QTZ80塔吊附墙支撑计算书

合集下载

塔吊附着验算计算书

塔吊附着验算计算书

塔吊附着验算计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《钢结构设计规范》GB50017-2003一、塔机附着杆参数二、风荷载及附着参数附图如下:塔机附着立面图三、工作状态下附墙杆内力计算1、在平衡臂、起重臂高度处的风荷载标准值q kq k=0.8βzμzμsω0α0h=0.8×1.685×1.262×1.95×0.2×0.35×1.06=0.246kN/m2、扭矩组合标准值T k由风荷载产生的扭矩标准值T k2Tk2=1/2qkl12-1/2qkl22=1/2×0.246×602-1/2×0.246×15.22=414.382kN·m集中扭矩标准值(考虑两项可变荷载控制的组合系数取0.9)Tk =0.9(Tk1+ Tk2)=0.9×(454.63+414.382)=782.111kN·m3、附着支座反力计算计算简图剪力图得:R E=37.396kN在工作状态下,塔机起重臂位置的不确定性以及风向的随机性,在计算支座7处锚固环截面内力时需考虑塔身承受双向的风荷载和倾覆力矩及扭矩。

4、附墙杆内力计算支座7处锚固环的截面扭矩T k(考虑塔机产生的扭矩由支座7处的附墙杆承担),水平内力Nw =20.5RE=52.886kN。

计算简图:塔机附着示意图塔机附着平面图α1=arctan(b1/a1)=52.231°α2=arctan(b2/a2)=41.918°α3=arctan(b3/a3)=54.924°β1=arctan((b1+c/2)/(a1+c/2))=50.816°β2=arctan((b2+c/2)/(a2-c/2))=53.662°β3=arctan((b3+c/2)/(a3+c/2))=52.93°各杆件轴力计算:ΣM O=0T1×sin(α1-β1)×(b1+c/2)/sinβ1+T2×sin(α2-β2)×(b2+c/2)/sinβ2-T3×sin(α3-β3)×(b3+c/2)/sin β3+T k=0ΣM h=0T2×sinα2×c+T3×sinα3×c+N w×cosθ×c/2-N w×sinθ×c/2-T k=0ΣM g=0T1×sinα1×c-N w×sinθ×c/2-N w×cosθ×c/2+T k=0(1)θ由0~360°循环,当T k按图上方向设置时求解各杆最大轴拉力和轴压力:最大轴拉力T1=0kN,T2=539.578kN,T3=153.24kN最大轴压力T1=596.925kN,T2=0kN,T3=0kN(2)θ由0~360°循环,当T k按图上反方向设置时求解各杆最大轴拉力和轴压力:最大轴拉力T1=596.925kN,T2=0kN,T3=0kN最大轴压力T1=0kN,T2=539.578kN,T3=153.24kN四、非工作状态下附墙杆内力计算此工况下塔机回转机构的制动器完全松开,起重臂能随风转动,故不计风荷载产生的扭转力矩。

塔吊附墙计算方案及附墙拉杆图纸

塔吊附墙计算方案及附墙拉杆图纸

塔吊附墙计算方案及附墙拉杆图纸X X区安置小区工程2#塔吊Q T Z80(T C T5512)塔吊附着方案编制单位:广西建工集团建筑机械制造有限责任公司目录一、工程概况: 01、工程项目情况: 02、参建单位概况: 03、塔吊情况: 0二、编制依据: ............................ 错误!未定义书签。

三、塔吊附墙杆结构图 01、拉杆1结构图: 02、拉杆2结构图: (1)3、拉杆3结构图: (3)四、附墙杆内力计算 (5)1、支座力计算 (5)2、附墙杆内力力计算 (5)五、附墙杆强度及稳定性验算 (8)1、附墙杆1验算 (8)2、附墙杆2验算 (9)3、附墙杆3验算 (10)4、附墙杆对接焊缝强度验算 (11)5、附墙杆连接耳板焊缝强度验算 (11)六、塔吊附墙杆连接强度计算 (12)七、附着设计与施工的注意事项 (14)1一、工程概况:1、工程项目情况:XX安置小区工程总建筑面积约为378890.1㎡(其中地上建筑面积为305876㎡,地下建筑面积为73014㎡);地下1层,地上共有23个单体,16F-23F;建筑高度为52.8m-77.6m。

本工程11#、13#为民用二类建筑,其它为民用二类建筑,钢筋混凝土框剪结构。

质量标准为合格,且不少于3幢创泉州市优质工程。

本工程共使用10台塔吊,选用安装的塔吊为广西建工集团建筑机械制造有限责任公司生产出厂的QTZ80型(8部)和QTZ6015型(2部)塔吊塔式起重机。

2#塔吊QTZ80塔身中心到建筑物距离约5.22米。

2、参建单位概况:工地名称:XX安置小区工程建设单位:XX房地产开发有限公司勘查单位:XX市水电工程勘察院设计单位:XX市城市规划设计研究院监理单位:XX监理有限公司施工单位: XX集团总公司工地地址:XX交汇处3、塔吊情况:2#塔吊采用广西建工集团建筑机械制造有限公司生产的QTZ80(TCT5512)型塔吊。

塔吊QTZ80计算书

塔吊QTZ80计算书

浙江宝业建设集团有限公司 第1页 共7页塔吊基础计算书(QTZ80)本计算书主要依据施工图纸及以下规范及参考文献编制:《塔式起重机设计规范》(GB/T13752-1992)、《地基基础设计规范》(GB50007-2002)、《建筑结构荷载规范》(GB50009-2001)、《建筑安全检查标准》(JGJ59-99)、《混凝土结构设计规范》(GB50010-2002)、《建筑桩基技术规范》(JGJ94-2008)等编制。

一、塔吊的基本参数信息塔吊型号:QTZ80, 塔吊起升高度H :95.000m ,塔身宽度B :1.6m , 基础埋深D :-5.500m ,自重F 1:480.5kN , 基础承台厚度Hc :1.200m ,最大起重荷载F 2:80kN , 基础承台宽度Bc :6.000m ,桩钢筋级别:HRB335, 桩直径或者方桩边长:0.400m , 桩间距a :3.4m , 承台箍筋间距S :200.000mm ,承台混凝土的保护层厚度:50mm , 空心桩的空心直径:0.20m 。

二、塔吊基础承台顶面的竖向力和弯矩计算塔吊自重(包括压重)F 1=480.5kN ;塔吊最大起重荷载F 2=80.00kN ;作用于桩基承台顶面的竖向力F k =F 1+F 2=560.50kN ;1、塔吊风荷载计算依据《建筑结构荷载规范》(GB50009-2001)中风荷载体型系数:地处江苏苏州,基本风压为ω0=0.45kN/m 2;查表得:荷载高度变化系数μz =1.86;挡风系数计算:φ=[3B+2b+(4B 2+b 2)1/2]c/(Bb)=[(3×1.6+2×2.5+(4×1.62+2.52)0.5)×0.13]/(1.6×2.5)=0.45;因为是角钢/方钢,体型系数μs =2.049;高度z 处的风振系数取:βz =1.0;浙江宝业建设集团有限公司 第2页 共7页所以风荷载设计值为:ω=0.7×βz ×μs ×μz ×ω0=0.7×1.00×2.049×1.86×0.45=1.2kN/m 2;2、塔吊弯矩计算风荷载对塔吊基础产生的弯矩计算:M ω=ω×φ×B×H×H×0.5=1.2×0.45×1.6×85×65×0.5=1827.523kN·m ;M kmax =Me +M ω+P ×h c =630+1827.523+85×1.2=2559.52kN ·m ;三、承台弯矩及单桩桩顶竖向力的计算1. 桩顶竖向力的计算依据《建筑桩技术规范》(JGJ94-2008)的第5.1.1条,在实际情况中x 、y 轴是随机变化的,所以取最不利情况计算。

塔吊附墙计算书.doc

塔吊附墙计算书.doc

6
南通金鹰:塔吊附墙计算书
7
=-1.015(T) 通过三角函数关系,得支座 A 反力为:
RAY= -N1*sin52.3426=-1.015*sin52.3426=-0.8(T) RAx= -N1*cos52.3426=-1.015* cos52.3426=-0.62(T) 由∑MC=0,得 N3*L0’C+ V* LC0=0
10
本计算书主要包括四个方面内容:附墙杆及支座受力计算,结 构柱抗剪切及局部受压验算,附墙杆予埋件锚筋设计,附墙杆型号选 用。
3
南通金鹰:塔吊附墙计算书
4
二、塔吊附墙杆受力计算
(一)、塔吊附墙内力计算,将对以下两种最不利受力情况进行: 1、 塔机满载工作,起重臂顺塔身 x-x 轴或 y-y 轴,风向垂直于起重
2、当剪力沿 y-y 轴时(见图 b), 由∑MB=0,得
T-(V*L4+LB0’*N1)=0 即: N1=(T-V*L4)/ LB0’
=(12-3.013*4.5)/5.932 =-0.263(T) 通过三角函数关系,得支座 A 反力为:
5
南通金鹰:塔吊附墙计算书
6
RAY= N1*sin52.3426=-0.263*sin52.3426=-0.171(T) RAx= N1*cos52.3426=-0.263* cos52.3426=-0.2(T) 由∑MC=0,得
四、附墙与结构连接予埋件锚筋强度验算
附墙与结构连接予埋件受力最大值为 X 轴方向的 13T 和 Y 轴方 向的 0.5T。
附墙杆与予埋件的连接销栓到锚筋根部的距离取 350mm(偏 大 ), 则 X 轴 方 向 的 5.83T 将 产 生 弯 矩 M=350*5.83*104=20405000 (N.mm)。弯矩和 Y 轴方向 15.1T 拉力作用下,边锚筋抗拉强度验算 如下:

塔式起重机附着计算

塔式起重机附着计算

塔机附着验算书塔机型号: QTZ80A工程名称:福建省公路一公司科技楼B区(1#机)设计验算:吕有生日期: 2011-6-20塔机附墙的受力计算一:塔机对附墙的要求1,附着框架在塔身节上的安装必须安全可靠,并应符合使用说明书中的有关规定。

附着框架与塔身的固定应牢固。

2,各连接件不应缺少或松动。

3,附着杆有调节装置的应按要求调整后锁紧。

4,与附着杆相连接的建筑物不应有裂纹或损坏。

5,在工作中附着杆与建筑物的锚固连接必须牢固,不能有松动。

二:附着位置本塔机是XXXXX公司生产的,第一道附着装置的加固高度为30米。

三:附墙受力计算按照XXXXXX公司使用说明书塔机与建筑物附着时,依次道附着杆的负荷作为设计或校核附着杆截面的依据。

附着式塔机的塔身可以视为一个带悬臂的刚性支撑计算书主要依据施工图纸及以下规范及参考文献编制:《塔式起重机设计规范》(GB/T13752-1992)、《建筑结构荷载规范》(GB50009-2001)、《建筑安全检查标准》(JGJ59-99)、《建筑施工手册》、《钢结构设计规范》(GB50017-2003)等编制。

塔机安装位置至附墙或建筑物距离超过使用说明规定时,需要增设附着杆,附着杆与附墙连接或者附着杆与建筑物连接的两支座间距改变时,必须进行附着计算。

主要包括附着支座计算、附着杆计算、锚固环计算。

1、支座力计算塔机按照说明书与建筑物附着时,最上面一道附着装置的负荷最大,因此以此道附着杆的负荷作为设计或校核附着杆截面的依据。

附着式塔机的塔身可以简化为一个带悬臂的刚性支撑连续梁,其内力及支座反力计算如下:风荷载标准值应按照以下公式计算:ωk=ω0×μz×μs×βz= 0.390×0.130×1.860×0.700 =0.066 kN/m2;其中ω0──基本风压(kN/m2),按照《建筑结构荷载规范》(GBJ9)的规定采用:ω0 = 0.390 kN/m2;μz──风压高度变化系数,按照《建筑结构荷载规范》(GBJ9)的规定采用:μz = 1.860 ;μs──风荷载体型系数:μs = 0.130;βz──高度Z处的风振系数,βz = 0.700;风荷载的水平作用力:q = ωk×B×K s = 0.066×1.600×0.200 = 0.021 kN/m;其中ωk──风荷载水平压力,ωk= 0.066 kN/m2;B──塔吊作用宽度,B= 1.600 m;K s──迎风面积折减系数,K s= 0.200;实际取风荷载的水平作用力 q = 0.021 kN/m;塔吊的最大倾覆力矩:M = 1780.000 kN·m;弯矩图变形图剪力图计算结果: N w = 90.0894kN ;2、附着杆内力计算塔吊四附着杆件的计算属于一次超静定问题,采用结构力学计算个杆件内力:计算简图:方法的基本方程:计算过程如下:δ11X1+Δ1p=0Δ1p=∑T i0T i/EAδ11=∑T i0T i0l i/EA其中: Δ1p为静定结构的位移;T i0为F=1时各杆件的轴向力;T i为在外力M和P作用下时各杆件的轴向力;l i为为各杆件的长度。

塔吊附着方案(计算书参考版本,不同塔吊是不同的)

塔吊附着方案(计算书参考版本,不同塔吊是不同的)

一、计算书塔机附着验算(32层)计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《钢结构设计规范》GB50017-2003一、塔机附着杆参数二、风荷载及附着参数第2次附着40 15 0.832 1.95 1.95 1.763 1.801 0.308 0.471 第3次附着55 15 0.922 1.95 1.95 1.755 1.792 0.339 0.52 第4次附着70 15 1.008 1.95 1.95 1.733 1.766 0.366 0.56 第5次附着85 15 1.087 1.95 1.95 1.708 1.746 0.389 0.597 第6次附着100 15 1.16 1.95 1.95 1.699 1.734 0.413 0.633 悬臂端121 21 1.254 1.95 1.95 1.686 1.728 0.443 0.681 附图如下:塔机附着立面图三、工作状态下附墙杆内力计算1、在平衡臂、起重臂高度处的风荷载标准值q kq k=0.8βzμzμsω0α0h=0.8×1.686×1.254×1.95×0.2×0.35×1.06=0.245kN/m2、扭矩组合标准值T k由风荷载产生的扭矩标准值T k2T k2=1/2q k l12-1/2q k l22=1/2×0.245×562-1/2×0.245×12.92=363.775kN·m集中扭矩标准值(考虑两项可变荷载控制的组合系数取0.9)T k=0.9(T k1+ T k2)=0.9×(269.3+363.775)=569.768kN·m3、附着支座反力计算计算简图剪力图得:R E=146.645kN在工作状态下,塔机起重臂位置的不确定性以及风向的随机性,在计算支座7处锚固环截面内力时需考虑塔身承受双向的风荷载和倾覆力矩及扭矩。

QTZ80塔式起重机塔身及附着整机稳定性计算书2

QTZ80塔式起重机塔身及附着整机稳定性计算书2

Af=17.167cm2
λ =lo/r=179/1.76=101.7
ϕ =0.59
σ =Nf/ ϕAf=11712/0.59 × 17.167=115.6MPa
由于斜腹杆是单角钢,其许用应力要折减,其表达式为:
0.6+0.0025 λ =0.6+0.0025 × 101.7=0.85 则 [ σ ]=175 × 0.85=149MPa σ <[ σ ] 安全 8. 附着式塔身验算 附着式塔身按标准节几何尺寸进行验算。由于附着式的Nf 均比独立式 小,而且标准节的斜腹杆材料与加强标准节相同,故不再验算腹杆稳定性。
×
C oy
Moy + C Wy
HyM
Hy
45451
1
= 173.18 × 0.754 × 1.144 =148.3MPa<[ σ ]
+
45451
1- 0.9 × 617232
8.2 整体强度验算
工况Ⅱ、方位Ⅱ、C 截面
×
0.949
×
8356600+0.967 14430
×
7950000
FN=51.784t Mx=83.566t
1
FN
×
Coy Moy + C HyM Hy Wy
0 . 9 FEy
47946
= 265.4 × 0.54 × 1.575
=123MPa<[ σ ]
1
+
1-
0.9
47946 × 457549
×
0.84
×
12114400+0.86 22121
× 11382400
18
7.3 主肢单肢稳定验算 工况Ⅱ、方位Ⅱ时,主肢单肢压力在 A 截面为最大,N1=93.633t

QTZ80E塔吊附墙连接件螺栓强度验算

QTZ80E塔吊附墙连接件螺栓强度验算

QTZ80E塔吊附墙连接件及穿墙螺栓强度验算1、塔吊附墙连墙件和连墙螺栓(4M22螺栓、A3钢),详见附图。

2、建筑附着受力点详见下表:3、单根螺栓验算3.1单根螺栓抗拉验算M22螺栓有效面积A S==303mm2,螺栓抗拉强度设计值f t==170N/ mm2。

б==Y2/4A S==195000/(4×303)==160.1N/ mm2<f t==170N/ mm2满足要求3.2单根螺栓抗剪验算螺栓抗剪强度设计值f t==130N/ mm2。

塑性计算时(X1 /4A S<f t)V= X1 /4A S==64000/(4×303)==52.8N/ mm2<f t==130N/ mm2弹性计算时(1.5 X1 /4A S<f t)V= 1.5X1 /4A S==1.5×64000/(4×303)==79.2N/ mm2<f t==130N/ mm2均满足要求4、撑杆连接钢板验算4.1连接钢板抗拉验算钢板抗拉、抗弯强度设计值f=215N/ mm2钢板按孔洞处最小截面计算,截面2A S=110-44×20×2=2640 mm2б==Y2/2A S==195000/2640==74N/ mm2<f t==215N/ mm2满足要求4.2连接钢板抗剪验算钢板抗剪强度设计值f=125N/ mm2塑性计算时(X1 /4A S<f t)V= X1 /4A S==64000/2640==24N/ mm2<f t==125N/ mm2弹性计算时(1.5 X1 /4A S<f t)V= 1.5X1 /4A S==1.5×64000/2640==36.36N/ mm2<f t==125N/ mm2均满足要求5、焊缝隙验算5.1焊缝高度h=6㎜焊缝强度查表得f w f=160 N/ mm25.2焊缝强度验算钢板双面焊,焊缝长度L W=110×2×2=440㎜,则强度公式:Y2/∑(h f l w)≤160 N/ mm2195000/440×6==74N/mm2<f t==160N/ mm2满足要求QTZ80G塔吊附墙连接件及穿墙螺栓强度验算1、塔吊附墙连墙件和连墙螺栓(4M22螺栓、A3钢),详见附图:2、建筑附着受力点详见下表:3、单根螺栓验算3.1单根螺栓抗拉验算M22螺栓有效面积A S==303mm2,螺栓抗拉强度设计值f t==170N/ mm2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

QTZ80塔吊附墙支撑计算及塔吊基础节强度验算
一、概况:
该工程位于浦东新区花木路东绣路路口。

由于安装位置有限,塔吊附墙距离与建筑物超过了出厂的规定设计要求(小于3米5),本附墙中心距5米8。

根据说明书给出的技术指标和参数,分别取如下数据:
S=200KN(合外力)
Mn=300KN·m
a=1205mmb=1475mm
L1=4800mmL2=4800mmL=9600mm
H=5800mm
E=210Gpa
δp=240Mpa
[δ]=157MPa
只要计算出各杆所受的内力极大值,对设计撑杆进行稳定性校验即可。

一、三根支撑杆的内力极限值:
1)DF杆的内力极限值P1max
(S a²+b²+Mn)* (L1-a) ²+(H-b) ²
P1max=
2H(L-b)
=45.44KN
2) CF杆的内力极限值P2max
[S a² (L1-2b) ²+(2aH-bL) ²+Mn(L1-2a)] (L1+a) ²+(H-b) ²
P2max=
2 b L (H -a)
=97.3KN
3)CE杆的内力极限值P3max
[S(L1L+H²)+Mn L²+H²]
P2max= * (H-b)²+(L2-a)²2L
L²+H²*(b-H)
=77.99KN
二、对三根支撑杆的稳定性校核
三根支撑杆都是采用ø152mm、壁厚8mm的无缝钢管制成。

D=152 mm、d=144mm、&=8mm
两端为铰支。

取nw=2.0
(1)DF杆稳定性:
DF杆的长度:
L3= 6700mm
i= I
A
П(D²-d²)
= 64
П(D²-d²)
4
= D²+d²
4
=52.345(mm)
L3
=
i
=128 ( =1)
由于 p= п².E
δp
=92.9
可知 > p
Pcr
n=
P1max
п².E п
Pcr1= * (D²-d²)
²4
=243.9KN
Pcr
n= =5.3
P1max
n=5.3> nw=2.0
所以,DF杆的稳定性足够。

(2)CF杆的稳定性:
CF杆的长度:
L4=7100
i= I
A
П(D²-d²)
= 64
П(D²-d²)
4
= D²+d²
4
=52.345mm
L4
=
i
=135.6 ( =1)
由于 p= п².E
δp
=92.9
可知 > p
Pcr
n=
P2max
п².E п
Pcr2= * (D²-d²)
²4
=209.3KN
Pcr
n= =2.15
P2max
n=2.15> nw=2.0
所以,DF杆的稳定性足够。

(3)CE杆的稳定性:
CE杆的长度:
L5=6750mm
i= I
A
П(D²-d²)
= 64
П(D²-d²)
4
= D²+d²
4
=52.345mm
L5
=
i
=128.95 ( =1)
由于 p= п².E
δp
=92.9
可知 > p
Pcr
n=
P2max
п².E п
Pcr2= * (D²-d²)
²4
=231.45KN
Pcr
n= =2.96
P2max
n=2.96> nw=2.0
所以,DF杆的稳定性足够。

经验算,三根支撑杆的稳定性足够。

QTZ80塔吊基础节的验算书
本工程塔吊基础节采用本塔吊的一节标准节替用。

验算如下:
塔吊标准节160*160*10角钢焊接而成,尺寸为:1800*1800*2500。

(1)主角钢轴向受压强度计算:
N
Aa ≤f
式中N-轴向受力。

N=63.7t(按比100米高度计算)=6370KN。

Aa-净面积
由四根160*160*10的角钢组成。

Aa=4*31.502*=126.008*100=12600.8mm²
f-钢材抗压强度,取f=235N/ mm²。

(2)主角钢架稳定性计算:
N
Aa <f
Ф-轴向受压构件稳定系数又叫折减系数,有 值按表选取。

f-钢材抗压强度,取 [δ]=235Mpa
E=206Gpa
Mn=300KN.M
F=71KN
δp=230MPa
则:
L
x=
i
i= Ix
A
式中 ox-主角钢的换算长细度。

x-角钢长细比。

=2(一端固定一端铰接)
nw=2.4(nw稳定安全系数)
因160*160*10角钢,对角钢边的惯性矩为1365.33cm截面积为31.502cm²。

所以Ix=2*[1365.33+90*90*(31.502*2)]
=1023978.66
根塔吊在对角线最不利受力情况下,对其角钢进行强度校验和稳定性验算: a=1800mm
M N
Fmax= +
2a 4
=1592.5KN
强度校核:
Fmax 1592.5*1000
fx= =
Aa 12600.8
=126.38N/mm²
因此强度足够。

稳定性校核:
N F
Pmin=Mn* ( a²+b²)+ +
2 4 2
2
=1231.659KN
i= Ix
A
= 1023978.66
12600.8
=9.014cm
=90.14mm
L
x=
i
2*(2500-780)
=
31.502
=109.2
п².E
p=
δp
=88.3
x> p
п².E
Pcr= *bh

=5273.296
Pcr
n=
Pmax
=3.3
n=3.3>nw=2.4
角钢构件稳定性足够。

Y
X
11。

相关文档
最新文档