江苏省泰兴市黄桥初中教育集团2019-2020年第二学期初二数学周末检测练习 (word版无答案)

合集下载

江苏省2019-2020学年八年级数学下学期第2周周测试卷(含答案)

江苏省2019-2020学年八年级数学下学期第2周周测试卷(含答案)

江苏省2019-2020学年八年级数学下学期第2周周测试卷(含答案)一、填空:(本大题共9小题,每题2分,共18分)1.如图,是从镜中看到的一串数字,这串数字应为.2.如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD 及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,你添加的条件是.(不添加辅助线)3.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.4.如图,在△ABC中,AB=AC,DE是AB的中垂线,△BCE的周长为14,BC=6,则AB的长为.5.如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=15cm,则△DEB的周长为cm.6.如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明△DOF≌△EOF的条件的个数有个.7.如图,已知△ABC为等腰直角三角形,D为斜边AB上任意一点,(不与点A、B重合),连接CD,作EC⊥DC,且EC=DC,连接AE,则∠EAC为度.8.如图是4×4正方形网络,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形成为轴对称图形,这样的白色小方格有个.9.如图,已知点P为∠AOB的角平分线上的一点,点D在边OA上.爱动脑筋的小刚经过仔细观察后,进行如下操作:在边OB上取一点E,使得PE=PD,这时他发现∠OEP与∠ODP之间有一定的相等关系,请你写出∠OEP与∠ODP所有可能的数量关系.二、选择题:(每小题3分,共18分)10.下列轴对称图形中,只有两条对称轴的图形是()A.B.C. D.11.用尺规作图,不能作出唯一直角三角形的是()A.已知两条直角边B.已知两个锐角C.已知一直角边和直角边所对的一锐角D.已知斜边和一直角边12.直角三角形三边垂直平分线的交点位于三角形的()A.三角形内 B.三角形外 C.斜边的中点D.不能确定13.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA14.如图,∠MON内有一点P,P点关于OM的轴对称点是G,P 点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若GH的长为10cm,求△PAB的周长为()A.5cm B.10cm C.20cm D.15cm15.如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是()A.射线OE是∠AOB的平分线B.△COD是等腰三角形C.C、D两点关于OE所在直线对称D.O、E两点关于CD所在直线对称三、解答题:(本大题共6小题,共64分)16.(1)以直线为对称轴,画出下列图形的另一部分使它们成为轴对称图形.(2)如图,求作点P,使点P同时满足:①PA=PB;②到直线m,n的距离相等.(尺规作图,保留作图痕迹)17.在△ABC中,∠C=90°,DE垂直平分斜边AB,分别交AB、BC 于D、E.若∠CAB=∠B+30°,求∠AEB.18.如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.19.如图,△ABC中,AD是∠BAC的平分线,DE⊥AB,DF⊥AC,E、F为垂足,连接EF交AD于G,试判断AD与EF垂直吗?并说明理由.20.在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,l1与l2相交于点O.△ADE的周长为6cm.(1)求BC的长;(2)分别连结OA、OB、OC,若△OBC的周长为16cm,求OA的长.21.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.四、知者加速题:(本大题共2题,共20分)22.如图,已知直线l及其两侧两点A、B.(1)在直线l上求一点O,使到A、B两点距离之和最短;(2)在直线l上求一点P,使PA=PB;(3)在直线l上求一点Q,使l平分∠AQB.23.如图,在△ABC的一边AB上有一点P.(1)能否在另外两边AC和BC上各找一点M、N,使得△PMN的周长最短?若能,请画出点M、N的位置;若不能,请说明理由;(2)若∠ACB=48°,在(1)的条件下,求出∠MPN的度数.参考答案与试题解析一、填空:(本大题共9小题,每题2分,共18分)1.如图,是从镜中看到的一串数字,这串数字应为810076.【考点】镜面对称.【分析】关于镜子的像,实际数字与原来的数字关于竖直的线对称,根据相应数字的对称性可得实际数字.【解答】解:∵是从镜子中看,∴对称轴为竖直方向的直线,∵镜子中数字的顺序与实际数字顺序相反,∴这串数字应为810076,故答案为:810076.2.如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD 及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,你添加的条件是DF=DE.(不添加辅助线)【考点】全等三角形的判定.【分析】由已知可证BD=CD,又∠EDC﹦∠FDB,因为三角形全等条件中必须是三个元素.故添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等);【解答】解:添加的条件是:DF=DE(或CE∥BF或∠ECD=∠DBF 或∠DEC=∠DFB等).理由如下:∵点D是BC的中点,∴BD=CD.在△BDF和△CDE中,∵,∴△BDF≌△CDE(SAS).故答案可以是:DF=DE.3.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=55°.【考点】全等三角形的判定与性质.【分析】求出∠BAD=∠EAC,证△BAD≌△EAC,推出∠2=∠ABD=30°,根据三角形的外角性质求出即可.【解答】解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△EAC中,∴△BAD≌△EAC(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.4.如图,在△ABC中,AB=AC,DE是AB的中垂线,△BCE的周长为14,BC=6,则AB的长为8.【考点】线段垂直平分线的性质.【分析】由已知条件,利用线段的垂直平分线和已给的周长的值即可求出.【解答】解:∵DE是AB的中垂线∴AE=BE,∵△BCE的周长为14∴BC+CE+BE=BC+CE+AE=BC+AC=14∵BC=6∴AC=8∴AB=AC=8.故填8.5.如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=15cm,则△DEB的周长为15cm.【考点】全等三角形的判定与性质.【分析】先根据ASA判定△ACD≌△ECD得出AC=EC,AD=ED,再将其代入△DEB的周长中,通过边长之间的转换得到,周长=BD+DE+EB=BD+AD+EB=AB+BE=AC+EB=CE+EB=BC,所以为15cm.【解答】解:∵CD平分∠ACB∴∠ACD=∠ECD∵DE⊥BC于E∴∠DEC=∠A=90°∵CD=CD∴△ACD≌△ECD∴AC=EC,AD=ED∵∠A=90°,AB=AC∴∠B=45°∴BE=DE∴△DEB的周长为:DE+BE+BD=AD+BD+BE=AB+BE=AC+BE=EC+BE=BC=15cm.6.如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明△DOF≌△EOF的条件的个数有4个.【考点】全等三角形的判定;角平分线的性质.【分析】根据题目所给条件可得∠ODF=∠OEF=90°,再加上添加条件结合全等三角形的判定定理分别进行分析即可.【解答】解:∵FD⊥AO于D,FE⊥BO于E,∴∠ODF=∠OEF=90°,①加上条件OF是∠AOB的平分线可利用AAS判定△DOF≌△EOF;②加上条件DF=EF可利用HL判定△DOF≌△EOF;③加上条件DO=EO可利用HL判定△DOF≌△EOF;④加上条件∠OFD=∠OFE可利用AAS判定△DOF≌△EOF;因此其中能够证明△DOF≌△EOF的条件的个数有4个,故答案为:4.7.如图,已知△ABC为等腰直角三角形,D为斜边AB上任意一点,(不与点A、B重合),连接CD,作EC⊥DC,且EC=DC,连接AE,则∠EAC为45度.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】由等腰直角三角形ABC的两腰相等的性质推知AC=CB,再根据已知条件“∠ACB=∠DCE=90°”求得∠ACE=90°﹣∠ACD=∠DCB,然后再加上已知条件DC=EC,可以根据全等三角形的判定定理SAS判定△ACE≌△BCD;最后由全等三角形的对应角相等的性质证明结论即可.【解答】解:∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=CB.∵∠ACB=∠DCE=90°,∴∠ACE=90°﹣∠ACD=∠DCB.在△ACE和△BCD中,,∴△ACE≌△BCD(SAS).∴∠B=∠EAC(全等三角形的对应角相等).∵∠B=45°,∴∠EAC=45°.故答案为45°.8.如图是4×4正方形网络,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形成为轴对称图形,这样的白色小方格有4个.【考点】利用轴对称设计图案.【分析】根据轴对称图形的概念分别找出各个能成轴对称图形的小方格即可.【解答】解:如图所示,有4个位置使之成为轴对称图形.故答案为:4.9.如图,已知点P为∠AOB的角平分线上的一点,点D在边OA上.爱动脑筋的小刚经过仔细观察后,进行如下操作:在边OB上取一点E,使得PE=PD,这时他发现∠OEP与∠ODP之间有一定的相等关系,请你写出∠OEP与∠ODP所有可能的数量关系∠OEP=∠ODP或∠OEP+∠ODP=180°.【考点】全等三角形的判定与性质.【分析】数量关系是∠OEP=∠ODP或∠OEP+∠ODP=180°,理由是以O为圆心,以OD为半径作弧,交OB于E2,连接PE2,根据SAS 证△E2OP≌△DOP,推出E2P=PD,得出此时点E2符合条件,此时∠OE2P=∠ODP;以P为圆心,以PD为半径作弧,交OB于另一点E1,连接PE1,根据等腰三角形性质推出∠PE2E1=∠PE1E2,求出∠OE1P+∠ODP=180°即可.【解答】解:∠OEP=∠ODP或∠OEP+∠ODP=180°,理由是:以O为圆心,以OD为半径作弧,交OB于E2,连接PE2,∵在△E2OP和△DOP中,∴△E2OP≌△DOP(SAS),∴E2P=PD,即此时点E2符合条件,此时∠OE2P=∠ODP;以P为圆心,以PD为半径作弧,交OB于另一点E1,连接PE1,则此点E1也符合条件PD=PE1,∵PE2=PE1=PD,∴∠PE2E1=∠PE1E2,∵∠OE1P+∠E2E1P=180°,∵∠OE2P=∠ODP,∴∠OE1P+∠ODP=180°,∴∠OEP与∠ODP所有可能的数量关系是:∠OEP=∠ODP或∠OEP+∠ODP=180°,故答案为:∠OEP=∠ODP或∠OEP+∠ODP=180°.二、选择题:(每小题3分,共18分)10.下列轴对称图形中,只有两条对称轴的图形是()A.B.C. D.【考点】轴对称图形.【分析】关于某条直线对称的图形叫轴对称图形,看各个图形有几条对称轴即可.【解答】解:A、有两条对称轴,符合题意;B、C、都只有一条对称轴,不符合题意;D、有六条,对称轴,不符合题意;故选A.11.用尺规作图,不能作出唯一直角三角形的是()A.已知两条直角边B.已知两个锐角C.已知一直角边和直角边所对的一锐角D.已知斜边和一直角边【考点】作图—复杂作图.【分析】能不能作出唯一直角三角形要看所给条件是否满足全等三角形的判定条件,然后利用三角形全等的判定方法对各选项进行判定.【解答】解:A、已知两条直角边和直角,可根据“SAS”作出唯一直角三角形,所以A选项错误;B、已知两个锐角,不能出唯一的直角三角形,所以B选项之前;C、已知一直角边和直角边所对的一锐角,可根据“AAS”或“ASA”作出唯一直角三角形,所以B选项错误;D、已知斜边和一直角边,可根据“HL”作出唯一直角三角形,所以D 选项错误.故选B.12.直角三角形三边垂直平分线的交点位于三角形的()A.三角形内 B.三角形外 C.斜边的中点D.不能确定【考点】线段垂直平分线的性质.【分析】垂直平分线的交点是三角形外接圆的圆心,由此可得出此交点在斜边中点.【解答】解:∵直角三角形的外接圆圆心在斜边中点可得直角三角形三边垂直平分线的交点位于三角形的斜边中点.故选C.13.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA【考点】全等三角形的判定;等边三角形的性质.【分析】首先根据角间的位置及大小关系证明∠BCD=∠ACE,再根据边角边定理,证明△BCE≌△ACD;由△BCE≌△ACD可得到∠DBC=∠CAE,再加上条件AC=BC,∠ACB=∠ACD=60°,可证出△BGC≌△AFC,再根据△BCD≌△ACE,可得∠CDB=∠CEA,再加上条件CE=CD,∠ACD=∠DCE=60°,又可证出△DCG≌△ECF,利用排除法可得到答案.【解答】解:∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠BCA=∠ECD=60°,∴∠BCA+∠ACD=∠ECD+∠ACD,即∠BCD=∠ACE,∴在△BCD和△ACE中,∴△BCD≌△ACE(SAS),故A成立,∴∠DBC=∠CAE,∵∠BCA=∠ECD=60°,∴∠ACD=60°,在△BGC和△AFC中,∴△BGC≌△AFC,故B成立,∵△BCD≌△ACE,∴∠CDB=∠CEA,在△DCG和△ECF中,∴△DCG≌△ECF,故C成立,故选:D.14.如图,∠MON内有一点P,P点关于OM的轴对称点是G,P 点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若GH的长为10cm,求△PAB的周长为()A.5cm B.10cm C.20cm D.15cm【考点】轴对称的性质.【分析】由轴对称的性质可得PA=PG,PB=BH,从而可求得△PAB 的周长.【解答】解:∵P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,∴PA=PG,PB=BH,∴PA+AB+PB=GA+AB+BH=GH=10cm,即△PAB的周长为10cm,故选B.15.如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是()A.射线OE是∠AOB的平分线B.△COD是等腰三角形C.C、D两点关于OE所在直线对称D.O、E两点关于CD所在直线对称【考点】作图—基本作图;全等三角形的判定与性质;角平分线的性质.【分析】连接CE、DE,根据作图得到OC=OD、CE=DE,利用SSS 证得△EOC≌△EOD从而证明得到射线OE平分∠AOB,判断A正确;根据作图得到OC=OD,判断B正确;根据作图得到OC=OD,由A得到射线OE平分∠AOB,根据等腰三角形三线合一的性质得到OE是CD的垂直平分线,判断C正确;根据作图不能得出CD平分OE,判断D错误.【解答】解:A、连接CE、DE,根据作图得到OC=OD、CE=DE.∵在△EOC与△EOD中,,∴△EOC≌△EOD(SSS),∴∠AOE=∠BOE,即射线OE是∠AOB的平分线,正确,不符合题意;B、根据作图得到OC=OD,∴△COD是等腰三角形,正确,不符合题意;C、根据作图得到OC=OD,又∵射线OE平分∠AOB,∴OE是CD的垂直平分线,∴C、D两点关于OE所在直线对称,正确,不符合题意;D、根据作图不能得出CD平分OE,∴CD不是OE的平分线,∴O、E两点关于CD所在直线不对称,错误,符合题意.故选:D.三、解答题:(本大题共6小题,共64分)16.(1)以直线为对称轴,画出下列图形的另一部分使它们成为轴对称图形.(2)如图,求作点P,使点P同时满足:①PA=PB;②到直线m,n的距离相等.(尺规作图,保留作图痕迹)【考点】作图-轴对称变换.【分析】(1)分别作出A、B、C关于直线MN的对称点即可.(2)作线段AB的垂直平分线,直线m、n组成的角的平分线,两线的交点就是所求的点.【解答】解:(1)如图1中,作点A关于直线MN的对称点E,点B 关于直线MN的对称点F,点C关于直线NM的对称点G,连接EF、FG.EG,△EFG就是所求作的三角形.(2)如图2中,图中点P和点P′就是满足条件的点.17.在△ABC中,∠C=90°,DE垂直平分斜边AB,分别交AB、BC 于D、E.若∠CAB=∠B+30°,求∠AEB.【考点】线段垂直平分线的性质.【分析】已知DE垂直平分斜边AB可求得AE=BE,∠EAB=∠EBA.易求出∠AEB.【解答】解:∵DE垂直平分斜边AB,∴AE=BE,∴∠EAB=∠EBA.∵∠CAB=∠B+30°,∠CAB=∠CAE+∠EAB,∴∠CAE=30°.∵∠C=90°,∴∠AEC=60°.∴∠AEB=120°18.如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.【考点】等腰三角形的性质;全等三角形的判定与性质;角平分线的性质.【分析】先根据AB=AC,可得∠ABC=∠ACB,再由垂直,可得90°的角,在△BCE和△BCD中,利用内角和为180°,可分别求∠BCE 和∠DBC,利用等量减等量差相等,可得FB=FC,再易证△ABF≌△ACF,从而证出AF平分∠BAC.【解答】证明:∵AB=AC(已知),∴∠ABC=∠ACB(等边对等角).∵BD、CE分别是高,∴BD⊥AC,CE⊥AB(高的定义).∴∠CEB=∠BDC=90°.∴∠ECB=90°﹣∠ABC,∠DBC=90°﹣∠ACB.∴∠ECB=∠DBC(等量代换).∴FB=FC(等角对等边),在△ABF和△ACF中,,∴△ABF≌△ACF(SSS),∴∠BAF=∠CAF(全等三角形对应角相等),∴AF平分∠BAC.19.如图,△ABC中,AD是∠BAC的平分线,DE⊥AB,DF⊥AC,E、F为垂足,连接EF交AD于G,试判断AD与EF垂直吗?并说明理由.【考点】角平分线的性质;全等三角形的判定与性质.【分析】根据角平分线上的点到角的两边的距离相等可得DE=DF,然后利用“HL”证明Rt△AED和Rt△AFD全等,根据全等三角形对应边相等可得AE=AF,再利用等腰三角形三线合一的性质证明即可.【解答】解:AD⊥EF.理由如下:∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,在Rt△AED和Rt△AFD中,∵,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∵AD平分∠EAF,∴AD⊥EF(等腰三角形三线合一).20.在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,l1与l2相交于点O.△ADE的周长为6cm.(1)求BC的长;(2)分别连结OA、OB、OC,若△OBC的周长为16cm,求OA的长.【考点】线段垂直平分线的性质.【分析】(1)先根据线段垂直平分线的性质得出AD=BD,AE=CE,再根据AD+DE+AE=BD+DE+CE即可得出结论;(2)先根据线段垂直平分线的性质得出OA=OC=OB,再由∵△OBC 的周长为16cm求出OC的长,进而得出结论.【解答】解:(1)∵DF、EG分别是线段AB、AC的垂直平分线,∴AD=BD,AE=CE,∴AD+DE+AE=BD+DE+CE=BC,∵△ADE的周长为6cm,即AD+DE+AE=6cm,∴BC=6cm;(2)∵AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,∴OA=OC=OB,∵△OBC的周长为16cm,即OC+OB+BC=16,∴OC+OB=16﹣6=10,∴OC=5,∴OA=OC=OB=5.21.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.【考点】全等三角形的判定与性质.【分析】(1)由BE垂直于AC,CF垂直于AB,利用垂直的定义得∠HFB=∠HEC,由得对顶角相等得∠BHF=∠CHE,所以∠ABD=∠ACG.再由AB=CG,BD=AC,利用SAS可得出三角形ABD与三角形ACG全等,由全等三角形的对应边相等可得出AD=AG,(2)利用全等得出∠ADB=∠GAC,再利用三角形的外角和定理得到∠ADB=∠AED+∠DAE,又∠GAC=∠GAD+∠DAE,利用等量代换可得出∠AED=∠GAD=90°,即AG与AD垂直.【解答】(1)证明:∵BE⊥AC,CF⊥AB,∴∠HFB=∠HEC=90°,又∵∠BHF=∠CHE,∴∠ABD=∠ACG,在△ABD和△GCA中,∴△ABD≌△GCA(SAS),∴AD=GA(全等三角形的对应边相等);(2)位置关系是AD⊥GA,理由为:∵△ABD≌△GCA,∴∠ADB=∠GAC,又∵∠ADB=∠AED+∠DAE,∠GAC=∠GAD+∠DAE,∴∠AED=∠GAD=90°,∴AD⊥GA.四、知者加速题:(本大题共2题,共20分)22.如图,已知直线l及其两侧两点A、B.(1)在直线l上求一点O,使到A、B两点距离之和最短;(2)在直线l上求一点P,使PA=PB;(3)在直线l上求一点Q,使l平分∠AQB.【考点】线段垂直平分线的性质;线段的性质:两点之间线段最短;角平分线的性质.【分析】(1)根据两点之间线段最短,连接AB,线段AB交直线l 于点O,则O为所求点;(2)根据线段垂直平分线的性质连接AB,在作出线段AB的垂直平分线即可;(3)作B关于直线l的对称点B′,连接AB′交直线l与点Q,连接BQ,由三角形全等的判定定理求出△BDQ≌△B′DQ,再由全等三角形的性质可得出∠BQD=∠B′QD,即直线l平分∠AQB.【解答】解:(1)连接AB,线段AB交直线l于点O,∵点A、O、B在一条直线上,∴O点即为所求点;(2)连接AB,分别以A、B两点为圆心,以任意长为半径作圆,两圆相交于C、D 两点,连接CD与直线l相交于P点,连接BD、AD、BP、AP、BC、AC,∵BD=AD=BC=AC,∴△BCD≌△ACD,∴∠BED=∠AED=90°,∴CD是线段AB的垂直平分线,∵P是CD上的点,∴PA=PB;(3)作B关于直线l的对称点B′,连接AB′交直线l与点Q,连接BQ,∵B与B′两点关于直线l对称,∴BD=B′D,DQ=DQ,∠BDQ=∠B′DQ,∴△BDQ≌△B′DQ,∴∠BQD=∠B′QD,即直线l平分∠AQB.23.如图,在△ABC的一边AB上有一点P.(1)能否在另外两边AC和BC上各找一点M、N,使得△PMN的周长最短?若能,请画出点M、N的位置;若不能,请说明理由;(2)若∠ACB=48°,在(1)的条件下,求出∠MPN的度数.【考点】轴对称-最短路线问题.【分析】(1)如图:作出点P关于AC、BC的对称点D、G,然后连接DG交AC、BC于两点,标注字母M、N;(2)根据对称的性质,易求得∠C+∠EPF=180°,由∠ACB=48°,易求得∠D+∠G=48°,继而求得答案.【解答】解:(1)①作出点P关于AC、BC的对称点D、G,②连接DG交AC、BC于两点,③标注字母M、N;(2)∵PD⊥AC,PG⊥BC,∴∠PEC=∠PFC=90°,∴∠C+∠EPF=180°,∵∠C=48°,∴∠EPF=132°,∵∠D+∠G+∠EPF=180°,∴∠D+∠G=48°,由对称可知:∠G=∠GPN,∠D=∠DPM,∴∠GPN+∠DPM=48°,∴∠MPN=132°﹣48°=84°.。

苏科版20192020学年第二学期八年级数学周测

苏科版20192020学年第二学期八年级数学周测

苏科版2019--2020学年度第二学期八年级数学周测(5)一、选择题(每题3分,共24分)1、如图,在?ABCD中,对角线AC与BD订交于点O,E是边CD的中点,连结OE.若∠ABC=60°,∠BAC=80°,则∠1的度数为( )50°B.40°C.30°D.20°2、如图,在△ABC中,AB=6,AC=10,点D,E,F分别是AB,BC,AC的中点,则四边形A DEF的周长为()A. 16B. 12C. 10D. 83、以下式子中是分式的是 ( )1B.xC.1D.2A.3x154、当x为随意实数时,以下分式必定存心义的是()A.x1B.x2C.x1D.x1x22x x21x15、若分式1存心义,则x的取值范围是( )2x>2B.x<2C.x≠2D.x≠06、若a22a30,代数式1的值是()aa2A.-1B.1C.-3D.33 37、分式ab 2 , bb 2 ,b 2b 2 的最简公分母是()a 2 2ab a 2 a 2 2abA. ab 2a bB.aba b 2C. ab 2a b 2D. ab 2a b 2a 2 b 28、若分式-x 2x 的取值范围是()x2 的值为负数,则1A.随意实数B.x ≠0C.x ≠0且x ≠±1D.x >0 二、填空题(每题 4分,共32分) 9、若按序连结四边形 A BCD 各边的中点所得四边形是菱形 ,则四边形ABCD 必定是______10、已知 2-4x-5=0,则分式6xx x2-x-5的值是___.11、分式x 1的值为0,则x 的值是______.x12、当3mn 9m 2n 3 时,A 代表的整式是________ 5m 10n 5A13、化简分式x 21的结果是______.1 x30b;②y 2 x 2 y 2 x 2 ;④m 2 2x 3 14、以下各式①x ;③x y;⑤x 中分子与分母没有公因式的27aym3分式是___.(填序号).15、若11 =5,则分式 2a 3ab 2b=___________a b a 2abb16、分式1, 1 的最简公分母是__________2 3 23a bc 4ab三、解答题(共44分)17、(满分 8分)已知ab 3,求代数式 5a 5b3a 3b 的值a b a b a b18、(满分9分)不改变分式的值,把以下分式的分子和分母中各项的系数均化为整数0.5x y;(2)0.01x 20.2x;1 -0.2y(3)40.2x 4 1.3x2 0.24x 1.5xy19、(满分9分)约分:(1)2ax2y;(2)2mm n(3)y x3axy 2 3nm n x y2220、(满分6分)通分:(1)x,2x (2)1,4x ,2x2x1 x2x 2 42-x21、(满分12分)如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高。

【最新】江苏省泰兴市黄桥东区域八年级数学下册考试试题

【最新】江苏省泰兴市黄桥东区域八年级数学下册考试试题

S h O A S h O B S h O C S h O D 江苏省泰兴市黄桥东区域2019-2020学年八年级数学下学期期末考试试题(考试时间:120分钟 满分:150分)请注意:1.本试卷分选择题和非选择题两个部分.2.所有试题的答案均填写在答题纸上,答案写在试卷上无效. 第一部分 选择题(共18分)一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题纸相应位置.......上) 1.下列图形中,是中心对称图形的是A .B .C .D .2.为了解2019年泰兴市八年级学生的视力情况,从中随机调查了500名学生的视力情况.下列说法正确的是A .2019年泰兴市八年级学生是总体B .每一名八年级学生是个体C .500名八年级学生是总体的一个样本D .样本容量是500 3.下列计算正确的是A .532=+B .632=⨯C .248=D .224=-4.用配方法解方程0522=--x x 时,原方程应变形为A .6)1(2=+xB .6)1(2=-xC .9)2(2=+xD .9)2(2=-x5.当压力F (N)一定时,物体所受的压强p (Pa)与受力面积S (m 2)的函数关系式为SFp =(S ≠0),这个函数的图像大致是6.下列说法:(1)矩形的对角线互相垂直且平分;(2)菱形的四边相等;(3)一组对边平行,另一组对边相等的四边形是平行四边形;(4)正方形的对角线相等,并且互相垂直平分. 其中正确的个数是A .1个 B.2个 C.3个 D.4个 第二部分 非选择题(共132分)二、填空题(本大题共10个小题,每小题3分,共30分.请把答案直接填写在答题纸相应位......置.上.) 7.在英文单词believe 中,字母“e ”出现的频率是 ▲ .8.在分式xx+2中,当x = ▲ 时分式没有意义. 9.当x ≤2时,化简:442+-x x = ▲ . 10.已知 0|1|2=-++b a ,那么 ()2016b a + 的值为 ▲ .11.若关于x 的一元二次方程2240x x m -+=有实数根,则m 的取值范围是 ▲ .(第14题图)O 2O 1FGCDB AE(第16题图)xyACB O12.若关于x 的方程2221+-=--x mx x 产生增根,那么m 的值是______▲_______. 13.已知点(-1,y 1),(2,y 2),(3,y 3)在反比例函数x k y 12--=的图像上,则用“<”连接y 1,y 2,y 3为___▲___.14.如图,边长为6的正方形ABCD 和边长为8的正方形BEFG 排放在一起,O 1和O 2分别是两个正方形的对称中心, 则△O 1BO 2的面积为 ▲ .15.平行四边形ABCD 中一个角的平分线把一条边分成3cm 和 4cm 两部分则这个四边形的周长是___▲___cm .16.在平面直角坐标系中,平行四边形OABC 的边OC 落在x 轴的 正半轴上,且点C (4,0),B (6,2),直线y =2x +1以每秒1个单位 的速度向下平移,经过 ▲ 秒该直线可将平行四边形 OABC 的面积平分.三、解答题(本大题共有10小题,共102分,请在答题卡指定区域内 作答,解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本题满分10分)计算:(1)123)23(2⨯-- (2)2111a a a +-+-18.(本题满分10分) 解方程: (1)1412112-=-++x x x (2)(x ﹣2)2=2x ﹣4.19.(本题满分8分) 先化简再求值:)1121(122+---÷--m m m m m ,其中m 是方程x 2﹣x =2016的解.20.(本题满分10分)某学校校园读书节期间,学校准备购买一批课外读物.为使购买的课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别对部分同学进行了抽样调查(每位同学只选一类).下图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息, 解答下列问题:(1)本次抽样调查一共抽查了_______名同学; (2)条形统计图中,m =_______,n =_______; (3)扇形统计图中,艺术类读物所在扇形的 圆心角是_______度;(4)学校计划购买课外读物6000册,请根据 样本数据,估计学校购买其他类读物多少 册比较合理?21.(本题满分10分)如图,在四边形ABCD 中,AB ∥CD ,∠B =∠D .(1)求证:四边形ABCD 为平行四边形; ABC DEFP(2)若点P 为对角线AC 上的一点,PE ⊥AB 于E ,PF ⊥AD 于F , 且PE =PF ,求证:四边形ABCD 是菱形.22.(本题满分8分)某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的31后,为了让道路尽快投入使用,工兵连将工作效率提高了%50,一共用了10小时完成任务. (1)按原计划完成总任务的31时,已抢修道路 米; (2)求原计划每小时抢修道路多少米.23.(本题满分8分)先观察下列等式,再回答问题:①211112122=+=⎪⎭⎫⎝⎛++;②212212212222=+=⎪⎭⎫⎝⎛++③313313312322=+=⎪⎭⎫⎝⎛++;………………(1)根据上面三个等式提供的信息,请猜想第四个等式;(2)请按照上面各等式规律,试写出用n (n 为正整数)表示的等式,并用所学知识证明.24.(本题满分12分) 码头工人每天往一艘轮船上装载货物,装载速度y (吨/天) 与装完货物所需时间x (天)之间的函数关系如图.(1)求y 与x 之间的函数表达式; (2)由于遇到紧急情况,要求船上的货物不超过5天卸货完毕, 那么平均每天至少要卸多少吨货物? (3)若码头原有工人10名,且每名工人每天的装卸量相同,装载 完毕恰好用了8天时间,在(2)的条件下,至少需要增加多少名 工人才能完成任务?x25.(本题满分12分)如图,在Rt △ABC 中,∠B =90°,AC =60cm ,∠A =60°,点D从点C 出发沿CA 方向以4cm /秒的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2cm /秒的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D 、E 运动的时间是t 秒(0<t ≤15).过点D 作DF ⊥BC 于点F ,连接DE ,EF . (1)求证:AE =DF ; (2)四边形AEFD 能够成为菱形吗?如果能,求出t 的值,如果不能,说明理由;(3)在运动过程中,四边形BEDF 能否为正方形?若能,求出t26.(本题满分14分)如图,在平面直角坐标系xOy 中,直线b kx y +=与x 轴相交于点A ,与反比例函数在第一象限内的图像相交于点A (1,8)、B (m ,2).(1)求该反比例函数和直线b kx y +=的表达式; (2)求证:ΔOBC 为直角三角形;(3)设∠ACO =α,点Q 为反比例函数在第一象限内的图像上一动点且满足90°-α <∠QOC <α, 求点Q 的横坐标q 的取值范围.(第25题图) (第26题图)(备用图)y A C B O (第26题图)xyA CB O2019年春学期八年级数学测试题答案 2016.6选择题:(每题3分,共18分) 1-6 BDBBCB二、填空题:(每小题3分,共30分)7.73; 8.-2 ; 9.2-x ; 10.1 ; 11. 41≤m ;12.1 ; 13.y 2<y 3<y 1 14.12 ; 15.20或22cm ; 16.6三、解答题:(本大题共10题,共102分)17.(1)143- (5分) (2)21aa -(5分)18.(1)x=1是增根,原方程无解 (5分) (2)x=2,x=4 (5分) 19.21m m- (5分), 12016(3分) 20.(1)200; (2) m =40__,n =_60_; (3)72°; (4)900.(共5小题,各2分)21.(1)省略(5分);(2)可先证明平行四边形再证一组邻边相等;可证明四边相等(5分) 22.(1)1200 (3分)(2)120024001015.xx+= x=280(5分)23.(1) 414414412422=+=⎪⎭⎫⎝⎛++;(4分)(2) n n n n n n 1112222+=+=⎪⎭⎫⎝⎛++ 证明略.(4分)24.(本题满分12分)解:(1)设y 与x 之间的函数表达式为y =kx, 根据题意得:50=k 8,解得k =400∴ y 与x 之间的函数表达式为y =400x;………4分 (2)∵x =5,∴y =,解得:y =80,……………………………………8分 答:平均每天至少要卸80吨货物;(3)∵每人一天可卸货:50÷10=5(吨),……10分 ∴80÷5=16(人),16﹣10=6(人).答:码头至少需要再增加6名工人才能按时完成任务.…………12分25.(1)证明:∵直角△ABC 中,∠C=90°-∠A=30°. ∵CD=4t,AE=2t ,又∵在直角△CDF 中,∠C=30°, ∴DF=12CD=2t , ∴DF=AE;(4分)解:(2)∵DF∥AB,DF=AE , ∴四边形AEFD 是平行四边形, 当AD=AE 时,四边形AEFD 是菱形, 即60-4t=2t ,解得:t=10,即当t=10时, AEFD 是菱形; (4分)(3)四边形BEDF 一能为正方形,理由如下: 当∠EDF=90°时,DE∥BC. ∴∠ADE=∠C=30° ∴AD=2AE ∵CD=4t, ∴DF=2t=AE, ∴AD=4t, ∴4t+4t=60, ∴t=152时,∠EDF=90° 但BF≠DF,∴四边形BEDF 不可能为正方形.(4分)26.⑴反比例函数表达式为y =12x和直线表达式y =-2x +10(各2分,共4分)(2) 过点B 作垂直,运用勾股定理逆定理证明(4分)(3) 2<q <4(写出详细过程;答案正确得共6分,若答案为“q <4”或“q >2”,得3分)。

江苏省泰兴市黄桥初中教育集团2019-2020学年八年级上学期期中考试数学试题

江苏省泰兴市黄桥初中教育集团2019-2020学年八年级上学期期中考试数学试题

黄桥初中教育集团2019年秋学期期中测试八年级数学2019-11-05(时间:120分钟 总分:150分)一、选择题(每题3分,共18分)1.在“回收”、“节水”、“绿色食品”、“低碳”四个标志图案中.轴对称图形是( )A. B. C. D.2.a 、b 、c 为△ABC 三边,下列条件不能判断它是直角三角形的是 ( )A .a 2=c 2﹣b 2B .∠A :∠B :∠C =3:4:5C .a =3,b =4,c =5D .a =5k ,b =12k ,c =13k (k 为正整数)3.将点A (﹣2,3)沿x 轴向左平移3个单位长度,再沿y 轴向上平移4个单位长度后得到的点A′的坐标为 ( )A .(1,7)B .(1.﹣1)C .(﹣5,﹣1)D .(﹣5,7)4.已知边长为m 的正方形面积为12,则下列关于m 的说法中,正确的有 ( )①m 2是有理数;②m 的值满足m 2﹣12=0;③m 满足不等式组⎩⎨⎧<->-0504m m ; ④m 是12的算术平方根 A .1个 B .2个 C .3个 D .4个5.如图所示,在长方形ABCD 的对称轴l 上找点P ,使得△PAB 、△PBC 均为等腰三角形,则满足条件的点P 有 ( )A .1个B .3个C .5个D .无数多个6.如图,在Rt △ABC 中,∠ACB =90°,BC =3,AC =4,AB 的垂直平分线DE 的延长线于点E ,则CE 的长为 ( ) A .815 B .310 C .67 D .512二、填空题(每题3分,共30分)7.16的平方根是_________.8.用四舍五入法对数字1657900精确到千位的结果是_________.9.直角三角形两直角边为5、12,斜边上的中线长为_________.10.若等腰三角形的周长为20cm ,其中一边长为5cm ,则该等腰三角形的腰长是 _______cm .11.若a 、b 都是无理数,且a+b=2,则a 、b 的值可以是 _________.(填上一组满足条件的值即可).12.若233y ----=x x ,则x-2y=_________.13.如图,△ABC 中,D 是BC 上一点,AC =AD =DB ,∠BAC =105°,则∠ADC =_________.14.如图,在平面直角坐标系中,以点O 为心,适当的长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以从点M 、N 为圆心,大于21MN 的长为半径画弧,两弧在第二象限交于点P ,若点 P 的坐标(2a ,a+1),则a =_________.15.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A 处的正前方30m 的C 处,过了2s 后,测得小汽车与车速检测仪间的距离为50m ,则这辆小汽车的速度是 _________ m/s .16.如图,在平面直角坐标系中,点A 、B 的坐标分别为(3,2)、(-1,0),若将线段BA 绕点B 顺时针旋转90°得到线段BA ’,则点A'的坐标为_________.三、解答题(共102分)17.(本题满分10分)计算:(1)2-32--3-2+)()( (2) 02-32-21--27)()(π+18.(本题满分10分)求下列各式中x 的值.(1)236x -= (2)32(1)16x -=-19.(本题满分8分)已知2是3x-2的平方根,-3是y-2x 的立方根,求12x+y 的平方根.20.(本题满分8分)如图:已知OA 和OB 两条公路,以及C 、D 两个村庄,建立一个车站P , 使车站到两个村庄距离相等即PC =PD ,且P 到OA ,OB 两条公路的距离相等.(尺规作图, 保留作图痕迹,不写作法)第20题图 第21题图21.(本题满分10分)在平面直角坐标系xOy 中,△ABC 的位置如图所示:(1)分别写出△ABC 各个顶点的坐标:A ( , );B ( , ),C ( , )(2)顶点A 关于x 轴对称的点A′的坐标( , ),顶点C 关于原点对称的点C′的坐标( , )(3)求△ABC 的面积.22.(本题满分10分)如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D ,AM 是△ABC 的外角∠CAE 的平分线.(1)求证:AM ∥BC ;(2)若DN 平分∠ADC 交AM 于点N ,判断△ADN 的形状并说明理由.23.(本题满分10分)明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词,翻译为:如图秋千细索OA悬挂于O点,静止时竖直下垂,A点为踏板位置,踏板离地高度为一尺(AC=1尺).将它往前推进两步(EB⊥OC于点E,且EB=10尺),踏板升高到点B位置,此时踏板离地五尺(BD=CE=5尺),求秋千绳索(OA或OB)的长度.24.(本题满分10分)在平面直角坐标系中,有点A(a+1,2),B(﹣a﹣5,2a+1).(1)若线段AB∥y轴,求点A、B的坐标;(2)当点B在第二、四象限的角平分线上时,求A点坐标.25.(本题满分12分)如图,在等边△ABC中:(1)如图1,P,Q是BC边上两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②求证:PA=PM.26.(本题满分14分)用一条直线分割一个三角形,如果能分割出一个等腰三角形,那么就称这条直线为该三角形的一条等腰分割线.在直角三角形ABC中,∠ACB=90°,AC=4,BC=3..(1)如图⑴,O为AB的中点,则直线OC____△ABC的等腰分割线(填“是”或“不是”).(2)如图⑵,点P是边AC上一个动点,当直线BP是△ABC的等腰分割线时,求PC的长度。

2019-2020学年江苏省泰州市泰兴市黄桥中学八年级(上)第一次月考数学试卷解析版

2019-2020学年江苏省泰州市泰兴市黄桥中学八年级(上)第一次月考数学试卷解析版

2019-2020学年江苏省泰州市泰兴市黄桥中学八年级(上)第一次月考数学试卷一.选择题(本大题共有6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在答题卡相应位置上)1.(2分)下列图形中,是轴对称图形的是( )A .B .C .D .2.(2分)等腰三角形的一个角是100︒,则其底角是( )A .40︒B .100︒C .80︒D .100︒或40︒3.(2分)把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是( )A .B .C .D .4.(2分)如图,在ABC ∆中,过顶点A 的直线//DE BC ,ABC ∠、ACB ∠的平分线分别交DE 于点E 、D ,若3AC =,4AB =,则DE 的长为( )A .6B .7C .8D .95.(2分)在ABC ∆中,①若AB BC CA ==,则ABC ∆为等边三角形;②若A B C ∠=∠=∠,则ABC ∆为等边三角形;③有两个角都是60︒的三角形是等边三角形;④一个角为60︒的等腰三角形是等边三角形.上述结论中正确的有( )A .1个B .2个C .3个D .4个6.(2分)若直角三角形的两边长分别为a ,b ,且满足269|4|0a a b -++-=,则该直角三角形的第三边长的平方为( )A .25B .7C .25或7D .25或16二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(3分)如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,巧妙地利用面积关系证明了一个定理,这是我国古代数学的骄傲.这个定理就是 定理.8.(3分)在直角三角形中,斜边长为10cm ,则斜边上的中线长为 .9.(3分)一个等腰三角形的两边长分别是3cm 和7cm ,则它的周长是 cm .10.(3分)如图,沿直线AD 折叠,ACD ∆与ABD ∆重合,若50B ∠=︒,则CAD ∠= 度.11.(3分)如图,阴影部分是一个长方形,它的面积是 2cm .12.(3分)如图,在ABC ∆中,30AB AC cm ==,DE 是AB 的垂直平分线,分别交AB 、AC 于D 、E 两点.(1)若70C ∠=︒,则BEC ∠= ;(2)若20BC cm =,则BCE ∆的周长是 cm .13.(3分)如图,OP平分AOB=,则点P到OA的距离是cm.PB cm⊥,2∠,PB OB14.(3分)如图,ABCBC=,则AD的AB=,16∆中,AB AC=,AD BC⊥,垂足为D,已知10长为.15.(3分)如图的24⨯的正方形网格中,ABC∆的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与ABC∆成轴对称的格点三角形一共有个.16.(3分)如图,60=,动点P从点C出发沿CB以2/OC cmcm s AOB∠=︒,C是BO延长线上一点,12的速度移动,动点Q从点O出发沿OA以1/t s表示cm s的速度移动,如果点P、Q同时出发,用()移动的时间,当t=s时,POQ∆是等腰三角形.三、解答题(本大题共有8小题,共58分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与ABC ∆关于直线l 成轴对称的△AB C '';(2)在直线l 上找一点P ,使PB PC '+的长最短;(3)若ACM ∆是以AC 为腰的等腰三角形,点M 在小正方形的顶点上.这样的点M 共有 个.18.(6分)先尺规作图,后进行计算:如图,ABC ∆中,105A ∠=︒.(1)试求作一点P ,使得点P 到B 、C 两点的距离相等,并且到ABC ∠两边的距离相等(尺规作图,不写作法,保留作图痕迹).(2)在(1)的条件下,若30ACP ∠=︒,则PBC ∠的度数为 ︒.19.(6分)如图,在ABC ∆中,AB AC =,D 为BC 边上一点,30B ∠=︒,45DAB ∠=︒.(1)求DAC ∠的度数;(2)求证:DC AB =.20.(6分)如图,已知ABC ∆中,边AB 、AC 的垂直平分线分别交BC 于E 、F ,若90EAF ∠=︒,3AF =,4AE =.(1)求边BC 的长;(2)求出BAC ∠的度数.21.(6分)已知:如图,在等边ABC∆中,点D、E分别在边AC、BC上,BD与AE交于点F,=.CD BE(1)求证:BD AE=;(2)求证:60∠=︒.AFD22.(8分)如图,已知四边形ABCD中,90⊥,垂∠=∠=︒,点E为AC的中点.EF BDABC ADC足为F.(1)求证:BE DE=;(2)若26EF=,求BD的长.AC=,523.(8分)如图,已知:90∠,点P在射线OC上.点E在射线OA上,AOB∠=︒,OC平分AOB点F在射线OB上,且90EPF∠=︒.(1)如图1,求证:PE PF=;(2)如图2,作点F关于直线EP的对称点F',过F'点作FH OF'与EP交⊥于H,连接EF',F H于点M.连接FM,图中与EFM∠相等的角共有个.24.(12分)如图1,长方形ABCD中,90==,AD BCDAB B DCB D∠=∠=∠=∠=︒,6∆沿直线AE翻折得△AD E'.AB CD10==.点E为射线DC上的一个动点,把ADE(1)当D'点落在AB边上时,DAE∠=︒;(2)如图2,当E点与C点重合时,D C'与AB交点F,①求证:AF FC=;②求AF长.(3)连接D B',当90AD B∠'=︒时,求DE的长.2019-2020学年江苏省泰州市泰兴市黄桥中学八年级(上)第一次月考数学试卷参考答案与试题解析一.选择题(本大题共有6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在答题卡相应位置上)1.(2分)下列图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项符合题意.故选:D.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.(2分)等腰三角形的一个角是100︒,则其底角是()A.40︒B.100︒C.80︒D.100︒或40︒【分析】等腰三角形的一个角为100︒,但已知没有明确此角是顶角还是底角,所以应分两种情况进行分类讨论.【解答】解:当100︒为顶角时,其他两角都为40︒、40︒,当100︒为底角时,等腰三角形的两底角相等,由三角形的内角和定理可知,底角应小于90︒,故底角不能为100︒,所以等腰三角形的底角为40︒、40︒.故选:A.【点评】本题考查了等腰三角形的性质及三角形内角和定理;在解决与等腰三角形有关的问题时,由于等腰三角形所具有的特殊性质,很多题目在已知不明确的情况下,要进行分类讨论,才能正确解题,因此,解决和等腰三角形有关的边角问题时,要仔细认真,避免出错.3.(2分)把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A.B.C.D.【分析】结合空间思维,分析折叠的过程及剪三角形的位置,注意图形的对称性,易知展开的形状.【解答】解:当正方形纸片两次沿对角线对折成为一直角三角形时,在直角三角形中间的位置上剪三角形,则直角顶点处完好,即原正方形中间无损,且三角形关于对角线对称,三角形的AB边平行于正方形的边.再结合C点位置可得答案为C.故选:C.【点评】本题主要考查了学生的立体思维能力即操作能力.错误的主要原因是空间观念以及转化的能力不强,缺乏逻辑推理能力,需要在平时生活中多加培养.4.(2分)如图,在ABC∠的平分线分别交DE于∠、ACB∆中,过顶点A的直线//DE BC,ABC点E、D,若3AB=,则DE的长为()AC=,4A.6B.7C.8D.9【分析】BE为ABC∠=∠,∠的角平分线,则ACD DCB ∠的角平分线,EBC ABE∠=∠,CD为ACB因为//=,所以BC DE,根据平行线的性质,内错角相等,可得出AD AC=,AB AE =+=+,从而可求出DE的长度.DE AD AE AB AC【解答】解:由分析得:EBC ABE∠=∠;∠=∠,ACD DCB根据平行线的性质得:DCB CDE∠=∠;∠=∠,EBC BED所以ADC ACD ∠=∠,ABE AEB ∠=∠,则AD AC =,AB AE =;所以347DE AD AE AB AC =+=+=+=;故选:B .【点评】本题综合考查了勾股定理、平行线的性质以及等腰三角形的判定与性质.根据勾股定理求得AB 是本题的重点.5.(2分)在ABC ∆中,①若AB BC CA ==,则ABC ∆为等边三角形;②若A B C ∠=∠=∠,则ABC ∆为等边三角形;③有两个角都是60︒的三角形是等边三角形;④一个角为60︒的等腰三角形是等边三角形.上述结论中正确的有( )A .1个B .2个C .3个D .4个【分析】根据等边三角形的判定判断即可.【解答】解:①根据等边三角形的定义可得ABC ∆为等边三角形,结论正确;②根据判定定理1可得ABC ∆为等边三角形,结论正确;③一个三角形中有两个角都是60︒时,根据三角形内角和定理可得第三个角也是60︒,那么这个三角形的三个角都相等,根据判定定理1可得ABC ∆为等边三角形,结论正确;④根据判定定理2可得ABC ∆为等边三角形,结论正确.故选:D .【点评】本题考查了等边三角形的判定,等边三角形的判定方法有三种:(1)由定义判定:三条边都相等的三角形是等边三角形.(2)判定定理1:三个角都相等的三角形是等边三角形.(3)判定定理2:有一个角是60︒的等腰三角形是等边三角形.注意:在证明一个三角形是等边三角形时,若已知或能求得三边相等则用定义来判定;若已知或能求得三个角相等则用判定定理1来证明;若已知等腰三角形且有一个角为60︒,则用判定定理2来证明.6.(2分)若直角三角形的两边长分别为a ,b ,且满足269|4|0a a b -++-=,则该直角三角形的第三边长的平方为( )A .25B .7C .25或7D .25或16【分析】根据非负数的性质列出方程求出a 、b 的值,根据勾股定理即可得到结论.【解答】解:269|4|0a a b -++-=,4|0-=,2(3)a ∴-,40b -=,3a ∴=,4b =,∴直角三角形的第三边长5,或直角三角形的第三边长=,∴直角三角形的第三平方为25或7,故选:C .【点评】本题考查了勾股定理,非负数的性质:几个非负数的和为0时,这几个非负数都为0.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(3分)如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,巧妙地利用面积关系证明了一个定理,这是我国古代数学的骄傲.这个定理就是 勾股 定理.【分析】根据题意即可得到这个定理就是勾股定理.【解答】解:这个定理就是勾股定理,故答案为:勾股.【点评】此题主要考查了勾股定理的证明,熟练掌握勾股定理是解题关键.8.(3分)在直角三角形中,斜边长为10cm ,则斜边上的中线长为 5cm .【分析】根据直角三角形斜边上的中线等于斜边的一半解答即可.【解答】解:直角三角形斜边长为10cm ,∴斜边上的中线长为5cm .故答案为:5cm .【点评】本题考查的是直角三角形的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.9.(3分)一个等腰三角形的两边长分别是3cm 和7cm ,则它的周长是 17 cm .【分析】等腰三角形两边的长为3cm 和7cm ,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【解答】解:①当腰是3cm ,底边是7cm 时:不满足三角形的三边关系,因此舍去.②当底边是3cm ,腰长是7cm 时,能构成三角形,则其周长37717cm =++=.故答案为:17.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.10.(3分)如图,沿直线AD 折叠,ACD ∆与ABD ∆重合,若50B ∠=︒,则CAD ∠= 40 度.【分析】根据折叠的性质可知,B C ∠=∠,90ADB ADC ∠=∠=︒,继而即可求出CAD ∠的度数.【解答】解:沿直线AD 折叠,ACD ∆与ABD ∆重合,50B C ∴∠=∠=︒,90ADB ADC ∠=∠=︒,9040CAD C ∴∠=︒-∠=︒.故答案为:40.【点评】本题考查翻折变换的知识,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11.(3分)如图,阴影部分是一个长方形,它的面积是 5 2cm .【分析】由勾股定理求出直角三角形的斜边长,再由长方形的面积公式即可得出结果.【解答】5()cm ,∴阴影部分的面积2515()cm =⨯=;故答案为:5.【点评】本题考查了勾股定理、长方形的性质;熟练掌握勾股定理是解决问题的关键.12.(3分)如图,在ABC ∆中,30AB AC cm ==,DE 是AB 的垂直平分线,分别交AB 、AC 于D 、E 两点.(1)若70C ∠=︒,则BEC ∠= 80︒ ;(2)若20BC cm =,则BCE ∆的周长是 cm .【分析】(1)先根据等腰三角形的性质得出ABC ∠的度数,再由三角形内角和定理求出A ∠的度数,根据线段垂直平分线的性质求出AE BE =,故可得出ABE ∠的度数,进而可得出结论;(2)根据AE BD =可知,BE CE AE CE AC +=+=,由此可得出结论.【解答】解:(1)在ABC ∆中,30AB AC cm ==,70C ∠=︒,70ABC C ∴∠=∠=︒,180180707040A ABC C ∴∠=︒-∠-∠=︒-︒-︒=︒. DE 是AB 的垂直平分线,AE BE ∴=,40ABE A ∴∠=∠=︒,704030EBC ABC ABE ∴∠=∠-∠=︒-︒=︒,180180703080BEC C EBC ∴∠=︒-∠-∠=︒-︒-︒=︒.故答案为:80︒;(2)由(1)知AE BE =,30BE CE AE CE AC cm ∴+=+==,20BC cm =,BCE ∴∆的周长302050()AC BC cm =+=+=.故答案为:50.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.13.(3分)如图,OP平分AOBPB cm=,则点P到OA的距离是2cm.⊥,2∠,PB OB【分析】过点P作PD OA=,从⊥于点D,根据角平分线上的点到角的两边的距离相等可得PD PB而得解.【解答】解:过点P作PD OA⊥于点D,PB cm⊥,2=,∠,PB OBOP平分AOB∴==,PD PB cm2故答案为2.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,是基础题,比较简单,熟记性质是解题的关键.14.(3分)如图,ABCBC=,则AD的AB=,16⊥,垂足为D,已知10=,AD BC∆中,AB AC长为6.【分析】直接利用等腰三角形的性质得出BD的长,再利用勾股定理得出AD的长.【解答】解:在ABC⊥,10BC=,AB=,16=,AD BC∆中,AB AC∴==,8BD DC∆中,∴在Rt ABDAD==.6故答案为:6.【点评】此题主要考查了勾股定理以及等腰三角形的性质,正确得出BD的长是解题关键.15.(3分)如图的24⨯的正方形网格中,ABC∆的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与ABC∆成轴对称的格点三角形一共有3个.【分析】根据题意画出图形,找出对称轴及相应的三角形即可.【解答】解:如图:共3个,故答案为:3.【点评】本题考查的是轴对称图形,根据题意作出图形是解答此题的关键.16.(3分)如图,60AOB∠=︒,C是BO延长线上一点,12OC cm=,动点P从点C出发沿CB以2/cm s 的速度移动,动点Q从点O出发沿OA以1/cm s的速度移动,如果点P、Q同时出发,用()t s表示移动的时间,当t=103或10s时,POQ∆是等腰三角形.【分析】根据等腰三角形的判定,分两种情况:(1)当点P在线段OC上时;(2)当点P在CO的延长线上时.分别列式计算即可求.【解答】解:分两种情况:(1)当点P在线段OC上时,设t时后POQ∆是等腰三角形,有OP OC CP OQ=-=,即102x x-=,解得,103x s =;(2)当点P 在CO 的延长线上时,此时经过CO 时的时间已用5s ,当POQ ∆是等腰三角形时,60POQ ∠=︒,POQ ∴∆是等边三角形,OP OQ ∴=,即2(5)x x -=,解得,10x s = 故答案为103s 或10s . 【点评】本题考查了等腰三角形的判定;解题时把几何问题转化为方程求解,是常用的方法,注意要分类讨论,当点P 在点O 的左侧还是在右侧是解答本题的关键.三、解答题(本大题共有8小题,共58分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与ABC ∆关于直线l 成轴对称的△AB C '';(2)在直线l 上找一点P ,使PB PC '+的长最短;(3)若ACM ∆是以AC 为腰的等腰三角形,点M 在小正方形的顶点上.这样的点M 共有 4 个.【分析】(1)依据轴对称的性质得到各顶点,进而得出与ABC ∆关于直线l 成轴对称的△AB C '';(2)依据两点之间,线段最短,连接B C '交直线l 于点P ,则PB PC '+的长最短;(3)分别以点A 和点B 为圆心,AB 长为半径画弧,即可得到符合条件的点M .【解答】解:(1)如图所示,△AB C ''即为所求;(2)如图所示,点P 即为所求;(3)如图所示,符合条件的点M共有4个,故答案为:4.【点评】本题主要考查了利用轴对称变换作图以及最短距离问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合对称变换来解决,多数情况要作点关于某直线的对称点.18.(6分)先尺规作图,后进行计算:如图,ABCA∠=︒.∆中,105(1)试求作一点P,使得点P到B、C两点的距离相等,并且到ABC∠两边的距离相等(尺规作图,不写作法,保留作图痕迹).(2)在(1)的条件下,若30ACP∠的度数为15︒.∠=︒,则PBC【分析】(1)作BC的垂直平分线和ABC∠的平分线,它们的交点为P点;(2)设P B C x∠=∠=,利用线段垂直平分线的性质得ABC PBC x∠=,利用角平分线的定义得到22到PB PC=,则PCB PBC x∠=∠=,然后根据三角形内角和定理可计算出x的值.【解答】解:(1)如图,点P为所作;(2)设PBC x∠=,PB平分ABC∠,∴∠=∠=,ABC PBC x22=,PB PC∴∠=∠=,PCB PBC x∠+∠+∠=︒,ABC ACB BAC180x=︒.∴++︒+︒=︒,解得15x x230105180即PBC∠的度数为15︒.故答案为15.【点评】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了线段的垂直平分线的性质.19.(6分)如图,在ABCDAB∠=︒.∠=︒,45∆中,AB AC=,D为BC边上一点,30B(1)求DAC∠的度数;(2)求证:DC AB=.【分析】(1)由A B A CB C∠=∠=︒,再根据三角形的内角=,根据等腰三角形的两底角相等得到30和定理可计算出120∠=︒,则12045∠=∠-∠=︒-︒;DAC BAC DABDAB∠=︒,而45BAC(2)根据三角形外角性质得到75DAC∠=︒,再根据等∠=∠+∠=︒,而由(1)得到75ADC B DAB腰三角形的判定可得DC AC=,这样即可得到结论.【解答】(1)解:AB AC=,∴∠=∠=︒,30B C180C BAC B ∠+∠+∠=︒,1803030120BAC ∴∠=︒-︒-︒=︒,45DAB ∠=︒,1204575DAC BAC DAB ∴∠=∠-∠=︒-︒=︒;(2)证明:45DAB ∠=︒,75ADC B DAB ∴∠=∠+∠=︒,DAC ADC ∴∠=∠,DC AC ∴=,DC AB ∴=.【点评】本题考查了等腰三角形的性质和判定定理:等腰三角形的两底角相等;有两个角相等的三角形为等腰三角形.也考查了三角形的内角和定理.20.(6分)如图,已知ABC ∆中,边AB 、AC 的垂直平分线分别交BC 于E 、F ,若90EAF ∠=︒,3AF =,4AE =.(1)求边BC 的长;(2)求出BAC ∠的度数.【分析】(1)根据勾股定理求出EF ,根据线段垂直平分线的性质得到EA EB =,FA FC =,结合图形计算,得到答案;(2)根据等腰三角形的性质得到EAB B ∠=∠,FAC C ∠=∠,根据三角形内角和定理计算即可.【解答】解:(1)由勾股定理得,5EF ==,边AB 、AC 的垂直平分线分别交BC 于E 、F ,EA EB ∴=,FA FC =,12BC BE EF FC AE EF AF ∴=++=++=;(2)EA EB =,FA FC =,EAB B ∴∠=∠,FAC C ∠=∠,由三角形内角和定理得,180EAB B EAF FAC C ∠+∠+∠+∠+∠=︒,45B C ∴∠+∠=︒,180135BAC B C ∴∠=︒-∠-∠=︒.【点评】本题考查的是线段垂直平分线的性质、等腰三角形的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.21.(6分)已知:如图,在等边ABC ∆中,点D 、E 分别在边AC 、BC 上,BD 与AE 交于点F ,CD BE =.(1)求证:BD AE =;(2)求证:60AFD ∠=︒.【分析】(1)根据SAS 证明ABE BCD ∆≅∆即可解决问题;(2)利用全等三角形的性质即可解决问题;【解答】证明:(1)ABC ∆是等边三角形,BC AB ∴=,60ABE C ∠=∠=︒,在ABE ∆和BCD ∆中,BA BC ABE C BE CD =⎧⎪∠=∠⎨⎪=⎩,()ABE BCD SAS ∴∆≅∆,BD AE ∴=.(2)ABE BCD ∆≅∆,BAE CBD ∴∠=∠,60AFD ABF BAE ABF CBD ABC ∴∠=∠+∠=∠+∠=∠=︒.【点评】本题考查全等三角形的判定和性质、等边三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.(8分)如图,已知四边形ABCD 中,90ABC ADC ∠=∠=︒,点E 为AC 的中点.EF BD ⊥,垂足为F .(1)求证:BE DE =;(2)若26AC =,5EF =,求BD 的长.【分析】(1)根据直角三角形斜边上的中线定义斜边的一半即可得到结论;(2)根据等腰三角形的性质和勾股定理即可得到结论.【解答】解:(1)90ABC ADC ∠=∠=︒,点E 为AC 的中点,12BE DE AC ∴==; (2)BE DE =,EF BD ⊥,2BD BF ∴=, 12BE AC =,26AC =, 13BE ∴=,5EF =,12BF ∴==,224BD BF ∴==.【点评】本题考查了角平分线性质、直角三角形斜边上的中线性质、等腰三角形的性质等知识点,能熟练地运用性质进行推理是解此题的关键.23.(8分)如图,已知:90AOB ∠=︒,OC 平分AOB ∠,点P 在射线OC 上.点E 在射线OA 上,点F 在射线OB 上,且90EPF ∠=︒.(1)如图1,求证:PE PF =;(2)如图2,作点F 关于直线EP 的对称点F ',过F '点作FH OF ⊥于H ,连接EF ',F H '与EP 交于点M .连接FM ,图中与EFM ∠相等的角共有 4 个.【分析】(1)过P 作PG OB ⊥于G ,PH AO ⊥于H ,判定()PEH PFG AAS ∆≅∆,即可得出PE PF =;(2)依据轴对称的性质以及等腰直角三角形的性质,即可得到与EFM ∠相等的角.【解答】解:(1)如图1,过P 作PG OB ⊥于G ,PH AO ⊥于H ,则90PGF PHE ∠=∠=︒, OC 平分AOB ∠,PG OB ⊥,PH AO ⊥,PH PG ∴=,90AOB EPF ∠=∠=︒,180PFG PEO ∴∠+∠=︒,又180PEH PEO ∠+∠=︒,PEH PFG ∴∠=∠,()PEH PFG AAS ∴∆≅∆,PE PF ∴=;(2)由轴对称可得,EFM EF M '∠=∠,F H OF '⊥,AO OB ⊥,//AO F F '∴,EF M AEF ''∴∠=∠,90AEF OEF OFE OEF '∠+∠=∠+∠=︒,AEF OFE '∴∠=∠,由题可得,P 是FF '的中点,EF EF '=,EP ∴平分FEF '∠,PE PF =,90EPF ∠=︒,45PEF PEF '∴∠=︒=∠, 又1452AOP AOB ∠=∠=︒,且AEP AOP OPE ∠=∠+∠,4545AEF OPE '∴∠+︒=︒+∠,AEF OPE '∴∠=∠,∴与EFM ∠相等的角有4个:EF M '∠,AEF '∠,EFO ∠,EPO ∠.故答案为:4.【点评】本题主要考查了全等三角形的判定与性质、轴对称的性质以及角平分线的性质的综合运用,解决问题的关键是作辅助线构造全等三角形.24.(12分)如图1,长方形ABCD 中,90DAB B DCB D ∠=∠=∠=∠=︒,6AD BC ==,10AB CD ==.点E 为射线DC 上的一个动点,把ADE ∆沿直线AE 翻折得△AD E '.(1)当D '点落在AB 边上时,DAE ∠= 45 ︒;(2)如图2,当E 点与C 点重合时,D C '与AB 交点F ,①求证:AF FC =;②求AF 长.(3)连接D B ',当90AD B ∠'=︒时,求DE 的长.【分析】(1)由A D E ∆≅△AD E '知DAE D AE ∠=∠',结合D '点落在AB 边上知90DAE D AE ∠+∠'=︒,从而得出答案;(2)①由折叠得出ACD ACD ∠=∠',再由//AB CD 得出ACD BAC ∠=∠,从而得知ACD BAC ∠'=∠,据此即可得证;②设AF FC x ==,则10BF x =-,在Rt BCF ∆中,由222BF BC CF +=得到关于x 的方程,解之可得;(3)分两种情况:点E 在DC 线段上,点E 为DC 延长线上的一点,进一步分析探讨得出答案即可.【解答】解:(1)由题意知ADE ∆≅△AD E ',DAE D AE ∴∠=∠',D '点落在AB 边上时,90DAE D AE ∠+∠'=︒,45DAE D AE ∴∠=∠'=︒,故答案为:45;(2)①如图2,由题意知ACD ACD ∠=∠',四边形ABCD 是矩形,//AB CD ∴,ACD BAC ∴∠=∠,ACD BAC ∴∠'=∠,AF FC ∴=;②设AF FC x ==,则10BF x =-,在Rt BCF ∆中,由222BF BC CF +=得222(10)6x x -+=,解得 6.8x =,即 6.8AF =;(3)如图3,△AD E ADE '≅∆,90AD E D ∴∠'=∠=︒,90AD B ∠'=︒,B ∴、D '、E 三点共线,又ABD BEC ∆'∆∽,AD BC '=,ABD BEC ∴∆'≅∆,10BE AB ∴==,8BD '=,1082DE D E ∴='=-=;如图4,90ABD CBE ABD BAD ∠''+∠=∠''+∠''=︒,CBE BAD ∴∠=∠'', 在ABD ∆''和BEC ∆中,D BCE AD BCBAD CBE ∠''=∠⎧⎪''=⎨⎪∠''=∠⎩, ABD BEC ∴∆''≅∆,10BE AB ∴==,81018DE D E ∴=''=+=.综上所知,2DE =或18.【点评】此题是四边形的综合问题,考查翻折的性质,三角形全等的判定与性质,勾股定理,掌握翻折的性质,分类探讨的思想方法是解决问题的关键.。

江苏省泰兴市黄桥教育联盟2024届八年级数学第二学期期末考试模拟试题含解析

江苏省泰兴市黄桥教育联盟2024届八年级数学第二学期期末考试模拟试题含解析

江苏省泰兴市黄桥教育联盟2024届八年级数学第二学期期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题3分,共30分)1.下列各组数中不能作为直角三角形三边长的是( ) A .7,9,12 B .5,12,13C .1,2,3D .3,4,52.如果把分式中的、都扩大到10倍,那么分式的值( )A .扩大10倍B .不变C .扩大20倍D .是原来的3.如图所示,已知∠1=∠2,AD=BD=4,CE ⊥AD ,2CE=AC ,那么CD 的长是( )A .2B .3C .1D .1.54.已知直线12y x b =+经过点()4,1P -,则直线2y x b =+的图象不经过第几象限( ) A .一B .二C .三D .四5.下列代数式是分式的是( ) A .2x B .y πC .23x y + D .2x y- 6.如图,正方形ABCD 的边长为4,点E 在边AB 上,AE =1,若点P 为对角线BD 上的一个动点,则△PAE 周长的最小值是( )A .3B .4C .5D .67.下图入口处进入,最后到达的是( )A .甲B .乙C .丙D .丁8.若一个多边形的内角和等于720°,则这个多边形的边数是( ) A .5B .6C .7D .89.若顺次连结四边形四条边的中点,所得的四边形是菱形,则原四边形一定是( ) A .平行四边形 B .矩形C .对角线相等的四边形D .对角线互相垂直的四边形10.若代数式12x x --有意义,则实数x 的取值范围是( ) A .x≥1B .x≥2C .x >1D .x >2二、填空题(每小题3分,共24分)11.如图,P 是矩形ABCD 内一点,4AB =,2AD =,AP BP ⊥,则当线段DP 最短时,CP = ________.1281____.13.某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成统计表,如下表.已知该校学生人数为1200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有_________人.每周课外阅读时间(小时) 0~1 1~2(不含1) 2~3(不含2) 超过3 人 数 710141914.如图,直线y =kx +b 与直线y =2x 交于点P(1,m ),则不等式2x <kx +b 的解集为______.15.如图,菱形ABCD 的边长是4 cm ,E 是AB 的中点,且DE ⊥AB ,则菱形ABCD 的面积为__________.16.如图,□OABC 的顶点A 的坐标为()2,0,,B C 在第一象限反比例函数1k y x=和22k y x =的图象分别经过,C B两点,延长BC 交y 轴于点D . 设P 是反比例函数1ky x=图象上的动点,若POA ∆的面积是PCD ∆面积的2倍,POD ∆的面积等于28k -,则k 的值为________。

江苏省泰兴市黄桥初中教育集团2019-2020年第一学期初二数学第6周周练(无答案)

江苏省泰兴市黄桥初中教育集团2019-2020年第一学期初二数学第6周周练(无答案)

泰兴市黄桥初中教育集团2019年秋学期初二数学第六周周练 2019-10-11( 时间60分钟 总分:100分) 姓名___________ 得分_____一、选择题 (每题2分,共12分)1.一个等腰三角形的两边长分别为4,8,则它的周长为( )A .12B .16C .20D .16或202.到△ABC 三个顶点距离相等的点是△ABC 的( )A .三条角平分线的交点B .三条中线的交点C .三条高的交点D .三条垂直平分线的交点3.如图,图中的三角形是直角三角形,两个较大正方形的面积 分别为225,289, 则字母A 所代表的正方形的面积为( )A .4B .8C .16D .644.x 是16的算术平方根,那么x 的算术平方根是( )A .4B .2 CD .±45.下列轴对称图形中,可以用没有刻度的直尺画出对称轴的有( )A .1个B .2个C .3个D .4个6. 如图,一架云梯25m ,斜靠在一面墙上,梯子的低端离墙7m ,如果梯子的顶端下滑4m ,那么梯子的底部在水平方向滑动了 ( )A .4m B.6m C.8m D.10m二、填空题(每题3分,共24分) 7. 259的平方根是 ___________ . 8. 36 =________9. 一个直角三角形的两直角边长为3和5,第三边长为__________.10.如图,在Rt △ABC 中,∠C=90°,BC=8,∠ABC 的平分线BD 交AC 于D ,且BD=10,点E 是AB 边上的一动点,则DE 的最小值为______.11.如图,在Rt △ABC 中,∠C=90°,AC=4, BC=8,AB 的垂直平分线交BC 于点D,第3题图第6题图第10题图第11题图BA C第12题图12.如图,AD 是△ABC 的中线,且∠ADC=60°,BC=4,把△ADC 沿直线AD 折叠后,点C 落在点C'的位置上.则B C'= _________.13.所谓的勾股数就是使等式a 2+b 2=c 2成立的任何三个正整数.我国清代数学家罗士林钻研出一种求勾股数的方法,对于任意正整数m ,n (m>n),取a=m 2-n 2,b=2mn ,c=m 2+n 2,则a ,b , c 就是一组勾股数.请你结合这种方法, 写出61 (三个数中最大),60和_________ 组成的一组勾股数.14.如图,△ABC 中,AB=AC=17,BC=30, 点D 在BC 边上且AD=10, 则BD=_____________.三、解答题(共64分)15.(6分) (1)请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:如图,∠ABC ,射线BC 上一点D .求作:等腰△PBD ,使线段BD 为等腰△PBD 的底边,点P 在∠ABC 内部,且点P 到∠ABC 两边的距离相等;(2)在(1)的条件下,若∠ABC=60°,求等腰三角形△PBD 顶角的度数.16.(6分) 如图∠A=90°,计算图中四边形ABCD 的面积.17.(6分))如图,在△ABC 中,CD 与CF 分别是△ABC 中∠ACB 、∠ACG 的角平分线,DF//BC 交AC 于点E .求证:DE=EFB 第14题图18.(6分)如图,一根木杆原来垂直于地面,台风“山竹”刮过之后,在离地某处断裂,木杆顶部落在离木杆底部5米处,已知木杆原长25米,求木杆断裂处离地面多少米?19. (8分) 如图,在△ABC中,AB的垂直平分线EF交BC于点E,交AB于点F,D为线段CE的中点,BE=AC.(1)求证:AD⊥BC.(2)若∠B AC=75°,求∠B的度数.20.(8分)已知:如图,∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB, DF⊥AC,垂足分别为E、F.求证:BE=CF.21.(6分)葛藤是一种多年生草本植物,为获得更多的雨露和阳光,其茎蔓常绕着附近的树干沿最短路线盘旋而上,如果把树干看成圆柱体,它的底面周长是15cm,(1)当一段葛藤绕树干盘旋1圈升高8cm时,这段葛藤的长是多少?(2)当一段葛藤绕树干盘旋2圈升高40cm时,这段葛藤的长是_____cm.22.(8分)现用4个全等的直角三角形拼成如图所示“弦图”.Rt△ABC中,∠ACB=90°,若AC=b,BC=a,请你利用这个图形解决下列问题:(1)试说明a2+b2=c2;(2)如果大正方形的面积是6,小正方形的面积是2, 求(a+b)2的值.23.(10分)如图,在△ABC中,∠ACB=90º,BC=6cm,AC=8cm,点O为AB的中点,连接CO,点M在CA边上,从点C以2cm/s的速度沿CA向点A运动,设运动时间为t秒。

泰兴市黄桥初中教育集团初二数学第18周周练

泰兴市黄桥初中教育集团初二数学第18周周练

泰兴市黄桥初中教育集团2019年秋学期初二数学第18周周练 2019-12-31( 时间:80分钟 总分:100分) 姓名___________ 得分_____一. 选择题(每小题2分,共16分)1.下列四个图案中,不是轴对称图案的是( )2.下列实数中,是无理数的为( )A .0B . 2C .-13D .3.143.下列说法正确的是( )A .81的立方根是21±B .-49的平方根是±7C .11的算术平方根是11D .(-1)2的立方根是-14.在平面直角坐标系中,若点(2,1)P m m -+在第二象限,则m 的取值范围是( )A. 1m <-B. 2m >C. 12m -<<D. 1m >-5.如图,∠1=∠2,那么添加一个条件后,仍无法判定ABD ACD ∆≅∆的是( )A. AB AC =B. B C ∠=∠C. AD 平分CAB ∠D. CD BD =OE C A第5题 第6题 第8题6.已知一次函数2y mx n =-+-的图像如图所示,则,m n 的取值范围是( )A. 0,2m n ><B. 0,2m n <<C. 0,2m n <>D. 0,2m n >>7.若点M (m ,n )在一次函数y=﹣5x+b 的图象上,且5m+n <3,则b 的取值范围为( )A .b >3B .b >﹣3C .b <3D .b <﹣38.如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=2,O 为AC 中点,若点D 在直线BC 上运动,连接OE ,则在点D 运动过程中,线段OE 的最小值是为( )A .-13B .22 C .1 D .2二、填空题(每小题2分,共20分) 9.若a>b ,则 化简2)(a b - = 10. 近似数3.20×105精确到 位.11. 等腰三角形一角度数为30°,则这个等腰三角形的顶角度数为 .12.已知函数y =x+m -2020(m 常数)是正比例函数,则m = .13. 已知一次函数b ax y +=(a 、b 是常数),x 与y 的部分对应值如下表: x -2 -1 0 1 2 3y 6 4 2 0-2 -4 若点(2019,y 1)、(2020,y 2)在这个函数图象上,那么y 1 y 2. (填<、>、=号).14.如图,在△ABC 中,AB=AC ,AB 的垂直平分线DE 交AC 于E 点.若BE 平分∠ABC , 则∠A= ︒.第14题 第15题 第16题15.如图,有一张直角三角形纸片,两直角边AC=5cm ,BC=7cm ,将△ABC 折叠,点B 与点A重合,折痕为DE ,则CD 的长为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

泰兴市黄桥初中教育集团2020年春学期
初二数学周末检测练习 2020-04-25
(满分:100分 时间:90分钟)
主要内容:苏科版八下第7、8、10、11章
一、选择题 (每小题2分,共12分,每题只有一个选项是正确的,请把答案直接填写在答题纸相应位置上.)
1.下列调查适合做普查的是( )
A .了解全球人类男女比例情况
B .了解一批灯泡的平均使用寿命
C .调查20~25岁年轻人最崇拜的偶像
D .对确诊新冠肺炎患者同一车厢的乘客进行检查
2.下列约分中,正确的是( ) A.214222=y x xy B.0=-+y x y x C.326x x
x = D.x xy x y x 12=++ 3.为了了解2019年秋学期泰兴市八年级学生学业水平考试的数学成绩,从中随机抽取了700名学生的数学成绩.下列说法正确的是( )
A .2019年秋学期泰兴市八年级学生的全体是总体
B .每一名八年级学生是个体
C .样本容量是700名
D .从中抽取的700名八年级学生的数学成绩是总体的一个样本
4.对于反比例函数x
4y =的图像,下列说法不正确的是( ) A. 经过点(1,4) B. 图像的两个分支在第一、三象限 C. 若x <-1, 则-4<y <0 D. y 随x 的增大而减小
5.小丽无风时从家骑自行车到学校需要时间t 分钟,若她逆风骑车
则需要提前a 分钟出发,才能按时到达学校,则风速为( )
A. 1()t t a -
B. ()a t t a -
C. ()a t t a +
D. 1()
t t a + 6.如图,平面直角坐标系中,Rt △ABC 的顶点B 、C 的坐标分别为(3,4)、(4,2),且AB ∥x 轴,将Rt △ABC 向左平移,得到Rt △'''C B A ,若点''C B 、同时落在反比例函数x
k =y (x>0)的图像上,则k 的值为( ) A.2 B.4 C.6 D.8 二、填空题(每题3分,共30分,请把答案直接填写在答题纸相应位置上.) 7. 当x 时,分式
621-+x x 有意义. 8.函数y =x
3-的图像在第 象限. 9. 若分式211
x x -+的值为0,则x 的取值为__________. 10.有40个数据,共分成6组,第1~4组的频数分别为10,5,7,6,第5组的频率是0.1,则第6组的频数是________.
11.已知点A (a,b )是一次函数3+-=x y 的图像与反比例函数x
y 1=的图像的一个 第6题图
交点,则b a 11+= . 12.已知反比例函数x y 3=的图像过点A(m ,y 1 )、B(m-2,y 2
),若m >3,则y 1 y 2. 13.反比例函数x y 2-=,当y <-2时,x 的取值范围是 . 14. 如图,矩形ABCD 的边AB 与y 轴平行,顶点A 的坐标为(1,2),点B 和点D 在反比例函数x
y 8=(x >0)的图像上,则矩形ABCD 的面积为 .
第14题图 第15题图 15.如图,一次函数b kx y +=(k 、b 为常数,且)0≠k 和反比例函数)0(4>=
x x y 的图像交于A (1,m )、B(n,1)两点,利用函数图像写出不等式b kx x
+<4的解集是 .
16.如图,过点C (3,4)的直线y =2x+b 交x 轴于点A ,∠ABC =90°,AB =CB ,曲线
y =
x
k (x >0)过点B ,则k 的值为 . 三、解答题 (共58分,请在答题纸指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 17. 计算 (每小题4分,共8分)
(1)33
423ab b a •- (2)m n m n m n m -+-+2 18.(6分)先化简再求值:
⎪⎭⎫ ⎝⎛-++223a a ÷a
a a 212+-, 其中a 是方程020202=-+x x 的根. 19. (6分)已知2x -+=
b a ,2
22b a ab y +=-.
(1)用x 表示y ; (2)求代数式44()2
x x x y x -⋅++的值.
20.(6分)现在“校园手机”越来越受到社会的关注,为此某校七(1)班随机调查了本校若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下统计图.
第16题图
(1)求这次调查的家长人数,并补全图①;
(2)求图②中表示家长“赞成”的圆心角的度数;
(3)从这次接受调查的家长来看,若该校的家长为5000名,则估计有多少名家长持反对态度?
21.(6分)某中学组织学生到商场参加社会实践活动,他们参与了某种品牌运动鞋的销
售工作,已知该运动鞋每双的进价为100元,为寻求合适的销售价格进行了4天的试销,试销情况如表所示:
第1天第2天第3天第4天
售价x(元/双)150 200 250 300
销售量y(双)40 30 24 20
(1)观察表中数据,x、y满足什么函数关系?请求出这个函数关系式;
(2)若商场计划每天的销售利润为2000元,则其单价应定为多少元?
22.(8分)某学校为每个班级配备了一种可以加热的饮水机,该饮水机的工作程序是:
放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y(℃)和通电时间x(min)成反比例关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温为20℃,接通电源后,水温和时间的关系如图所示,回答下列问题:
(1)分别求出当0≤x≤8和8<x≤a时,y和x之间的函数关系式.
(2)求出图中a的值.
(3)下表是该小学的作息时间,同学们希望在上午第一节课结束时(8:20)能喝到不超过40℃的开水,已知第一节课结束前无人接水,请直接写出生活委员应该在什么时间或时间段接通饮水机电源.(不可以用上课时间接通饮水机电源)
23. (8分)如图,在平面直角坐标系中,点A 在函数)0(2>=
x x y 图像上,AB ∥x 轴, 交函数)0(<=x x
k y 的图像于点B, BC ∥y 轴交AO 的延长线于点C. AB 交y 轴于点E. (1)若△OBE 的面积为2,求k 的值; (2)若A 点在函数)0(2>=
x x y 图像上从左向右运动,则△ABC 的面积是否变化?若变化,请说出是逐渐变大还是逐渐变小;若不变,请求出这个定值。

24. (10分)已知代数式mn+2m -4=0,(n ≠-2)
(1) 用含n 的代数式表示m;
(2)若点(m,n)在反比例函数x
2y =
的图像上,求m 、n 的值; (3)若m,n 都是负整数,且点(m,n)在反比例函数x k y =(k ≠0)的图像上, 则k 的值为_____________.
(4) 当n 分别取a 、b 时,m 对应的值分别为c 、d,当-2<b<a 时,试比较c 、d 的大小.。

相关文档
最新文档