固体激光器及其调Q工作原理

合集下载

固体激光倍频、调Q实验

固体激光倍频、调Q实验

声光调Q倍频YAG激光器实验声光调制器由石英晶体、铌酸锂或重火石玻璃作为声光介质,通过压电晶体电声转换器将超声波耦合,在声光介质中产生超声波光栅,介质的折射率被周期性调制形成折射率体光栅。

在腔内采用该技术,可将连续的1064nm基频光变换成10KHz的高重复率脉冲激光,由于具有重复频率和峰值功率高的特点,可获得高平均功率的倍频绿光输出。

【实验目的】(1)掌握声光调Q连续激光器及其倍频的工作原理;(2)学习声光调Q倍频激光器的调整方法;(3)了解声光调Q固体激光器的静态和动态特性,并掌握测试方法;(4)学习倍频激光器的调整方法。

【实验原理】【实验原理】声光调Q倍频连续YAG激光器的工作原理(1)声光调Q基本原理:图1 声光调制器工作原理声光调制器是由石英晶体、铌酸锂、或重火石玻璃做为声光介质,通过电声换能器(压电晶体)将超声波耦合进去,在声光介质中产生超声波光栅。

超声波光栅将介质的折射率进行周期性调制,从而进一步形成折射率体光栅。

如图1所示。

光栅公式如下式(1)式(1)中,是声光介质中的超声波波长,为布拉格衍射角,为入射光波波长,n为声光介质的折射率。

当入射光以布拉格角入射时,出射光将被介质中的体光栅衍射到一级衍射最大方向上。

利用声光介质的这种性质,可以对激光谐振腔内的光束方向进行调制。

当加入声光调制信号时,光束偏转出腔外,不能在腔内形成振荡,即此时为高损耗腔。

在此期间泵浦灯注入给激活介质(激光晶体)的能量储存在激光上能级,形成高反转粒子数。

当去掉声光调制信号时,光束不被偏转,在腔内往返,形成激光振荡。

由于前面积累的高反转粒子数远远超过激光阈值,所以瞬时形成脉冲激光输出,从而形成窄脉宽、高能量的激光脉冲。

声光调Q激光器工作在几千周到几十千周的调制频率下,所以可以获得高重复率、高平均功率的激光输出。

(2)倍频器件工作原理:图2 倍频晶体折射率椭球及通光方向示意图由于晶体中存在色散现象,所以在倍频晶体中的通光方向上,基频光与倍频光所经历的折射率与是不同的。

固体激光器原理及应用

固体激光器原理及应用

固体激光器原理及应用固体激光器是一种使用固态材料作为工作介质,利用吸收外部能量激发材料内部电子跃迁产生激光的器件。

其原理基于材料内部的电子能级结构,通过能量输入使电子能级发生跃迁,产生一束高强度、窄谱线、准单色的激光束。

固体激光器具有激光输出稳定、寿命长、重复频率高、输出功率大等优点,因此在许多领域有着广泛的应用。

固体激光器的工作原理可以分为三个基本步骤:激发、放大和输出。

首先,通过能量输入使材料内部的电子从基态跃迁至激发态,形成一个激发态的粒子团。

其次,通过适当的增益介质,激发态粒子发生受激辐射过程,产生激光并且放大。

最后,通过激光输出装置将激光束从增益介质中输出。

固体激光器的工作介质一般是由具有合适外加激励源的能级结构的晶体或玻璃组成。

常用的材料有Nd:YAG(氧化钇铝铈钕)、Nd:YLF(钇铝石榴石)、Nd:YVO(钇钕钒酸盐)和Ti:sapphire(蓝宝石)等。

这些材料具有良好的耐热性、光学性能和谐振特性。

固体激光器的应用相当广泛。

在科学研究领域,固体激光器常用于物理、化学、生物学等学科中的实验室研究。

其高可靠性和稳定性使其成为激光生物学、光谱学和光物理学等领域的基础工具。

此外,固体激光器在通信领域也有着重要的地位。

特别在光纤通信系统中,固体激光器可以作为光源产生高质量的激光信号,用于传输和接收数据。

固体激光器还在制造业中得到广泛应用。

例如,固体激光器在激光切割、焊接和打标等加工过程中发挥着重要角色。

其高功率和高能量脉冲使其成为材料切割和焊接的理想工具。

此外,固体激光器还可以应用于材料精细处理、纳米加工和激光显微技术等领域,为制造业提供了更加高效和精确的加工手段。

此外,固体激光器还用于医疗领域。

例如,激光手术中使用的激光刀就是一种固体激光器。

固体激光器可以提供高能量和高精确性的激光束,用于切割、热凝固和热疗等医疗操作。

它在眼科手术、皮肤整形和癌症治疗等领域中有着广泛应用。

总之,固体激光器以其稳定的输出功率、高效的能量转化和丰富的应用领域而受到广泛关注和应用。

新激光ppt课件第八章 调Q技术与锁模技术

新激光ppt课件第八章 调Q技术与锁模技术

nL tc
式中tc
nL
c
为光子在腔内的寿命
d (G c 1 )
dt
n tc
d (G c 1 )
dt
n tc
当增益=损耗时,即为阈值条件
令 t tc
Gt
n ct c
则 d d (tcG n c1) (G G t 1)
GN
d
d
dN
N (
Nt 2
1) N
d
Nt
2.速率方程的解
1.工作物质储能调Q(PRM) 也叫脉冲反射式调Q.它是将能量以激活离子的
形式储存在工作物质中,能量储存的时间取决于激 光上能级的寿命.
(1).工作过程
(2).Q脉冲形成的三个时刻 (3).特点
Hale Waihona Puke 2.谐振腔储能调Q(PTM) 也叫脉冲透射式调Q.它是将能量以光子的
形式储存在谐振腔中,当腔内光子数密度达到最大 值时瞬间将腔内能量全部输出,因而也叫腔倒空法。
和选择合适的谐振腔,以降低Nt.
六、调Q方法
1. 电光调Q
电光调Q装置如图, 激光腔中插入起偏振片 及作为Q开关的KD*P晶 体。
原理:
电光调Q装置示意图
电光调Q激光器如图。未加电场前晶 体的折射率主轴为x、y、z。沿晶体光轴 方向z施加一外电场E ,由于普克尔效应, 主轴变为 x 、y 、z 。令光束沿z轴方向传 播,经偏振器后变为平行于Z轴的线偏振光, 入射到晶体表面时分解为等幅的 x 和 y 方 向的偏振光,在晶体中二者具有不同的折 射率 X 和 y 。经过晶体长度d距离后,二 偏振分量产生了相位差δ
由于一级衍射光偏离谐振腔而导致损耗增加,从而 使激光振荡难以形成,激光高能级大量积累粒子。若 这时突然撤除超声场,则衍射效应即刻消失,谐振腔损 耗突然下降,激光巨脉冲遂即形成。

固体激光器的工作原理

固体激光器的工作原理

固体激光器的工作原理
固体激光器是一种利用固体材料作为工作介质的激光器,其工作原理主要包括激发态产生、增益介质放大、谐振腔构成和输出光束等几个方面。

首先,固体激光器的工作原理涉及到激发态的产生。

在固体激光器中,通常采用外部能源(如光、电、化学能等)来激发固体材料中的原子或分子,使其跃迁至激发态。

这个过程需要一定的能量输入,激发态的产生是固体激光器工作的第一步。

其次,固体激光器的工作原理还包括增益介质的放大。

在固体激光器中,激发态的原子或分子通过受激辐射的作用,向入射的光子传递能量,从而使光子的数目呈指数增长。

这一过程发生在增益介质中,增益介质通常是由稀土离子或色心等组成的晶体或玻璃材料。

另外,固体激光器的工作原理还涉及到谐振腔的构成。

谐振腔是固体激光器中的一个重要部件,它由两个反射镜构成,其中一个是部分透明的,用于输出光束。

谐振腔的作用是使激光在其中来回多次反射,从而增强激光的放大效应,最终形成输出光束。

最后,固体激光器的工作原理还包括输出光束的形成。

当激光在谐振腔中来回多次反射后,其中一部分光子会通过部分透明的反射镜逸出,形成输出光束。

这个输出光束通常具有一定的方向性和单色性,可以用于各种应用。

总的来说,固体激光器的工作原理是利用外部能源激发固体材料中的原子或分子,使其跃迁至激发态,然后通过增益介质的放大和谐振腔的构成,最终形成输出光束。

固体激光器在医疗、通信、材料加工等领域有着广泛的应用,对于推动科学技术的发展具有重要意义。

固体激光器的工作原理

固体激光器的工作原理

固体激光器的工作原理
固体激光器是一种利用固体材料作为工作物质的激光器,它通
过激发固体材料中的原子或离子,使其产生受激辐射而产生激光。

固体激光器的工作原理主要包括激发、增益、反射和输出四个过程。

首先,固体激光器的工作原理涉及到激发过程。

在固体激光器中,通常采用激发源(如闪光灯、半导体激光二极管等)照射固体
材料,激发固体材料中的原子或离子,使其跃迁至高能级。

这种激
发过程会导致固体材料中的原子或离子处于一个高能级的激发态。

其次,固体激光器的工作原理还涉及到增益过程。

在激发过程中,固体材料中的原子或离子处于高能级的激发态,这时如果有入
射光子与其相互作用,就会引发受激辐射,从而产生激光。

这种受
激辐射会引起原子或离子从高能级跃迁到低能级,释放出更多的光子,使激光光子数目急剧增加,形成所谓的增益。

然后,固体激光器的工作原理还包括反射过程。

在固体激光器中,通常会设置一个光学反射器,用来反射激光。

这种光学反射器
可以将激光反射回固体材料中,使其在其中来回反射,增强激光的
增益效果。

最后,固体激光器的工作原理还涉及到输出过程。

在固体激光器中,设置一个输出镜,用来从激光腔中输出激光。

这种输出镜通常只透过一部分激光,反射大部分激光,使得激光可以从固体激光器中输出。

总的来说,固体激光器的工作原理是通过激发固体材料中的原子或离子,使其产生受激辐射而产生激光。

固体激光器的工作原理涉及到激发、增益、反射和输出四个过程,这些过程共同作用,使得固体激光器能够产生高能、高亮度的激光,被广泛应用于医疗、通信、材料加工等领域。

固态激光器的工作原理

固态激光器的工作原理

固态激光器的工作原理激光器作为一种重要的光学器件,在现代科技和工业应用中起到了至关重要的作用。

固态激光器作为其中的一种类型,在多个领域中展现出了广泛的应用前景。

本文将详细介绍固态激光器的工作原理,以及其在科学研究、医疗、通信等方面的应用。

一、固态激光器的基本构成和工作原理固态激光器由一个激光介质和一个泵浦源组成。

激光介质是固体材料,常见的材料包括Nd:YAG(氧化铝掺杂钕)、Nd:YVO4(钇钒酸钕)等。

泵浦源通常采用光源或者其他激光器来提供能量,使激光介质中的掺杂离子处于激发态。

1. 光子吸收与激发当泵浦光进入激光介质时,它与激光介质中的掺杂离子相互作用。

这种相互作用导致掺杂离子从基态跃迁到激发态,吸收入射光子的能量。

这种能量吸收过程是固态激光器工作的起点。

2. 辐射与受激辐射当掺杂离子处于激发态时,它会逐渐失去能量。

在这个过程中,掺杂离子通过辐射的形式传递能量,并以光子的形式释放出来。

这些光子的能量是特定波长和频率的激光光子,具有相同的相位和方向,符合激光的特性。

3. 扩散与增益当释放的激光光子经过多次的反射和扩散后,在固态激光器的谐振腔内产生共振放大。

在这个过程中,激光光子不断增加,并形成强大的激光束。

这种过程是通过谐振腔中的镜面反射实现的,其中一个镜子是部分透明的,用于输出激光。

二、固态激光器的应用固态激光器具有紧凑、高效、可靠等特点,因此在科学研究、医疗、通信等领域有广泛的应用。

1. 科学研究固态激光器在科学研究中扮演着重要角色。

其激光束的窄带宽和高功率使得它成为细分光谱研究、原子物理、分子光谱学等领域的理想工具。

此外,固态激光器还广泛应用于量子光学研究、量子计算和量子通信等领域。

2. 医疗器械固态激光器在医疗领域有着广泛的应用。

激光切割、激光刻蚀、激光焊接等技术在现代医疗器械的制造过程中发挥着重要作用。

此外,激光手术、激光疗法等应用也在眼科手术、皮肤整形和癌症治疗等方面展现出了巨大的潜力。

固体激光器基本原理以及应用

固体激光器基本原理以及应用
固体激光器基本原理及其应用
汇报人:
单击输入目录标题 固体激光器的基本原理 固体激光器的应用 固体激光器的发展趋势
添加章节标题
固体激光器的基本原理
固体激光器的组成
泵浦源:提供能量使激光介质产生 激光如氙灯、半导体激光器等
冷却系统:保持激光介质的温度稳 定提高激光器的性能和寿命如水冷、
风冷等
添加标题
添加标题
添加标题
添加标题
添加标题
技术进步:提高输出功率、降低能 耗、提高稳定性
研究热点:新型材料、新型结构、 新型工艺等
固体激光器的应用拓展势
医疗领域: 用于眼科、 皮肤科等 疾病的治 疗
工业领域: 用于切割、 焊接、打 标等加工 工艺
科研领域: 用于光谱 分析、激 光雷达等 科学研究
军事领域: 用于激光 武器、激 光通信等 军事应用
添加标题
添加标题
添加标题
添加标题
激光介质:产生激光的物质如YG晶 体、Nd:YG晶体等
光学谐振腔:使激光在腔内反复反 射形成稳定的激光输出如反射镜、
全反射镜等
电源和控制系统:提供激光器的工 作电压和电流控制激光器的工作状
态如电源、控制器等
固体激光器的工作原理
激光产生:通过激发态粒子的受激辐 射产生激光
激光治疗:用于 皮肤病、肿瘤、 血管疾病等治疗
激光诊断:用于 皮肤病、肿瘤、 血管疾病等诊断
激光美容:用于 皮肤美容、整形 等美容项目
军事领域的应用
激光制导武器:利用激光精确 制导提高打击精度
激光通信:实现远距离、高速、 保密通信
激光雷达:用于探测、跟踪、 识别目标
激光武器:用于摧毁敌方武器 装备、设施等
增益介质:使用固体材料作为增益介 质如稀土离子掺杂的晶体

调Q(Q开关)技术讲解

调Q(Q开关)技术讲解

dn dt

2n 2 Wp
(2)激光脉冲形成与输出(瞬态过程)
受激辐射迅速,时间短,因此忽略泵浦和自发辐射。
Q开关方程:
dn dt

2n21


d dt
Байду номын сангаас
n21


此阶段主要是产生光子。要使光子增长的快
d
d
dt >0, 而且 dt 大好。
从光子的速率方程可以看出,在激光形成阶段,光子
先是使反转粒子数达到最大值 ,但满足
然后
使
~产生激光-又以光子的形式贮存在腔内。
(2).激光产生与输出过程
条件:G , 减小到 min , Q达到最高。
因为增益最大,所以 min小时,激光迅速建立, 在极短的时间内,工作物质贮能通过光子的受激 辐射过程释放出来,形成巨脉冲。调Q的过程: 调节 ,相 当于Q是一个门,关上门,Q低-贮 能,打开门-产生激光。
规迹由两光的相位差来决定,当 时,两束光合成
为一线偏光,它的振动方向相对入射光的原振动方向旋转 9被0P度2反。射因掉为。P1所//P以2,光所不以能,在从腔晶内体来出回来传的播光形不成能振通荡过。P这2,就 相当于腔内光子的损耗很大,Q值很高,称为“关门”状 态。
(2)第二阶段:脉冲形成阶段——Q开关完全打开
=10000V,给电路带来不便。腔内插入两个偏振
片,增加插入损耗,改进结构。晶体上加V :从
YAG来的光通过P变成x(y)方向振动的光,通4 过
KDP时,分成x’(y’)方向振动的光,加 V ,两束光 的相位差 。出射晶体以后,合成4为圆偏光 (第偏二振次面 通旋 过K转D24P5,度o)、,e这光束又圆得偏到光2通相过位全差反—射—后 合成为线偏光。线偏光的偏振方向和入射光的偏
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

气体激 光器 半导体 激光器
CO2
• GaAs等
固体激光器
三价稀土元素: Nd3+,Yb3+,Er3+ 过渡金属元素 Cr3+,Ti3+ 基质 晶体、玻璃、 陶瓷
活性粒子 工作物质
激光产生机制
调Q
• 调Q技术又叫Q开关技术,是将一般输出的连续激光能量压
缩到宽度极窄的脉冲中发射,从而使光 源的峰值功率可提 高几个数量级的一种技术。
固体激光器及其调Q工作原理
激光器的简介
激光器的原理
调Q工作
• 发展历程
• 特点 • 应用
• 构成
• 分类 • 产生机制
• 电光调Q
• 声光调Q • 饱和吸收调 Q理论
1952年,实 现粒子束反 转
1953年,第 一台微波粒 子放大器
1960年,红 宝石激光器 问世
Ex ' A cos wt E y ' A cos( wt )

2 相位差为 合成为y方向线偏振光,无法通过偏振片。 , 合成为圆偏振光,经全反镜反射,再次经过电光晶体,
V =
4

4n
3 0
,为晶体两端所加调Q电压。
• 电光晶体应满足以下条件:消光比高;透过率高、透光范围大;
电光调Q
Q调 制
声光调Q 饱和吸收调Q
转镜调Q
色心调Q
电光调Q
1 3 nx ' n0 n0 Ez 2 n n 1 n3 E y' 0 0 z 2
Vz n n Ez n l
3 0 3 0

2

nl
2

3 n0 Vz
电光调Q
半波(四分之一波)电压低;抗破坏阈值高;晶体防潮等。 • 常用电光晶体:
KDP磷酸二氢钾
BBO硼酸钡
LN铌酸锂
LGS硅酸镓镧
RTP磷酸钛氧铷
声光调Q
• 声波在声光介质中传播,会使该介质折射率发生周期变化,
可视为等效位相光栅 • 激光经过该声光介质,发生一级衍射,方向偏离谐振腔, 谐振腔损耗增加,高Q值 • 撤去超声场,衍射消失,Q值骤降
饱和吸收调Q
(I )
0
1 I Ic
1960—,氦 氖激光器、 半导体激光 器等相继出 现
特点
方向性 好
单色性 好
激光的 特点
相干性 好
亮度高
应用
激光器的构成
• 泵浦——提供能量 • 工作物质——受激辐射,产生激光 • 谐振腔——光放大、选模
激光器的分类
• 红宝石、 Nd:YAG • 氦氖激 光器、
固体激 光器 液体激 光器
• 有机、 无机
相关文档
最新文档