数据中心(IDC机房)冷源设备之高温冷机
数据中心常见的制冷方式__概述及解释说明

数据中心常见的制冷方式概述及解释说明1. 引言1.1 概述数据中心是现代社会不可或缺的基础设施,用于存储、处理和传输大量的数据。
然而,随着计算机和服务器的不断发展,它们所产生的热量也越来越多,对数据中心进行有效的制冷成为了一项迫切需要解决的问题。
各种制冷方式因此应运而生,以确保数据中心能够正常运行并保持理想的工作温度。
1.2 文章结构本文将首先对常见的数据中心制冷方式进行概述及解释说明。
然后在接下来的章节中详细介绍每种制冷方式的原理、应用以及优缺点,并进行比较与分析。
最后,文章将展望未来发展趋势并给出结论。
1.3 目的本文旨在提供关于数据中心常见制冷方式的全面介绍,并对每种方式进行详细解释说明。
读者可以通过本文了解到不同制冷方式之间的差异和适用场景,帮助其选择合适的方案来满足自己数据中心制冷需求。
同时,本文也为进一步研究和改进数据中心制冷技术提供了一定程度的参考。
2. 常见的制冷方式2.1 空调制冷方法空调制冷是目前使用最广泛的一种数据中心制冷方式。
它采用了压缩循环制冷系统,利用制冷剂进行热量的吸收和释放。
该方法通过将新鲜空气进入数据中心并经过过滤、降温后供应给设备以保持其正常工作温度。
在此过程中,空调系统将热量排出建筑物外部或转移到其他区域。
2.2 液冷制冷方法液冷制冷方法是另一种常见的数据中心制冷技术。
与空调制冷不同,液冷系统通过将液体直接引入数据中心设备或机架内部来实现散热。
这些液体可以是水或者具有良好热传导性能的液态金属(如液态铜)等。
利用此方法,数据中心可以更高效地移除设备产生的热量。
相较于空调制冷方式,液态散热具有更高的换热效率和更少的能量消耗。
2.3 相变材料制冷方法相变材料制冷是一种新兴而有潜力的数据中心制冷技术。
相变材料是一种可以在特定温度范围内完成相变(如固态到液态)的物质。
当相变材料吸收热量时,它会发生相变并储存大量的热能。
而当环境温度下降时,相变材料会释放储存的热量从而保持设备的正常工作温度。
数据中心(IDC机房)大型冷冻水制冷系统介绍

数据中心大型冷冻水系统介绍随着互联网行业高速发展,数据业务需求猛增,数据中心单机柜功率密度增加至6~15kw,数据中心的规模也逐渐变大,开始出现几百到上千个机柜的中型数据中心。
随着规模越来越大,数据中心能耗急剧增加,节能问题开始受到重视。
在办公建筑中大量采用的冷冻水系统开始逐渐应用到数据中心制冷系统中,由于冷水机组的COP 可以达到6以上,大型离心冷水机组甚至更高,采用冷冻水系统可以大幅降低数据中心运行能耗。
冷冻水系统主要由冷水机组、板式换热器、冷却塔、冷冻水泵、冷却水泵以及通冷冻水型专用空调末端组成。
系统采用集中式冷源,冷水机组制冷效率高,冷却塔放置位置灵活,可有效控制噪音并利于建筑立面美观,达到一定规模后,相对于直接蒸发式系统更有建造成本和维护成本方面的经济优势。
1、冷水机组冷水机组包括四个主要组成部分:压缩机,蒸发器,冷凝器,膨胀阀,从而实现了机组制冷制热效果。
中大型数据中心多采用离心式水冷冷凝器冷水机组。
冷水机组的作用:为数据中心提供低温冷冻水。
原理:冷水机组是利用壳管蒸发器使水与冷媒进行热交换,冷媒系统在蒸发器内吸收高温冷冻水(21℃)水中的热量,使水降温产生低温冷冻水(15℃)后,通过压缩机的作用将热量带至壳管式冷凝器,由冷媒与低温冷却水水进行热交换,使冷却水吸收热量后通过水管将热量带出到外部的冷却塔散热。
如图,开始时由压缩机吸入蒸发制冷后的低温低压制冷剂气体,然后压缩成高温高压气体送冷凝器;高压高温气体经冷凝器冷却后使气体冷凝变为常温高压液体;当常温高压液体流入热力膨胀阀,经节流成低温低压的湿蒸气,流入壳管蒸发器,吸收蒸发器内的冷冻水的热量使水温度下降;蒸发后的制冷剂再吸回到压缩机中,又重复下一个制冷循环。
2、板式换热器当过渡季节及冬季室外湿球温度较低时,可以使用板式换热器利用间接水侧自然冷却技术为数据中心制冷。
间接水侧自然冷却技术指利用室外较低的湿球温度通过冷却塔来制备冷水,部分或全部替代机械制冷的一项技术,冷却塔自然冷却属于水侧自然冷却,冷却塔自然冷却是目前数据中心采用最多的自然冷却技术之一。
数据中心间接蒸发冷却技术及大温差高温冷水技术

心位于南 山 区 百 旺 信 高 科 技 工 业 园,整 栋 楼 建 筑
面积 11000 m ,一 至 四 层 为 数 据 中 心,每 层 设 计
2
水机组制冷系数 COP 达到 7.
6,对比 GB19577«冷
量大于1163kW 的1 级能效冷水机组能效等级限
定值为 6.
3,冷水机组节 能 评 价 值 5.
2
2
第 21 卷
了 25% 以 上 ,如 图 2 所 示 . 同 时 ,随 着 供 、回 水
冷却的空调方案是 提 高 数 据 中 心 能 源 利 用 效 率 的
重要途径
.蒸发冷却 是 一 种 利 用 自 然 环 境 中 湿
温 度 的 提 高 ,利 用 自 然 冷 却 的 时 间 也 将 进 一 步
[
3]
空气的干 湿 球 温 度 差 (干 空 气 能),依 靠 水 蒸 发 而
延长.
从周围湿 空 气 中 吸 收 汽 化 潜 热 的 原 理,达 到 使 水
和空气温 度 降 低 目 的 的 绿 色 可 再 生 能 源 新 技 术.
蒸发冷却过程受自 然 界 大 气 湿 球 温 度 和 水 温 影 响
COP
e
rt
e
chno
l
ogyo
fl
a
rget
empe
r
a
t
u
r
ed
i
f
f
e
r
enc
et
op
r
o
e
c
t
st
hr
oughr
e
a
lc
a
G
pe
j
s
e
数据中心(IDC机房)暖通设备-冷水机组介绍

数据中心(IDC机房)暖通设备-冷水机组介绍随着互联网行业的高速发展,数据中心的规模和能耗也在迅速增加。
为了解决这一问题,越来越多的数据中心开始采用冷冻水系统作为制冷系统,其中核心设备之一就是冷水机组。
冷水机组的主要作用是为数据中心提供低温冷冻水。
根据结构和工作原理的不同,冷水机组可以分为活塞式、螺杆式和离心式等几种形式。
其中,离心式冷水机组是中大型数据中心中常用的一种,由冷凝器、蒸发器、电动机、膨胀阀、齿轮、叶轮和预旋转导叶等组成。
冷水机组的制冷原理是利用壳管蒸发器使水与冷媒进行热交换,冷媒系统在蒸发器内吸收高温冷冻水中的热量,使水降温产生低温冷冻水后,通过压缩机的作用将热量带至壳管式冷凝器,由冷媒与低温冷却水进行热交换,使冷却水吸收热量后通过水管将热量带出到外部的冷却塔散热。
离心式压缩的原理是电动机带动压缩机主轴叶轮转动,在离心力作用下,气体被甩到工作轮后面的扩压器中去。
气体因离心作用增加了压力,还可以很大的速度离开工作轮,气体经扩压器逐渐降低了速度,动能转变为静压能,进一步增加了压力。
最后,需要注意的是冷水机组的油路冷却循环,其中开式电机和闭式电机的油路冷却方式也有所不同。
闭式电机采用低温制冷剂进行分流至电机冷却和油冷却系统。
制冷剂通过限流孔流进电机,电机冷却管路的支路上还设有一只限流孔和一只电磁阀。
当电机需要冷却时,电磁阀会开启,制冷剂流经限流孔,喷淋整个电机,并集中到电机室的底部排放回到蒸发器。
另一路制冷剂则流经油冷却系统,量由热力膨胀阀调节,通过限流孔始终保持一个最小流量。
膨胀阀上的温包感应冷却后流进压缩机到轴承的油温,由膨胀阀调节进油/制冷剂板式油冷却器的制冷量,制冷剂气化离开油冷却器后返回到蒸发器。
开式电机只存在油冷却系统的循环。
备用油槽在主机启动之前、运行期间和逐渐停转阶段,由变频驱动式油泵压入各轴承、齿轮和旋转面。
在压缩机顶部有一个重力供油式贮油槽,当电源发生故障机器逐渐停转时,由它提供润滑。
IDC数据中心空调制冷

通电前检查
确认电源线路连接正确,无短 路或断路现象。
功能测试
分别测试空调的制冷、制热、 送风等功能,确保各项功能正 常运行。
验收记录
详细记录调试过程中的各项数 据和结果,作为验收依据。
04
空调系统运行维护与保养
定期检查项目清单
检查冷却水系统压 力、温度、流量等 参数
检查空气处理机组 过滤器清洁度,及 时更换
冷却塔/冷却水系统
用于冷却制冷主机产生的热量,通过水循环 将热量带走。
控制系统
监测室内环境参数和制冷系统运行状态,实 现自动调节和远程控制。
制冷方式分类与特点
风冷式制冷
通过空气冷却制冷主机,适用于小型数据中心或室外环境。 具有结构简单、维护方便等优点,但制冷效率相对较低。
水冷式制冷
通过水冷却制冷主机,适用于中大型数据中心。具有制冷效 率高、噪音低等优点,但需要配备冷却塔或冷却水系统。
将数据中心产生的余热回收利用, 用于供暖、热水等,提高能源利用 效率。
未来发展趋势预测
智能化发展
模块化设计
结合人工智能、大数据等技术,实现制冷系 统的自适应调节和智能运维。
制冷设备将趋向模块化设计,方便快速部署 和扩展。
高效能、低能耗
多元化能源利用
随着技术进步和环保要求提高,未来制冷系 统将更加高效、节能。
探讨智能化监控技术在提高空调系统性能、降低能耗等方面的应用前景和挑战。
06
空调制冷新技术发展趋势
新型制冷技术介绍及优缺点分析
自然冷却技术
利用自然环境条件(如低温空气 或水)进行数据中心的冷却。优 点是能效高、环保,缺点是受地
理位置和气候条件限制。
液冷技术
使用液体(如矿物油、氟化液等) 作为冷却介质,直接或间接与IT 设备接触,带走热量。优点是散 热效率高、噪音低,缺点是系统
数据中心典型水冷制冷系统介绍

冷水机组 冷却塔
EVAP COND
冷冻水泵 18℃冷冻水
….
12℃冷冻水
蓄冷罐 板式换热器
精密空调 4
⑤
④
③
②
①ቤተ መጻሕፍቲ ባይዱ
冷 却 塔
冷水 机组 冷凝 器
冷水 机组 蒸发 器
精 密 空 调
IT 设 备
冷水机组
①机房模块间的空气循环:机房模块间IT设备散热后的热空气(约30℃)经过与精密空调低温的冷冻水进行热量交换,变成冷 空气(约22-24℃),再经过精密空调的风机输送至机房模块间冷通道的机柜正面。
8
制冷设备故障 冷冻水泄漏故障
9
机房制冷设备部署形式
1. 机房级
3. 机柜排级
2. 机柜冷池级
4. 机柜级
1010
不同制冷形式对应的PUE范围 1111
数据中心典型水冷制冷系统介绍
2
风冷
水冷
制冷系 统的形
式
液冷制冷
间接蒸发 制冷
3
冷却水 循环
CLT
自来水补水 32℃冷却水
A路
38℃冷却水
冷却水泵
EVAP COND
冷冻水 循环
冷冻水泵
12℃冷冻水
18℃冷冻水
….
上半部分为冷却水循环 下半部分为冷冻水循环
B路
38℃冷却水
冷却水泵
CLT
自来水补水 32℃冷却水
55
水冷变频离心式冷水机组 在制冷系统中发挥着核心作用
冷 水 机 组
精
压缩机
控
密
制
空 调
面 板
冷 却
冷凝器
蒸发器
塔
6
冷冻水型精密空调 直接为IT设备提供恒温恒湿环境的空调设备
数据中心常见冷却方式介绍(4):双冷源精密空调机组

数据中心常见冷却方式介绍(4):双冷源型精密空调系统数据中心机房内部温湿度环境的控制要依靠室内空调末端得以实现,机房空调具有高效率、高显热比、高可靠性和灵活性的特点,能满足数据中心机房日益增加的服务器散热、湿度恒定控制、空气过滤及其他方面的要求。
随着不同地域PUE的严苛要求以及高密度服务器的广泛应用,数据中心新型的冷却方式被越来越开发及使用。
下面分别介绍几种数据中心传统与新型的冷却方式。
1. 双冷源精密空调系统组成
双冷源精密空调配置两套不同/独立的制冷盘管组成,本文主要介绍风冷直接蒸发式/冷冻水型双冷源精密空调机组,机组组成如下图所示。
机组主要由框架、室内EC风机、控制系统、进出风温湿度传感器、冷冻水盘管、电磁两通调节阀(电动球阀)、冷冻水管路;氟利昂蒸发器盘管、冷凝器盘管、压缩机、节流阀、干燥过滤器、氟利昂管路等组成。
图1 双冷源精密空调机组结构图
2.系统运行控制原理图
该机组由风冷直接蒸发制冷系统和冷冻水盘管组成。
机组正常运行时优先使用冷冻水系统,当冷冻水系统无法满足制冷需求(回风温度、出风温度持续偏高)或冷冻水系统故障(冷冻水中断、冷冻水供水温度持续偏高)时,机组控制器自动启动风冷直接蒸发制冷系统。
水冷双冷源系统与风冷双冷源系统结构类似,只是冷凝器的冷却方式不同,具体差异可查看前几篇文章。
3.产品特点及应用
(1)一般核心IT设备机房会配置双冷源精密空调,提高制冷的连续性。
(2)设备投资成本较高,提高了制冷安全系数。
(3)由于在同一框架内安装两套盘管,体积较大,设备重量较大,对空间及荷载有较高要求。
大型数据中心10kV冷水机组配电整体方案

大型数据中心10kV冷水机组配电整体方案随着信息技术的不断发展,大型数据中心的需求也不断增加。
为了满足数据中心的需求,冷水机组成为数据中心中必不可少的设备。
而对于冷水机组的集中配电整体方案,也成为数据中心设计和运营中的重要问题。
本文将针对大型数据中心10kV冷水机组配电整体方案进行讨论,分析其特点和应用。
首先,本文将介绍10kV冷水机组的概念和特点。
其次,本文将探讨10kV冷水机组配电整体方案的设计原则。
最后,本文将分析10kV冷水机组配电整体方案的应用并对其进行展望。
一、10kV冷水机组的概念和特点10kV冷水机组是一种用于大型数据中心的冷却设备,其主要功能是提供冷水给数据中心的IT设备进行降温,确保数据中心的正常运行。
10kV冷水机组具有以下特点:1. 大功率输出:10kV冷水机组的功率一般在数百千瓦至数兆瓦之间,适用于大型数据中心的需求。
2. 高效节能:10kV冷水机组采用高效的压缩式或吸收式制冷技术,能够在低功耗的情况下提供足够的冷却能力。
3. 抗干扰能力强:10kV冷水机组采用数字化控制技术,对电力质量的要求较高,具有较强的抗干扰能力。
4. 配备多重保护:10kV冷水机组在运行中具有多重保护,包括过载、超温、电压不足等保护措施。
二、10kV冷水机组配电整体方案的设计原则10kV冷水机组配电整体方案的设计原则是保证其稳定可靠、安全高效。
具体设计原则如下:1. 基础设施满足要求:10kV冷水机组配电整体方案需要基于数据中心的实际情况,满足配电变电所、电缆线路、开关设备等基础设施的要求。
2. 充分考虑安全因素:10kV冷水机组的电气配电系统需要满足相关的安全标准要求,保证人员和设备的安全。
3. 设计合理的备份方案:10kV冷水机组的配电整体方案需要有备份方案,以保证数据中心在意外情况下的正常运行。
4. 满足效能要求:10kV冷水机组配电整体方案需要满足数据中心的效能要求,保证其高效能的运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据中心(IDC机房)冷源设备之高温冷水机组
合理、有效、最大化利用室外天然自然冷源,降低空调系统的能耗、提高空调系统全年运行效率是空调系统设计建设的基本原则。
在满足服务器设备正常安全运行需要的空气温度、湿度、洁净度的条件下,空调系统的冷却热交换环节少、各环节换热效率高、换热距离短,快速地把服务器散热带出机房,是数据中心选择空调冷却系统形式、提高冷却效率的关键,也是今后数据中心冷却系统发展的方向。
1、冷源设备的性能评价方法
当前数据中心用冷源设备(主要冷水机组)的性能评价方法,主要采用传统民用建筑负荷需求和分布规律的额定工况性能(COP )或部分负荷性能系数IPLV) , 计算方法如下式。
IPLV = 2.3% X A +41.5% X B+46.1% X C+10. 1% X D
其中,A、B、C、D分别为冷水机组在100%、75%、50%和25%负荷率下的COP。
对于风冷型冷水机组,上述四个负荷率对应的室外干球温度分别为30℃、26℃、23℃和19℃;各工况下,冷水出水温度均为7℃。
各负荷率的权重系数是通过调查我国4个典型气候区域(严寒地区、寒冷地区、夏热冬冷地区和夏热冬暖地区)19个城市典型建筑空调运行情况,通过温频法综合分析得出的。
对于数据中心而言,其负荷特征与传统民用建筑有肴明显的区别,主要体现在:
(1)数据中心冷负荷大、湿负荷小。
传统民用建筑为了保证冷冻除湿的
效果,一般需要冷源设备提供7℃左右的冷水。
而数据中心的冷源设备不需要考虑除湿,可以采用更高温度的冷水(如16°C) 处理冷负荷,以提高冷源设备的能效,降低整个制冷系统的能耗。
(2)数据中心内部设备负荷大且比较稳定,而通过围护结构引起的冷负荷占数据中心总负荷的比重很小,即数据中的冷负荷并不随外界温度变化产生较大的波动。
因此,数据中心用冷源设备的全年性能评价也应以恒定制冷量为主,采用基于100% 、75 %、50% 、25% 等负荷率下的IPLV,不能充分反映数据中心用冷源设备的性能以促进冷源设备的技术和能效提升。
(3)数据中心需全年制冷运行,冷源设备的室外工作环境温度跨度大。
IPLV评价体系中,采用室外干球温度分别为35°C 、31.5 ℃、28°C 和24.5℃,或冷却水进水温度分别为30°C 、26°C、23℃和19℃的温度区间远小于数据中心用冷源设备的实际工作温度区间。
2、离心式高温冷水机组
常规舒适性空调冷冻水出水温度一般在7℃左右,此时既可以提供冷量,也可以对室内空气进行除湿,而数据中心机房空调负荷几乎全部为显热负荷,可以提高冷冻水出水温度,减少不必要的除湿,冷水机组冷冻水出水温度越高,机组性能越高,越节能。
虽然直接采用常规离心式冷水机组提升出水温度设置也可满足要求,但对离心机来说,冷水出水温度为7℃时,压比为2.6左右,冷水出水温度提高至16℃时,压比减小到2.0左右,如下表所示。
常规离心机一般按照7℃出水,压比为2.6设计;当压缩机运行在高冷水出水温况时,压缩机工作点偏离设计点,导致常规压缩机绝热效率下降。
在冷水16℃出水、冷却水23℃进水工况下,压缩机绝热效率由0.6降为0.8,实际COP 可达到8.67。
为了实现较高的IPLV值,传统的冷水机组的压缩机最高效率点一般设计在50%负荷和75%负荷之间,而额定工作点(100%负荷)压缩机效率偏低。
因此,针对以上问题,以压比2.0为设计工况,对压缩机气动部件进行优化设计,专门为小压比的高温工况设计独特叶轮,串联叶片回流器,改善制冷剂的流道,减少衰减,保证效率,更适用于数据中心空调系统的高温工况。