电流互感器变比说明
电流互感器检查变比方法

电流互感器变比检查电流法电压法文摘根据电流互感器的等值电路图,讨论了2种电流互感器变比检查试验方法(电流法和电压法)的原理和特点,推荐一种简便可靠的电流互感器变比检查现场试验方法——电压法。
不管是老标准还是新规程,都把电流互感器交接时和更换绕组后的现场变比检查试验列为重要试验项目。
虽然电流互感器变比的准确度应由制造部门保证,但由于种种原因,现场试验时偶而也能检查出错误(大多是抽头引错)。
因此现场变比检查试验成为多年不变的项目。
电流互感器工作原理大致与变压器相同,不同的是变压器铁心内的交变主磁通是由一次线圈两端交流电压所产生,而电流互感器铁心内的交变主磁通是由一次线圈内电流所产生,一次主磁通在二次线圈中感应出二次电势而产生二次电流。
从电流互感器工作原理可知:决定电流互感器变比的是一次线圈匝数与二次线圈匝数之比,影响电流互感器变比误差的主要原因有:(1)电流的大小,比差和角差随二次电流减小而增大;(2) 二次负荷的大小,比差和角差随二次负荷减小而减小;(3)二次负荷功率因数,随着二次负荷功率因数的增大,比差减小而角差增大;(4) 电源频率的影响;(5)其它因素。
电流互感器内部参数也可能引起变比误差,如二次线圈内阻抗、铁心截面、铁心材料、二次线圈匝数等,但这是由设计和制造决定的。
电流互感器变化的误差试验应由制造厂在出厂试验时完成或在试验室进行。
而电流互感器变比现场试验属于检查性质,即不考虑上述影响电流互感器变比误差的原因而重点检查匝数比。
根据电工原理,匝数比等于电压比或电流比之倒数。
因此测量电压比和测量电流比都可以计算出匝数比。
1试验方法分析现根据试验接线图和等值电路图分别讨论电压法和电流法检查电流互感器变化试验的原理和特点。
1.1电流法1.1.1 试验原理电流法检查电流互感器变比试验接线图如图1所示。
图1电流法的试验接线电流源包括1 台调压器、1 台升流器;L 1 、L 2 电流互感器一次线圈2 个端子;K 1 、K 2 电流互感器二次线圈2个端子;A 1 电流表(测量电流互感器一次电流);A 2 电流表(测量电流互感器二次电流)电流法检查电流互感器变比等值电路图如图2所示。
互感器变比的选择

互感器变比5A一般用在表计或计量,1A一般用在信号或取样。
二次额定电流5A和1A都是国家标准,但5A比较常见。
电流互感器的额定容量I*I*R,二次电流由5A改作1A允许的R就大多了.指针表不能配1A的电流互感器数字表能配1A的电流互感器,还有数字继电器能配1A 的电流互感器变比可以理解成“倍率”即一次二次之间的倍数关系,就拿你说的50/5的电流互感器来说吧,该互感器的一次额定电流是50安,而二次额定电流是5安,就说明一次二次之间的电流传变倍数是50除以5等于10,简单说这个互感器能够将一次的电流按照缩小十倍的倍数传遍到二次的表计或保护装置中。
即一次是10安时,二次回路中实际上只对应的流过1安的电流,一次流过20安时则二次回路中就会有2安的电流流过,以此类推,如你所说额定电流30安的电机,选用50/5的互感器,当电机绕组中有25安的电流时,则在该电机电流表内的电流线圈中实际上只有25除以倍率10等于2.5安的电流流过。
而电流表表盘上的刻度是按照二次对应的一次电流位置画的,也就是说当二次线圈中有1安电流流过时,在电流表表盘上指示的位置上就要标出10安,以此类推。
也就是说有互感器的电流表在读数时直接按照表盘上的数直读就可以了,无需乘倍率,但是要是在二次电路检测出的电流换算到一次电流时就要乘以倍率了。
30A电流表配30/5A的电流互感器,60A电流表配60/5A的电流互感器,100A电流表配100/5A的电流互感器.(如果用30A电流表配60/5A的电流互感器就要在互感器上绕一圈。
因为绕一圈是减半)50/5的电流互感器:当一次电流为50A时,二次电流为5A。
50/5的电流互感器就是10:1的。
400/5A的电流表和400/5A的互感器被测电流为200A 电流表的实际值应为多少啊?(答:2.5A)麻烦讲解!(电流互感器的满量程电流为5A,交流电流表的最大刻度实际上也是5A;所谓400/5的互感器,简单地说就是一次电流为400A的时候它会输出刚好5A的电流;所谓400/5的电流表,就是流过它的二次电流为5A的时候它会正好指示在400A的刻度上)如果铭牌上最大只写150/5,那么表示这个互感器一次侧(穿过互感器的那根线)只能充许不超过150安的电流通过,如果超过可能烧坏互感器。
电流互感器变比和匝数比-概述说明以及解释

电流互感器变比和匝数比-概述说明以及解释1.引言1.1 概述电流互感器是一种重要的电气测量设备,广泛应用于电力系统、工业控制、交通运输等领域。
其作用是将高电流或高压系统的电流通过互感器变压器降低到合适的测量范围内,以便进行监测、控制和保护。
在电流互感器的工作过程中,变比和匝数比是两个至关重要的参数,它们直接影响到互感器的测量准确性、灵敏度和稳定性。
本文将重点介绍电流互感器的变比和匝数比,探讨它们在互感器性能中的关键作用和重要性。
同时,通过对电流互感器的基本原理和应用实例的分析,展示变比和匝数比与互感器性能之间的紧密联系,为读者提供更深入的理解和应用。
1.2 文章结构:本文将围绕电流互感器的变比和匝数比展开详细讨论。
首先,将介绍电流互感器的基本原理,包括其工作机制和应用领域。
接下来,将深入探讨变比的概念和作用,阐明其在电流互感器中的重要性。
然后,将重点讨论匝数比的重要性和影响,以及如何正确选择匝数比以满足实际需求。
最后,在结论部分将总结电流互感器变比和匝数比的关键作用,并探讨其在不同领域的应用和发展趋势。
通过本文的阐述,读者将更加深入地了解电流互感器的关键参数,以及如何在实际应用中进行正确的选择和配置。
1.3 目的:本文旨在探讨电流互感器变比和匝数比这两个重要参数在电能计量和电力系统中的作用和影响。
通过对电流互感器的基本原理、变比概念和作用以及匝数比的重要性和影响进行深入分析和论述,旨在帮助读者更深入地了解电流互感器的运行机理和参数选择的重要性。
在现代电力系统中,电流互感器是不可或缺的关键设备,其变比和匝数比的选择直接影响着电能计量的准确性和系统的稳定性。
本文旨在通过对这两个参数的详细介绍和分析,帮助读者更好地理解和应用电流互感器,为电力系统的安全稳定运行提供理论支持和参考。
2.正文2.1 电流互感器的基本原理电流互感器是一种用于测量电流的电器设备,其基本原理是利用电磁感应的法则。
在电流互感器中,有一个主要的线圈(称为一次线圈),通过这个线圈流过被测量的电流。
常用的电流互感器变比

常用的电流互感器变比
选择合适的变比取决于被测电路中的电流范围以及测量设备的输入范围。
较小的变比适用于较小的电流测量,而较大的变比则适用于较大的电流测量。
在实际应用中,工程师需要根据具体的测量需求和设备规格来选择合适的变比。
另外,一些电流互感器还具有可调变比的功能,用户可以根据需要手动或通过控制信号调整变比,以实现更灵活的电流测量。
这种可调变比的电流互感器在一些特殊的电路测量场合中具有很大的优势。
总的来说,电流互感器的变比选择应该根据具体的电流测量需求和设备规格来进行,以确保测量的准确性和可靠性。
电流变比计算公式

电流变比计算公式电流变比计算公式是电力工程中常见的计算方法之一,用于计算电流互感器和电压互感器的变比。
电流变比表示了电流互感器的二次电流与一次电流之间的比值,而电压变比表示了电压互感器的二次电压与一次电压之间的比值。
通过变比计算公式,可以准确地计算出互感器的变比,从而确定互感器在电力系统中的使用效果。
电流变比计算公式可以表示为:变比 = 二次电流 / 一次电流其中,变比表示互感器的变比,二次电流表示互感器的二次侧电流,一次电流表示互感器的一次侧电流。
在实际应用中,电流变比计算公式可以用于计算互感器的额定变比,从而选取适当的互感器来满足系统的需求。
例如,在电力系统中,需要通过电流互感器来实时监测电流的大小,从而保证系统的稳定运行。
在选择电流互感器时,需要根据系统的额定电流以及互感器的变比来确定合适的型号和规格。
为了更好地理解电流变比计算公式的应用,下面以一个具体的例子来进行说明。
假设有一个电流互感器,其二次电流为5A,一次电流为100A,我们希望计算出该互感器的变比。
根据电流变比计算公式,可以得到:变比 = 5A / 100A = 0.05因此,该互感器的变比为0.05。
通过以上的例子,我们可以看出,电流变比计算公式是一种简单而有效的工具,可以帮助我们快速准确地计算出互感器的变比。
在实际应用中,我们可以根据系统的需求和互感器的参数,灵活运用电流变比计算公式,从而选择合适的互感器来满足系统的要求。
需要注意的是,在使用电流变比计算公式时,要注意保持单位的一致性。
例如,二次电流和一次电流应该采用相同的单位,以避免计算结果出现错误。
电流变比计算公式是一种重要的工具,可以帮助我们准确地计算出互感器的变比。
通过合理应用这一计算公式,我们可以选择合适的互感器来满足电力系统的需求,保证系统的稳定运行。
希望本文对读者理解电流变比计算公式有所帮助,并能在实际应用中起到指导作用。
怎么合理选择电流互感器的变比

怎么合理选择电流互感器的变比
电流互感器的作用就是把大电流转换为小电流方便测量或用于电度计量。
变比对于一个互感器来说是一个固定值比如200/5的互感器就是当一次流过200安培的电流时在其2次侧会感应出5安培电流。
当当一次流过100安培的电流时在其2次侧会感应出2.5安电流。
电流互感器变比选大、配小、准确级次不够,电能表容量偏大、偏小等更是常见。
电流互感器一次侧电流选择:TA如何选择,简单说来就是怎样确定额定一次电流的问题。
它应“保证其在正常运行中的实际负荷电流达到额定值的60%左右,至少应不小于30%”。
如有一台100kV?A配变供制砖机生产用电,负荷率为70%左右,那么在正常生产时的实际负荷电流约100A,按上面所述标准选择,就应该配置150/5A规格的TA.
电流互感器变比选小的危害:这种状况仅发生在电工对实际负荷调查不清,或用电户增加了用电负荷的时候。
曾有书上介绍TA最大工作电流可达其一次额定电流值的180%,这与DL/T448―2000规程规定不符。
TA长时间过负荷运行也会增大误差,并且铁心和二次线圈会过热使绝缘老化。
所以,工作人员应经常测试实际负荷,及时调整TA变比。
电流互感器变比选大的危害:在实际工作中常发生。
当用电处在轻负荷时,实际负荷电流将低于TA的一次额定电流的30%,特别当负载电流低到标定电流值的10%及以下时,比差增加,并且是负误差。
所以,为了避免TA长期运行在低值区间,对于农村负荷或变化较大的负荷,宜选用高于60%额定值,只要最大负荷电流不超过额定值的120%即可。
总而言之,就是合适的就是最好的,选大了,选小了都不合适。
电流互感器参数详解,电流互感器基本参数详细说明

电流互感器参数详解,电流互感器基本参数详细说明10/√3:0.1/√3:0.1/√3:0.1/3 指的是变比一次线压10KV 相压除以√3电压互感器二次第一组线压0.1KV 相压除以√3 第二组线压0.1KV 相压除以√3 第三组三相0.1KV 单相除以30.2/0.5/3P 指的是精度二次一二三绕组一次0.2 0.5 3P60/60/100VA 指的是容量Yn/yn/yn/△指的是接线方式一次星型二次一二三依次是星型星型一般是开口三角6/√3:0.1/√3也就是6000V/√3:100V/√3说明你的互感器是用在6000V 的系统中的线电压二次值是100V的,三个冒号也就是二次圈有三组.6/√3的意思是6000V/√3就是相电压了,0.1/√3也就是100V/√3同理是二次侧的相电压,0.2/0.5/3P 对应的第一组是0.2级的也就是计量用的,第二组是0.5级的也就是测量用的,第三组是3p级的也就是保护用的.20/30/100是这三组圈的容量.分母上是根号3吧。
10/根号3,是原边(即输入端)数据,指线电压为10KV ,相电压为(10/根号3)KV.这个电压互感器有三个副边,线电压均为100V,各自的相电压为(100/根号3)V。
联接组别是指原副边三相线圈的接法,原边和两个副边均为YN接线,即将三个绕组的一端接到一起再接到地,另一端分别接线路或测量表计的三相上。
第三个副边的三个绕组依次串接起来,将最终的两端接到一个电压表(一般),用于测线路的零序电压。
20/30/100VA是三个副边的额定容量(即提供的电压与电流的代数积),准确级是指三个副边测量的精度,误差的大小,这个值越小,说明准确度越高。
这个概念是供电中的。
开口三角形是指中性点不接地系统中电压互感器三相的三个二次绕组的接法,三相二次绕组按三角形接线连接,但最后有一点不连上,即构成开口三角。
此处没法作图,说一下:就是对电压互感器三相的三个二次绕组“a-x”、“b-x”、“c-x”,开口三角就是“a-x”的x与“b-x”的b相连,“b-x”中的x 与“c-x”的c相连,从“a-x”的a与“c-x”x引出电压;这个没有完全闭合的三角形就是开口三角形,从这开口三角形引出的电压Ua-x,就是开口三角电压。
电流互感器变比

电流互感器变比简介电流互感器是一种用于测量电流的传感器。
它通过感应器件对电流进行变换,将大电流变换成小电流,从而方便测量和监测系统中的电流。
电流互感器的一个重要指标是变比,即输入和输出电流之间的比例关系。
本文将介绍电流互感器的变比及其影响因素。
什么是电流互感器的变比?电流互感器的变比是指输入电流和输出电流之间的比例关系。
通常使用变比(Turns Ratio)这个物理量来描述。
变比的计算公式如下:$$ \\text{变比} = \\frac{\\text{输入电流}}{\\text{输出电流}} $$变比可以是整数、小数或者分数形式,取决于具体的应用场景。
影响电流互感器变比的因素1. 互感器的结构和设计电流互感器的结构和设计对其变比有直接影响。
互感器的绕组匝数、匝间距、磁芯材料等都会影响互感器的变比。
一般来说,匝数越多、匝间距越小,变比就越大。
2. 磁性材料的特性磁性材料的特性对电流互感器的变比也有很大的影响。
磁性材料的饱和磁导率、磁滞损耗等都会影响互感器的变比。
选择合适的磁性材料对于保持互感器的准确性是非常重要的。
3. 温度温度是另一个影响电流互感器变比的因素。
温度会影响磁性材料的磁导率、电阻和绝缘性能,从而影响互感器的变比。
因此,在使用电流互感器时,要注意温度的变化对变比的影响。
4. 外部电路和测量设备外部电路和测量设备也会对电流互感器的变比产生影响。
外部电路的电阻、电容等元器件参数会对互感器的变比产生影响,测量设备的精度和灵敏度也会影响对变比的测量准确度。
如何测试电流互感器的变比?一般来说,可以通过以下方法测试电流互感器的变比:1.使用标准电流源产生已知电流,通过电流互感器测量输出电流,然后计算变比;2.利用模拟计算机仿真软件进行模拟计算,计算变比。
注意事项在使用电流互感器时,需要注意以下事项:1.温度的变化会影响电流互感器的变比,因此要选择适用于实际工作温度的互感器;2.在连接电流互感器时,要注意正确接线,以免影响变比的测量结果;3.如果需要更高的变比,可以考虑串联多个电流互感器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电流互感器变比说明
例如电机额定电流30A,用50/5的电流互感器
50/5怎么解释
5A一般用在表计或计量,1A一般用在信号或取样。
二次额定电流5A和1A都是国家标准,但5A比较常见。
电流互感器的额定容量I*I*R,二次电流由5A改作1A允许的R就大多了.指针表不能配1A的电流互感器数字表能配1A的电流互感器,还有数字继电器能配1A 的电流互感器
变比可以理解成“倍率”即一次二次之间的倍数关系,就拿你说的50/5的电流互感器来说吧,该互感器的一次额定电流是50安,而二次额定电流是5安,就说明一次二次之间的电流传变倍数是50除以5等于10,简单说这个互感器能够将一次的电流按照缩小十倍的倍数传遍到二次的表计或保护装置中。
即一次是10安时,二次回路中实际上只对应的流过1安的电流,一次流过20安时则二次回路中就会有2安的电流流过,以此类推,如你所说额定电流30安的电机,选用50/5的互感器,当电机绕组中有25安的电流时,则在该电机电流表内的电流线圈中实际上只有25除以倍率10等于2.5安的电流流过。
而电流表表盘上的刻度是按照二次对应的一次电流位置画的,也就是说当二次线圈中有1安电流流过时,在电流表表盘上指示的位置上就要标出10安,以此类推。
也就是说有互感器的电流表在读数时直接按照表盘上的数直读就可以了,无需乘倍率,但是要是在二次电路检测出的电流换算到一次电流时就要乘以倍率了。
2011年杨育彪下厂电工维修日志
如何使用外部输入触点控制FX PLC运行/停止?
如何选用电流互感器
2011-05-19 22:52:09| 分类:娱乐学习| 标签:电流负荷准确度额定误差|字号大中小订阅
1 前言
近几年来,随着我国电力工业中城网及农网的改造,以及供电系统的自动化程度不断提高,电流互感器作为电力系统的一种重要电气设备,已被广泛地应用于继电保护、系统监测和电力系统分析之中。
电流互感器作为一次系统和二次系统间联络元件,起着将一次系统的大电流变换成二次系统的小电流,用以分别向测量仪表、继电器的电流线圈供电,正确反映电气设备的正常运行参数和故障情况,使测量仪表和继电器等二次侧的设备与一次侧高压设备在电气方面隔离,以保证工作人员的安全。
同时,使二次侧设备实现标准化、小型化,结构轻巧,价格便宜,便于屏内安装,便于采用低压小截面控制电缆,实现远距离测量和控制。
当一次系统发生短路故障时,能够保护测量仪表和继电器等二次设备免受大电流的损害。
下面就有关电流互感器的选择和使用作一浅薄探讨,以飨各位读者朋友。
2电流互感器的原理
互感器,一般W1≤W2,可见电流互流感器为一“变流”器,基本原理与变压器相同,工作状况接近于变压器短路状态,原边符号为L1、L2,副边符号为K1、K2。
互感器的原边串接入主线路,被测电流为I1,原边匝数为W1,副边接内阻很小的电流表或功率表的电流线圈,副边电流为I2,副边匝数为W2。
原副边电磁量及规定正方向由电工学规定。
由原理可知,当副边开路时,原边电流I1中只有用来建立主磁通Φm的磁化电流I0,当副边电流不等于零时,则产生一个去磁磁化力I2W1,它力图改变Φm,但U1一定时,Φm是基本不变的,即保持I0W1不变,因为I2的出现,必使原边电流Il增加,以抵消I2W2的去磁作用,从而保证I0W1不变,故有:
I1Wl=I0Wl+(-I2W2) (1)
即I0=I1+W2I2/Wl (2)
在理想情况下,即忽略线圈的电阻,铁心损耗及漏磁通可得:
I1W1=-I2W2
有:Il/I2=-W2/W1
3 电流互感器的选择
3.1 电流互感器选择与检验的原则
1)电流互感器额定电压不小于装设点线路额定电压;
2)根据一次负荷计算电流IC选择电流互感器变化;
3)根据二次回路的要求选择电流互感器的准确度并校验准确度;
4)校验动稳定度和热稳定度。
3.2 电流互感器变流比选择
电流互感器一次额定电流I1n和二次额定电流I2n之比,称为电流互感器的额定变流比,Ki=I1n/I2n≈N2/N1。
式中,N1和N2为电流互感器一次绕组和二次绕组的匝数。
电流互感器一次侧额定电流标准比(如20、30、40、50、75、100、150(A)、2Xa/C)等多种规格,二次侧额定电流通常为1A或5A。
其中2Xa /C表示同一台产品有两种电流比,通过改变产品顶部储油柜外的连接片接线方式实现,当串联时,电流比为a/c,并联时电流比为2Xa/C。
一般情况下,计量用电流互感器变流比的选择应使其一次额定电流I1n不小于线路中的负荷电流(即计算IC)。
如线路中负荷计算电流为350A,则电流互感器的变流比应选择400/5。
保护用的电流互感器为保证其准确度要求,可以将变比选得大一些。
表1 电流互感器准确级和误差限值
3.3 电流互感器准确度选择及校验
所谓准确度是指在规定的二次负荷范围内,一次电流为额定值时的最大误差。
我国电流互感器的准确度和误差限值如表1所示,对于不同的测量仪表,应选用不同准确度的电流互感器。
准确度选择的原则:计费计量用的电流互感器其准度为0.2~0.5级;用于监视各进出线回路中负荷电流大小的电流表应选用1.0—3.0级电流互感器。
为了保证准确度误差不超过规定值,一般还校验电流互感器二次负荷(伏安),互感器二次负荷S2不大于额定负荷S2n,所选准确度才能得到保证。
准确度校验公式:S2≤S2n。
二次回路的负荷l:。
取决于二次回路的阻抗Z2的值,则:
S2=I2n2︱Z2︱≈I2n2(∑︱Zi︱+ RWl+RXC)
或S2V1≈∑Si+I2n2(RWl+RXC)
式中,Si、Zi为二次回路中的仪表、继电器线圈的额定负荷和阻抗,RXC为二次回路中所有接头、触点的接触电阻,一般取0.1Ω,RWL为二次回路导线电阻,
计算公式化为:RWL=LC/(r×S)。
式中,r为导线的导电率,铜线r=53m/(Ωmm2),铝线r=32m(Ωmm2),S为导线截面积(mm2),LC为导线的计算长度(m)。
设互感器到仪表单向长度为L1,
则:
L1互感器为星形接
LC=L1两相V形接线
2L1一相式接线
继电保护用的电流互感器的准确度常用的有5P和l0P。
保护级的准确度是以额定准确限值一次电流下的最大复合误差ε%来标称的(如5P对应的ε%=5%)。
所谓额定准确限值一次电流即一次电流为额定一次电流的倍数(n=I1/I1n),也称为额定准确限值系数。
即要求保护用的电流互感器在可能出现的范围内,其最大复合误差不超过ε%值。
电流互感器ε%误差曲线校验步骤:
(1)按照保护装置类型计算流过电流互感器的一次电流倍数;
(2)根据电流互感器的型号、变比和一次电流倍数,在10%误差曲线上确定电流互感器的允许二次负荷;
(3)按照对电流互感器二次负荷最严重的短路类型,计算电流互感器的实际二次负荷;
(4)比较实际二次负荷与允许二次负荷。
如实际二次负荷小于允许二次负荷,表示电流互感器的误差不超过10%误差:
1)增大连接导线截面或缩短连接导线长度,以减小实际二次负荷;
2)选择比较大的电流互感器,减小一次电流倍数,增大允许二次负荷;
3)将电流互感器的二次绕组串联起来,使允许二次负荷增大一倍。
3.4 电流互感器动稳定度和热稳定度校验
厂家的产品技术参数中都给出了动稳定倍数Kes和热稳定倍数Kt,因此按下列公式分别校验动稳定和热定度即可。
1)动稳定度校验Kes×I1N≥iSh;
2)热稳定度校验(KtI1n)2t≥I(3)∞tima
式中,t为热稳定电流时间。
4 电流互感器的正确使用
1)电流互感器的接线应遵守串联原则:即一次绕阻应与被测电路串联,而二次绕阻则与所有仪表负载串联;
2)按被测电流大小,选择合适的变化,否则误差将增大。
同时,二次侧一端必须接地,以防绝缘一旦损坏时,一次侧高压窜入二次低压侧,造成人身和设备事故;
3)二次侧绝对不允许开路,因一旦开路,一次侧电流I1全部成为磁化电流,引起φm和E2骤增,造成铁心过度饱和磁化,发热严重乃至烧毁线圈;同时,磁路过度饱和磁化后,使误差增大。
另外,二次侧开路使E2达几百伏,一旦触及造成触电事故。
因此,电流互感器二次侧都备有短路开关,防止一次侧开路。
如图l中K0,在使用过程中,二次侧一旦开路应马上撤掉电路负载,然后,再停车处理。
一切处理好后方可再用。
4)为了满足测量仪表、继电保护、断路器失灵判断和故障录波等装置的需要,在发电机、变压器、出线、母线分段断路器、母联断路器、旁路断路器等回路中均设具有2~8个二次绕阻的电流互感器。
对于大电流接地系统,一般按三相配置;对于小电流接地系统,依具体要求按二相或三相配置;
5)对于保护用电流互感器的装设地点应按尽量消除主保护装置的不保护区来设置。
例如:若有两组电流互感器,且位置允许时,应设在断路器两侧,使断路器处于交叉保护范围之中;
6)为了防止支柱式电流互感器套管闪络造成母线故障,电流互感器通常布置在断路器的出线或变压器侧;
7)为了减轻发电机内部故障时的损伤,用于自动调节励磁装置的电流互感器应布置在发电机定子绕组的出线侧。
为了便于分析和在发电机并入系统前发现内部故障,用于测量仪表的电流互感器宜装在发电机中性点侧。