示成k和e的函数:
经验常数 改进的k-e模型主要有RNG k-e模型和Realizable k-e模型 。其它2方程模型有标准k-w模型,SST k-w模型等,其中w 为比耗散率,即湍动能在单位体积和单位时间内的耗散率。
在现代的CFD文献中,将连续方程、动量方程和能量方 程统称为NS方程。NS方程有不同的形式,控制体上,守恒 型积分方程的通用形式可写为:
上式中各项依次为:瞬态项、对流项、扩散项、源项。
4
如果将上面的控制体V改为无穷小微元,则可推出守恒形式 的微分方程,其通用形式如下:
湍流模型: 描述流体运动状态的一个重要参数为Reynolds数:
Fluent中的多相模 型及求解
参考书目
1. 多相流及其应用,车得福 李会雄 编著,西安交通大学出 版社,2007年11月。 2. 液-固两相流基础,岳湘安 著,石油工业出版社,1996年 4月。 3. Fluent培训材料,Fluent 6.1 User’s Guide,Fluent Inc., 2003 4. 计算流体动力学分析——CFD软件原理与应用,王福军 编著,清华法。 将计算区域划分为网格,使每个网格点周围有一个互不重复 的控制体积,将待解微分方程(控制方程)对每一个控制体 积积分,从而得到一组离散方程。 未知量是网格点上的因变量f。 离散方程的物理意义:因变量f在有限大小的控制体积中的 守恒原理。 Fluent软件就是基于有限体积法编写而成。
推广到三维情况,Reynolds应力与平均速度梯度的关系如 下:
8
其中, 为湍动粘度(涡粘系数), 为时均速度, 为 “Kronecker delta”符号,k为湍动能。
量纲分析
涡粘模型就是把 与湍流时均参数联系起来的关系式,根 据确定 的方程数目的多少,涡粘模型包括0方程模型、1 方程模型、2方程模型。
上式中,除脉动值的平均值外,去掉了其它时均值的上划线 符号“-”。
6
考虑变量f取流动速度ui的情况,与基本控制方程相比,时
均流动的方程里多出与
有关的项,定义为Reynolds
湍流应力:
该应力共有9个分量,3个为湍流附加法向应力,6个为湍流 附加切向应力。
原本封闭的基本控制方程,转换为Reynolds湍流方程后, 增加了新的未知量,必须引入补充方程,才能使方程组封闭 。
– Particle-laden flow: Discrete solid particles in a continuous gas. E.g.: cyclone separators, air classifiers, dust collectors, and dust-laden environmental flows.
湍流模型
7
两类湍流模型,把湍流的脉动值和时均值联系起来: • Reynolds应力模型——对Reynolds湍流应力作出某种假 定,建立应力的表达式。 • 涡粘模型——引入新的湍流模型方程。 Boussinesq(1877)针对二维流动,对比于层流粘性系 数m,提出在湍流中可用下式来表示Reynolds应力: