matlab 微分方程组的解法
重要:MATLAB常微分方程(组)数值解法

Matlab常微分方程求解问题分类
边值问题:
初值问题:
• 定解附加条件在自变量 的一端
• 一般形式为: y' f (x, y)
y(a)
y0
• 初值问题的数值解法一 般采用步进法,如 Runge-Kutta法
➢ 在自变量两端均给定附加 条件
y' f (x, y)
➢ 一般形式:y(a)y1, y(b)y2
1.根据常微分方程要求的求解精度与速度要求
求解初值问题:
y
'
y
2x y
y ( 0 ) 1
(0x1)
比较ode45和ode23的求解精度和速度
ode45和ode23的比较-1
function xODE clear all clc
format long
y0 = 1; [x1,y1] = ode45(@f,[0,1],y0); [x2,y2] = ode23(@f,[0,1],y0); plot(x1,y1,'k-',x2,y2,'b--') xlabel('x') ylabel('y')
rD = k(3)*C(2)-k(5)*C(4);
rE = k(4)*C(3)+k(5)*C(4);
% Mass balances dCdt = [rA; rB; rC; rD; rE];
三个串联的CSTR等温反应器(例4-3)
function IsothermCSTRs clear all clc CA0 = 1.8; % kmol/m^3 CA10 = 0.4; % kmol/m^3 CA20 = 0.2; % kmol/m^3 CA30 = 0.1; % kmol/m^3 k = 0.5; % 1/min tau = 2; stoptime = 2.9; % min [t,y] = ode45(@Equations,[0 stoptime],[CA10 CA20 CA30],[],k,CA0,tau); disp(' Results:') disp(' t CA1 CA2 CA3') disp([t,y]) plot(t,y(:,1),'k--',t,y(:,2),'b:',t,y(:,3),'r-') legend('CA_1','CA_2','CA_3') xlabel('Time (min)') ylabel('Concentration') % -----------------------------------------------------------------function dydt = Equations(t,y,k,CA0,tau) CA1 = y(1); CA2 = y(2); CA3 = y(3); dCA1dt = (CA0-CA1)/tau - k*CA1; dCA2dt = (CA1-CA2)/tau - k*CA2; dCA3dt = (CA2-CA3)/tau - k*CA3; dydt = [dCA1dt; dCA2dt; dCA3dt];
MATLAB实验四_求微分方程的解

参数说明
[T,Y] = solver(odefun,tspan,y0)
odefun 为显式常微分方程,可以用命令 inline 定义,或 在函数文件中定义,然后通过函数句柄调用。
dy 2 2 y 2 x 2x 求初值问题 的数值解,求解范 例: dx 围为 [0,0.5] y( 0 ) 1
dsolve的输出个数只能为一个 或 与方程个数相等。
只有很少一部分微分方程(组)能求出解析解。 大部分微分方程(组)只能利用数值方法求数值解。
Matlab函数数值求解
[T,Y] = solver(odefun,tspan,y0)
其中 y0 为初值条件,tspan为求解区间;Matlab在数值求解 时自动对求解区间进行分割,T (列向量) 中返回的是分割点 的值(自变量),Y (数组) 中返回的是这些分割点上的近似解, 其列数等于因变量的个数。
数学实验
实验四
求微分方程的解
问题背景和实验目的
自牛顿发明微积分以来,微分方程在描述事物运 动规律上已发挥了重要的作用。实际应用问题通过 数学建模所得到的方程,绝大多数是微分方程。 由于实际应用的需要,人们必须求解微分方程。 然而能够求得解析解的微分方程十分有限,绝大多 数微分方程需要利用数值方法来近似求解。 本实验主要研究如何用 Matlab 来计算微分方程 (组)的数值解,并重点介绍一个求解微分方程的 基本数值解法--Euler折线法。
Runge-Kutta 方法
Euler 法与 R-K法误差比较
Matlab 解初值问题
用 Maltab自带函数 解初值问题 求解析解:dsolve 求数值解:
ode45、ode23、 ode113、ode23t、ode15s、 ode23s、ode23tb
matlab求解常微分方程

matlab求解常微分⽅程本⽂主要介绍matlab中求解常微分⽅程(组)的dsolve和ode系列函数,并通过例⼦加深读者的理解。
⼀、符号介绍D: 微分符号;D2表⽰⼆阶微分,D3表⽰三阶微分,以此类推。
⼆、函数功能介绍及例程1、dsolve 函数dsolve函数⽤于求常微分⽅程组的精确解,也称为常微分⽅程的符号解。
如果没有初始条件或边界条件,则求出通解;如果有,则求出特解。
1)函数格式Y = dsolve(‘eq1,eq2,…’ , ’cond1,cond2,…’ , ’Name’)其中,‘eq1,eq2,…’:表⽰微分⽅程或微分⽅程组;’cond1,cond2,…’:表⽰初始条件或边界条件;‘Name’:表⽰变量。
没有指定变量时,matlab默认的变量为t;2)例程例1.1(dsolve 求解微分⽅程)求解微分⽅程:dsolve('Dy=3*x^2','x')例1.2(加上初始条件)求解微分⽅程:例2(dsolve 求解微分⽅程组)求解微分⽅程组:由于x,y均为t的导数,所以不需要在末尾添加’t’。
2、ode函数在上⽂中我们介绍了dsolve函数。
但有⼤量的常微分⽅程,虽然从理论上讲,其解是存在的,但我们却⽆法求出其解析解,此时,我们需要寻求⽅程的数值解。
ode是Matlab专门⽤于解微分⽅程的功能函数。
该求解器有变步长(variable-step)和定步长(fixed-step)两种类型。
不同类型有着不同的求解器,具体说明如下图。
其中,ode45求解器属于变步长的⼀种,采⽤Runge-Kutta算法;其他采⽤相同算法的变步长求解器还有ode23。
ode45表⽰采⽤四阶-五阶Runge-Kutta算法,它⽤4阶⽅法提供候选解,5阶⽅法控制误差,是⼀种⾃适应步长(变步长)的常微分⽅程数值解法,其整体截断误差为(Δx)^5。
解决的是Nonstiff(⾮刚性)常微分⽅程。
matlab dsolve 微分方程组

matlab dsolve 微分方程组【实用版】目录1.MATLAB 中的 dsolve 函数2.微分方程组的求解3.使用 dsolve 求解微分方程组的实例正文一、MATLAB 中的 dsolve 函数MATLAB 是一种广泛使用的数学软件,提供了各种数学运算和分析功能。
在 MATLAB 中,dsolve 函数可以用于求解微分方程。
该函数可以解决一类常微分方程组,使得用户可以方便地解决复杂的微分方程问题。
二、微分方程组的求解微分方程组是数学中的一个重要概念,它描述了多个变量之间的变化关系。
在实际问题中,微分方程组可以用于描述物理、生物、经济等各个领域的问题。
解决微分方程组,可以得到变量之间的变化规律,从而为实际问题的解决提供理论依据。
求解微分方程组的方法有很多,如数值法、符号法等。
在 MATLAB 中,dsolve 函数提供了一种符号法求解微分方程组的方法。
这种方法可以方便地处理含有符号的微分方程组,并且可以得到解析解。
三、使用 dsolve 求解微分方程组的实例下面我们通过一个实例,来说明如何使用 dsolve 函数求解微分方程组。
假设有一个二阶常微分方程组:```dx/dt = x + ydy/dt = -x + y```我们可以使用 dsolve 函数求解该方程组。
在 MATLAB 中,输入以下命令:```matlabt = 0:1:10; % 定义时间区间x0 = 1; % 定义初始条件 x 的值y0 = 2; % 定义初始条件 y 的值% 使用 dsolve 函数求解微分方程组[~, x, y] = dsolve("dx/dt = x + y", "dy/dt = -x + y", t, [x0, y0]);```运行以上命令,可以得到方程组的解析解。
在 MATLAB 中,结果以符号形式显示,如需将其转换为数值形式,可以使用以下命令:```matlabx_num = solve(t, x);y_num = solve(t, y);```通过以上命令,我们可以得到微分方程组的数值解,从而为实际问题的解决提供理论依据。
matlab求解常微分方程组

matlab求解常微分方程组常微分方程组是数学中的一个重要分支,它描述了多个变量随时间变化的关系。
在实际应用中,常微分方程组经常被用来描述物理、化学、生物等领域中的动态系统。
本文将介绍如何使用MATLAB求解常微分方程组。
MATLAB是一种强大的数学软件,它提供了许多工具和函数来求解常微分方程组。
在MATLAB中,我们可以使用ode45函数来求解常微分方程组。
ode45函数是一种常用的数值求解器,它使用龙格-库塔方法来求解常微分方程组。
我们需要定义常微分方程组。
常微分方程组通常采用向量形式表示,例如:dy/dt = f(t,y)其中,y是一个向量,f(t,y)是一个向量函数。
在MATLAB中,我们可以使用匿名函数来定义f(t,y)。
例如,如果我们要求解以下常微分方程组:dy1/dt = -y1 + 2*y2dy2/dt = -2*y1 + 3*y2我们可以定义f(t,y)为:f = @(t,y) [-y(1) + 2*y(2); -2*y(1) + 3*y(2)];接下来,我们需要指定初值条件。
初值条件是指在t=0时,y的值。
在MATLAB中,我们可以使用一个向量来表示初值条件。
例如,如果我们要求解以下常微分方程组:dy1/dt = -y1 + 2*y2dy2/dt = -2*y1 + 3*y2初值条件为:y(0) = [1; 0]我们可以定义初值条件为:y0 = [1; 0];现在,我们可以使用ode45函数来求解常微分方程组。
ode45函数的语法如下:[t,y] = ode45(f,tspan,y0)其中,f是一个函数句柄,tspan是一个包含起始时间和结束时间的向量,y0是一个包含初值条件的向量。
ode45函数将返回一个包含时间和解向量的矩阵。
例如,如果我们要求解以下常微分方程组:dy1/dt = -y1 + 2*y2dy2/dt = -2*y1 + 3*y2初值条件为:y(0) = [1; 0]时间范围为0到10秒,我们可以使用以下代码来求解:f = @(t,y) [-y(1) + 2*y(2); -2*y(1) + 3*y(2)];tspan = [0 10];y0 = [1; 0];[t,y] = ode45(f,tspan,y0);现在,我们可以绘制解向量随时间变化的图像。
用MATLAB求解微分方程

1. 微分方程的解析解
求微分方程(组)的解析解命令:
dsolve(‘方程1’, ‘方程2’,…‘方程n’, ‘初始条件’, ‘自变量’)
结 果:u = tan(t-c)
解 输入命令:dsolve('Du=1+u^2','t')
STEP2
STEP1
解 输入命令: y=dsolve('D2y+4*Dy+29*y=0','y(0)=0,Dy(0)=15','x')
导弹追踪问题
设位于坐标原点的甲舰向位于x轴上点A(1, 0)处的乙舰发射导弹,导弹头始终对准乙舰.如果乙舰以最大的速度v0(是常数)沿平行于y轴的直线行驶,导弹的速度是5v0,求导弹运行的曲线方程.又乙舰行驶多远时,导弹将它击中? 解法一(解析法)
由(1),(2)消去t整理得模型:
解法二(数值解)
结 果 为:x = (c1-c2+c3+c2e -3t-c3e-3t)e2t y = -c1e-4t+c2e-4t+c2e-3t-c3e-3t+c1-c2+c3)e2t z = (-c1e-4t+c2e-4t+c1-c2+c3)e2t
2、取t0=0,tf=12,输入命令: [T,Y]=ode45('rigid',[0 12],[0 1 1]); plot(T,Y(:,1),'-',T,Y(:,2),'*',T,Y(:,3),'+')
3、结果如图
图中,y1的图形为实线,y2的图形为“*”线,y3的图形为“+”线.
Matlab微分方程的解法

-0.5
-0.55
-0.6
-0.65
-0.7
-0.75
-0.8
-0.85
-0.9
-0.95
-1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1
time t0=0,tt=1
图3 给定新的初始数据,由函数xprim2定义的ODE解的图形
(d) 求解下面方程组并不难:
x x x x ì ' = - 0.1
在下面的初值问题中,有两个未知函数:x1(t)和x2(t),并用以下式子表达其微... 页码,1/11
Matlab关于微分方程的解法
MATLAB使用龙格-库塔-芬尔格(Runge-Kutta-Fehlberg)方法来解ODE问题。在有限点内计算求解。而 这些点的间距有解的本身来决定。当解比较平滑时,区间内使用的点数少一些,在解变化很快时,区间内应使 用较多的点。 为了得到更多的有关何时使用哪种解法和算法的信息,推荐使用helpdesk。所有求解方程通用的语法或句法在 命令集中头两行给出。时间间隔将以向量t=[t0,tt]给出。 命令ode23可以求解(2,3)阶的常微分方程组,函数ode45使用(4,5)阶的龙格-库塔-芬尔格方法。注意,在这种情 况下x’是x的微分不是x的转置。 在命令集中solver将被诸如ode45函数所取代。
0.6
0.55
0.5
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1
time t0=0,tt=1
图1 由函数xprim1定义的ODE解的图形
(b) 解下面的ODE过程是等价的:
ïíìx' = x2
ïîx(0) = 1
matlab求解常微分方程

用matlab 求解常微分方程在MATLAB 中,由函数dsolve ()解决常微分方程(组)的求解问题,其具体格式如下:r = dsolve('eq1,eq2,...', 'cond1,cond2,...', 'v')'eq1,eq2,...'为微分方程或微分方程组,'cond1,cond2,...',是初始条件或边界条件,'v'是独立变量,默认的独立变量是't'。
函数dsolve 用来解符号常微分方程、方程组,如果没有初始条件,则求出通解,如果有初始条件,则求出特解。
例1:求解常微分方程1dy dx x y =+的MATLAB 程序为:dsolve('Dy=1/(x+y)','x'),注意,系统缺省的自变量为t ,因此这里要把自变量写明。
其中:Y=lambertw(X)表示函数关系Y*exp(Y)=X 。
例2:求解常微分方程的MATLAB 程序为:2'''0yy y −=Y2=dsolve('y*D2y-Dy^2=0','x')Y2=dsolve('D2y*y-Dy^2=0','x')我们看到有两个解,其中一个是常数0。
例3:求常微分方程组253ttdxx y edtdyx y edt⎧++=⎪⎪⎨⎪−−=⎪⎩通解的MATLAB程序为:[X,Y]=dsolve('Dx+5*x+y=exp(t),Dy-x-3*y=exp(2*t)','t')例4:求常微分方程组2210cos,24,tttdx dyx t xdt dtdx dyy e ydt dt=−=⎧+−==⎪⎪⎨⎪++==⎪⎩2通解的MATLAB程序为:[X,Y]=dsolve('Dx+2*x-Dy=10*cos(t),Dx+Dy+2*y=4*exp(-2*t)','x(0)=2,y(0)=0','t')以上这些都是常微分方程的精确解法,也称为常微分方程的符号解。