水电站设计说明书参考
水电站课程设计计算说明书.

水电站厂房设计说明书(MY 水电站)1.绘制蜗壳单线图1.1蜗壳的型式水轮机的设计头头H p =46.2m>40m ,水轮机的型式为HL220-LJ-225,可知本水电站采用混流式水轮机,转轮型号为220,立轴,金属蜗壳,标称直径D 1=225cm=2.25m 。
1.2蜗壳主要参数的选择[1]金属蜗壳为圆断面,由于其过流量较小,蜗壳的外形尺寸对水电站厂房的尺寸和造价影响不大,因此为了获得良好的水力性能一般采用0ϕ= 340°~350°。
本设计采用0ϕ = 345°,通过计算得出通过蜗壳进口断面的流量Q c ,计算如下:①单机容量:60000KW15000KW 4N f ==,选取发电机效率为f η=0.96,这样可求得 水轮机的额定出力:1500015625KW 0.96N fN r fη=== ②设计水头:H p =H r =46.2m ,D 1=2.25m 由此查表得:η= 0.91131150L/s 1.15m /s 1Q ==水轮机以额定出力工作时的最大单位流量: 15625131.11 1.15m /s 1max33229.819.812.2546.20.91221N rQ D H r η===<⨯⨯⨯③水轮机最大引用流量:1231.112.2538.2m /s max 1max 1Q Q D ==⨯= ④蜗壳进口断面流量:3453max 38.236.61m /s 0360360Q Q c ϕ==⨯= 根据《水力机械》第二版中图4-30可查得设计水头为46.2m<60m 时蜗壳断面平均流速为V c =5.6 m/s 。
由附表5可查得:座环外直径D a =3850mm ,内直径D b =3250mm ,;座环外半径r a =1925mm ,座环内半径r b =1625mm 。
座环示意图如图一所示:1.3蜗壳的水力计算1.3.1对于蜗壳进口断面 断面的面积:20max m 537.63606.53452.38360=︒⨯︒⨯=︒==c c c c V Q V Q F ϕ 断面的半径:m 443.16.53603452.383600max max =⨯⨯︒︒⨯===︒ππϕπρccV Q F从轴中心线到蜗壳外缘的半径:2 1.9252 1.443 4.811m max max R r a ρ=+=+⨯=1.3.2对于中间任一断面设i ϕ为从蜗壳鼻端起算至计算面i 处的包角,则该断面处max 360ii Q Q ϕ=,max360i c Q V ρπ=,2i a i R r ρ=+其中:3max 38.2m /s Q =, 5.6m /s c V =,1925mm 1.925m a r ==。
干溪坡水电站施工组织设计说明书

1 施工组织设计1.1 工程概况干溪坡尾水水电站位于天全河干流干溪坡尾水段,距天全县城约5km,上接干溪坡水电站尾水,下与禁门关水电站正常蓄水位相衔接。
干溪坡尾水水电站采用河床式开发,电站坝(厂)址控制流域面积为1390km2,占天全河全流域面积的62.6%,基本控制了天全河中上游地区。
干溪坡尾水电站为单一径流、引水式电站,设计引用流量85m3/s,设计工作水头7.5m。
装机4800KW(3×1600KW),电站由拦河闸段、厂区枢纽段两大部分组成。
根据《水利水电工程等级划分及洪水标准》SL252-2000规定,本工程属Ⅱ等大(2)型工程,主要建筑物按2级设计,次要建筑物按3级设计,临时建筑物按4级设计.泄洪冲砂闸段由拦河闸、河道整治建筑物、进水闸、水电站厂房、尾水渠等组成。
拦河闸兼有挡水和泄水作用,于选择的坝址处,在河床段布置7孔泄洪冲砂闸,闸孔宽9.50m,采用平面钢质闸门,采用7台QPQ2×25卷扬式启闭机控制,闸室底板长13.0m,闸底板高程为793.50m,闸墩顶部高程为804.20m,于闸前设长22.0m的C20砼铺盖,前厚0.6m,闸后设36.0m长的C20砼护坦,厚0.8m。
护坦末设低于河床3.0m深的齿槽及防冲槽。
槽内抛填块石。
在右岸设三孔进水闸。
闸室长10m,孔口尺宽×高为5.0×4.0m,采用平面钢质闸门,由三台QPQ2×16卷扬式启闭机控制,进水闸后接渐变段。
厂房布置在右岸,下距禁门关电站取水口约350m,主要有主厂房、付厂房、升压站、进厂公路及防洪墙等组成。
本工程主体工程土石方明挖84480 m3,土石方12325m3,砌石工程315m3,混泥土工程20066。
电站主体工程主要工程量表表1-1-11.2施工总体布置1.2.1料场开采、规划、原材料来源由资料①土料;主要用于施工围堰防渗,主料场为天全县城附近天全河右岸的沙坝土料场,距闸址和厂址区距离约为4km,有108国道相通,交通方便。
水电站课程设计说明书

水电站课程设计说明书指导老师:简新平专业班级:水工专02班姓名:郑振林学号:083520115摘要本说明书共七个章节,主要介绍了大江水电站水轮机选型,水轮机运转综合特性曲线的绘制,蜗壳、尾水管的设计方案和工作原理以及调速设备和油压装置的选择。
主要内容包括水电站水轮机、排水装置、油压装置所满足的设计方案及控制要求和设计所需求的相关辅助图和设计图。
系统的阐明了水电站相关应用设备和辅助设备的设计方案的步骤和图形绘制的方法。
关键词:水轮机、综合运转特性曲线图、蜗壳、尾水管、调速器、油压装置【abstract】Curriculum project of hydrostation is a important course and practical process in curriculum provision of water-power engineering major.There are more contents and specialized knowledge in the curriculum project,which make students not to adapt themselves quickly to complete the design.In this paper,characteristic of the curriculum project is analyzed,causes of inadaptation to the curriculum project in students are found,rational guarding method are proposed,and a example of applying the guarding method is given.The results show that using provided method to guard student design is a good method,when teaching mode and time chart are given,students are guarded from mode of thinking and methodology,and design step are discussed and given.After the curriculum project of hydrostation,the capability of students to solve practical engineering problems is improved,and the confidence to engage in design is strengthened.【Keyword】:curriculum project of hydrostation;guarding method;mode of thinking;methodology;design step.目录第一节设计题目及基本资料 (1)第二节机组台数与单机容量的选择 (1)第三节水轮机型 (2)第四节水轮机运转特性曲线的绘制 (7)第五节蜗壳设计 (9)第六节尾水管设计 (11)第七节调速设备与油压装置的选择 (13)总结 (15)参考资料 (15)第一节设计题目及基本资料1.1课程设计的目的课程设计的目的,是培养学生运用本课程及相关课程基本理论和技术解决实际问题,进一步解决提高运算、绘图和使用技术资料的能力,通过具体工程实例设计提高设计观念和分析解决工程问题的能力。
水电建设物的设计说明书实例

本例子有一定的不合理之处,仅供参考,具体要求以任务书为准水电站厂房课程设计——MY水电站§1 课程设计的目的课程设计是以工程实例为题,由学生独立思考,灵活应用有关的布置原则和要点,自己动手布置厂房.从而巩固和加深厂房部分的理论知识,并进一步培养学生的计算、制图和应用技术资料的技能。
§2 MY枢纽的概况密云水库库区跨越潮、白两河,地处密云县城北20公里。
两条河在密云县城以南约10公里处汇合成潮白河。
潮河和白河的最低分水岭在金沟,高程为130米.潮河水库和白河水库在金沟连通。
库水位在130米高程以上合成一个水库即密云水库。
河流多年平均流量为。
密云水库是以防洪及工农业供水为主要任务,兼有发电效益的综合利用水利工程。
水库的特征水位如下:死水位:;正常高水位:;设计洪水位:;校核洪水位:;坝顶高程:。
主要建筑物包括:一、挡水建筑物有潮河和白河主坝两座及副坝五处,为碾压式粘土斜墙土坝,最大坝高为白河主坝,潮河主坝,各副坝不等。
二、泄洪建筑物1、溢洪道:有潮河左岸、第二溢洪道。
第一溢洪道为正常溢洪道,底坝高程,泄洪超过百年一遇的洪水,为五孔带胸墙式河岸溢洪道.第二溢洪道为非常溢洪道,与第一溢洪道配合宣泄千年一遇洪水,底坝高程为,为五孔开敞式河岸溢洪道。
2、隧洞:(1) 白河左岸发电隧洞:用作发电供水和下游工农业供水,并在调压井上游设泄水支洞,用以宣泄万年一遇特大洪水。
进水塔进口底板高程为,洞径,洞长,底坡。
调压室为圆筒式,内径.调压室后接两根埋藏式压力水管,管径,管长。
(2)潮河发电泄水隧洞:任务是施工导流、发电、灌溉、供水和泄洪。
(3) 走马庄放空隧洞:只在千年一遇洪水时参加泄洪,平时不用,主要任务是紧急放空。
其枢纽布置图见图1。
3、坝下廊道:为施工期的临时建筑物,施工导流采取潮、白两河分别导流的方式,故设白河导流廊道、潮河导流廊道,可宣泄20年一遇洪水。
另有南石骆驼输水廊道,用以泄放3个流量的灌溉带用水。
水电站课程设计说明书

水电站课程设计说明书水电站课程设计说明书第一章基本资料第二章水轮发电机选择第一节机组台数和机组型号选择及水轮机主要参数确定第二节蜗壳和尾水管的尺寸选择第三节发电机组的选择及尺寸第三章水电站厂房设计第一节主厂房的平面尺寸确定第二节主厂房布置的构造要求第三节桥吊选择第四节副厂房布置附:计算书第一节基本资料第二节水轮发电机选择第三节水轮机厂房设计第一章基本资料1.流域概况该水电站位于S河流的上游,电站坝址以上的流域面积为20,300km2,本电站属于该河流梯级电站中的一个。
2.水利动能本电站的主要任务是发电。
结合水库特性、地区要求可发挥养鱼等综合利用效益。
本电站水库特征水位及电站动能指标见表1表1 H水电站工程特性表名称单位数量备注一、水库特性1、水库特征水位校核洪水位(P=0.1%) m 293.9设计洪水位(P=1%) m 290.9正常蓄水位m 290.0死水位m 289.02、正常蓄水位时水库面积km2 15.173、水库容积校核洪水位时总库容108m3 2.29正常蓄水位时库容108m3 1.63死库容108m3 1.49二、下泄流量及相应下游水位包括机组过流量1、设计洪水最大下泄量m3.s-1 8200.00相应下游水位m 273.22、校核洪水最大下泄量m3.s-1 11700.00相应下游水位m 274.9三、电站电能指标装机容量MW 200.0保证出力MW 35.00多年平均发电量108kW4.35.h年利用小时数h 2255四、水轮机工作参数最大工作水头m 25.60最小工作水头m 22.80设计水头m 23.305000100001500020000264266268270272274276278280水位 (m )流量(m 2/s)图1 下游水位——流量关系曲线第二章 水轮发电机选择第一节 水轮机的台数和机组型号选择及水轮机主要参数确定台数:4台,单机容量50KW ; 型号:HL310主要参数:直径D1=6.5m ;转速n=71.4r/min ;允许吸出高度Hs=0.143m 第二节 蜗壳和尾水管的尺寸选择混凝土蜗壳,包角为0225 L+x=6.4m ,L-x=4.8m弯肘形尾水管,参数如下表所示:参数1DhL5B 4D 4h 6h1L5h肘管型式适用范围 实际6.516.929.2517.688.7758.7754.387511.837.93标准混凝土肘管混流式第三节 发电机组的选择及尺寸发电机型号为SF50-60/920,具体参数如下表所示:因水轮机的发电功率50MW ,转速n=72r/min 则选择发电机的型号为SF50-60/920。
水电站设计说明书

目录第一章枢纽基本情况及设计参考资料一、枢纽情况二、地质条件三、电站厂房枢纽布置四、设计依据及资料第一章枢纽基本情况及设计参考资料一、枢纽情况某水利枢纽位于XX河上游,坝址处河流迂回曲折,就自然地理来说属于丘陵地形,河流两岸山势高出水面60米至80米,.河床水流浅窄、坡陡流急、难通舟。
此水利枢纽,是一座以灌溉为主结合发电、防洪和养鱼等综合性的中型水利枢纽。
主体工程由土坝、溢洪道和水电站三部分组成。
二、地质条件厂址位于隧洞出口低洼的沟谷处,该处为灰岩地带,岩石强度较高,是建站的有利条件,距隧洞出口约150米以外则为泥质和钙质页岩。
该页岩因受大地构造影响,形成构造破碎岩。
强度较低,拳击可碎,不宜建站。
三、电站厂房枢纽布置此电站为引水式开发方式,它由引水隧洞,调压室、压力隧洞、主付厂房、主变场、开关站等组成。
主洞内径6.0米,调压室后分为二支洞,支洞内径4.2米,每支洞再分岔供二台机组。
厂房内共装置四台混流立式机组,出线方向为下游,有公路通过厂区。
四、设计依据及资料l、水文资料站址、百年洪水位113.00米。
站址、水位~ 流量关系曲线。
装机容量4×1万千瓦水轮机型式HL230-LJ-200蜗壳型式及包角钢蜗壳,包角345 尾水管型式4H允许吸出高-0.5米转轮带轴重15吨发电机型式SF10-28/425转子带轴重60吨转子带轴长 4.9米最大水头52.9米计算水头42.4米最小水头32.1米单机最大引用流量28m3/s 3、供电情况和电气主结线本电站主要用户为距电站8~12公里处的三个机械制造厂。
负荷约16000千瓦,剩余的功率用110千伏线路送往50公里处的变电站并入电力系统。
根据要求,本电站采用110千伏,35干伏及发电机电压6.3千伏三种电压等级送电。
4、水力机械附属设备(1)、调速系统(尺寸见附图)调速器形式DT-l00 油压装置形式YZ-2.5(2)、蝴蝶阀蝶阀为卧轴,双接力器油压操作式,活门直径2.6米,尺寸见附图。
水电站厂房及枢纽布置设计说明书

1.课程设计目的水电站厂房课程设计是《水电站》课程的重要教学环节之一,通过水电站厂房设计可以进一步巩固和加深厂房部分的理论知识,培养学生运用理论知识解决实际问题的能力,提高学生制图和使用技术资料的能力。
为今后从事水电站厂房设计打下基础。
2.课程设计题目描述和要求(一)工程概况本电站是一座引水式径流开发的水电站。
拦河坝的坝型为5.5米高的砌石滚水坝,在河流右岸开挖一条356千米长的引水渠道,获得静水头57.0米。
电站设计引用流量7.2立方米每秒,渠道采用梯形断面,边坡为1:1,底宽3.5米,水深1.8米,纵坡1:2500,糙率0.275,渠内流速按0.755米每秒设计,渠道超高0.5米。
在渠末建一压力前池,按地形和地质条件,将前池布置成略呈曲线形。
池底纵坡为1:10。
通过计算得压力前池有效容积约320立方米。
大约可以满足一台机组启动运行三分钟以上,压力前池内设有工作闸门、拦污栅、沉砂池和溢水堰等。
本电站采用两根直径1.2米的主压力钢管,钢管由压力前池引出直至下镇墩各长约110米,在厂房前的下镇墩内经分叉引入四台机组,支管直径经计算采用直径0.9米。
钢管露天敷设,支墩采用混凝土支墩。
支承包角120度,电站厂房采用地面式厂房。
(二)设计条件及数据1.厂区地形和地质条件:水电站厂址及附近经地质工作后,认为山坡坡度约30度左右,下部较缓。
沿山坡为坡积粘土和崩积滚石覆盖,厚度约1.5米。
并夹有风化未透的碎块石,山脚可能较厚,估计深度约2~2.5米。
以下为强风化和半风化石英班岩,厂房基础开挖至设计高程可能有弱风化岩石,作为小型水电站的厂址地质条件还是可以的。
2.水电站尾水位:厂址一般水位10.0米。
厂址调查洪水痕迹水位18.42米。
3.对外交通:厂房主要对外交通道为河流右岸的简易公路,然后进入国家主要交通道。
4.地震烈度:本地区地震烈度为六度,故设计时不考虑地震影响。
(三)有关机电设备:1.水轮机;台数:四台;重量:7000Kg;型号:HL702(220)—WJ—50;参考价格:22000元/台;额定转速:n=1000n/min=57.0m;设计水头:HP设计流量:Q=1.8m3/s;P额定出力:N=845KW;查《小型水电站》中册,水轮机部分,天津大学主编,P812-813表2-3和P840图2-24得气蚀系数σ=0.133(限制工况),气蚀系数修正值Δσ=0.022=57.0米时)。
水电站设计说明书参考

石门子水利枢纽工程厂房设计1.设计资料1.1.工程概况石门子水利枢纽工程位于新疆昌吉州玛纳斯县西南塔西河中游河段上,距乌伊公路45km。
本工程以灌溉为主,兼顾发电、防洪、是一个综合利用的中型水利枢纽工程。
塔西河流域总面积2010km2。
水库建成后,可以增加灌溉面积,保证棉花种植面积的扩大,为玛纳斯县发展商品棉基地发挥重要作用。
此外,枢纽本身的防洪、发电效益也对当地工农业的发展起到积极作用。
本枢纽工程的主要建筑物由碾压混凝土拱坝、粘土心墙副坝、上下游围堰、导流兼引水发电隧洞、发电站厂房、碾压混凝土拱坝、坝身泄水孔等组成,最大坝高110m,装机6.4MW。
年发电量为2490万KWh,年利用小时数为3890小时。
一期工程计划于1999年底部分蓄水,2000年6月30日建成。
玛纳斯县塔西河一级石门子水电站为塔西河石门子水利枢纽的二期工程,包括引水隧洞进口事故闸门及启闭机、导流洞改建为发电洞,发电洞与导流洞卸接的龙抬头弯段、钢筋砼衬砌段、钢板衬砌段、钢管分岔段、发电站厂房、高压开关站、尾水闸门及启闭机、尾水渠连接段等部分组成。
1.2.水文塔西河流域位于新疆昌吉州玛纳斯县境内,该河地处天山山脉北支依连哈比尔尕山的北麓东侧,该河流域北望准噶尔盆地,东以干河子呼图壁县为邻,西与玛纳斯河流域相伴。
地理位置介于北纬43︒31’~44︒30’,东经85︒50’~86︒32’之间,属独立水系,为典型的内陆河流。
据石门子水文站观测资料统计,多年平均气温4.1︒C ,多年平均降水量430mm,多年平均蒸发量1410.8mm。
主要特征水位如下:正常蓄水位为∇1389死水位为∇1356最高洪水位∇1391.75设计洪水位∇1389下游设计洪水位∇1317下游最低尾水位∇1316.51.3.工程布置及主要建筑物1. 工程布置在可行性研究阶段,考虑到左岸山体单薄,主要及附属建筑物均布置在右岸,随着勘探工作的深入,发现左岸古河槽呈“V”型河谷,河槽内堆积的冲积砂砾石层,结构密实,各项物理力学指标较高,防渗处理后可作为天然坝体利用;同时查明右岸隧洞进出口存在边坡稳定问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石门子水利枢纽工程厂房设计1.设计资料1.1.工程概况石门子水利枢纽工程位于新疆昌吉州玛纳斯县西南塔西河中游河段上,距乌伊公路45km。
本工程以灌溉为主,兼顾发电、防洪、是一个综合利用的中型水利枢纽工程。
塔西河流域总面积2010km2。
水库建成后,可以增加灌溉面积,保证棉花种植面积的扩大,为玛纳斯县发展商品棉基地发挥重要作用。
此外,枢纽本身的防洪、发电效益也对当地工农业的发展起到积极作用。
本枢纽工程的主要建筑物由碾压混凝土拱坝、粘土心墙副坝、上下游围堰、导流兼引水发电隧洞、发电站厂房、碾压混凝土拱坝、坝身泄水孔等组成,最大坝高110m,装机6.4MW。
年发电量为2490万KWh,年利用小时数为3890小时。
一期工程计划于1999年底部分蓄水,2000年6月30日建成。
玛纳斯县塔西河一级石门子水电站为塔西河石门子水利枢纽的二期工程,包括引水隧洞进口事故闸门及启闭机、导流洞改建为发电洞,发电洞与导流洞卸接的龙抬头弯段、钢筋砼衬砌段、钢板衬砌段、钢管分岔段、发电站厂房、高压开关站、尾水闸门及启闭机、尾水渠连接段等部分组成。
1.2.水文塔西河流域位于新疆昌吉州玛纳斯县境内,该河地处天山山脉北支依连哈比尔尕山的北麓东侧,该河流域北望准噶尔盆地,东以干河子呼图壁县为邻,西与玛纳斯河流域相伴。
地理位置介于北纬43︒31’~44︒30’,东经85︒50’~86︒32’之间,属独立水系,为典型的内陆河流。
据石门子水文站观测资料统计,多年平均气温4.1︒C ,多年平均降水量430mm,多年平均蒸发量1410.8mm。
主要特征水位如下:正常蓄水位为∇1389死水位为∇1356最高洪水位∇1391.75设计洪水位∇1389下游设计洪水位∇1317下游最低尾水位∇1316.51.3.工程布置及主要建筑物1. 工程布置在可行性研究阶段,考虑到左岸山体单薄,主要及附属建筑物均布置在右岸,随着勘探工作的深入,发现左岸古河槽呈“V”型河谷,河槽内堆积的冲积砂砾石层,结构密实,各项物理力学指标较高,防渗处理后可作为天然坝体利用;同时查明右岸隧洞进出口存在边坡稳定问题。
故在勘探工作后期,确定将主要及附属建筑物均布置在左岸,这里各建筑物工程地质条件相对较优。
石门子电站枢纽的组成建筑物是主厂房、副厂房、变电站(包括升压站和开关站)、尾水渠及一些附属建筑物。
作为一个引水式电站,导流洞穿越左岸山体,至左岸较平坦坡地进入下游河道,相应地,改造后的发电洞也经左岸山体输水入电站。
本电站设计尾水渠与电站出水方向以较小的角度斜交尾水渠经由节制闸直接接入二级电站的引水渠道中,在左岸与河道之间建一过水侧堰和冲沙闸。
厂区由西南向东北,海拔逐渐降低,地势渐趋平坦。
考虑到这个地势特点,在进行厂区布置时,将各主要建筑物多靠近北侧缓坡布置,除厂房放在厂区西南侧的陡坡背后外,尾水渠布置在东侧,变电站布置在北侧,进厂公路也由北侧引入。
厂房布置在发电洞(由导流洞改造而成)的出口处,导流洞出口已经作好了开挖,因而在此处布置厂房的实际开挖量并不太大。
引水钢管在厂房前分岔成两支后经蝴蝶阀进入蜗壳,副厂房布置在厂房的上游侧。
2. 引水建筑物导流洞改建发电洞,选用压力隧洞,断面设计成直径为3m的圆形断面,外衬50cm钢筋砼。
3. 发电厂房及开关站发电站装机为2⨯3.2MW,选用HL220-LJ-100机组。
开关站在厂房左侧,靠近厂房,面积为16.5m⨯15m。
水力机械、电气设备1.4.水力机械根据动能计划,本电站装机容量以6.4MW为宜。
选用2台3.2MW的竖轴混流式机组,型号为HL220-LJ-100。
水轮机顶盖的直径为1.5m。
除水轮机之外,还有蝶阀,调速器等辅助设备。
以下分别介绍。
1. 水轮机型号:HL220-LJ-100形式:竖轴混流式装机台数:2台最高水头:74 m设计水头:50 m最低水头:38 m设计流量:7.8 m3/s功率:3368kW设计点效率:92.5 %最高效率:93 %额定转速:600r/min飞逸转速:1343r/min轴向水推力:18 t吸出高度:-2.19m总重:23 t2. 进水阀进水阀作为水轮机前的进水控制阀是重要保护装置。
推荐使用电动立轴蝶阀DTD971H-1.0型,直径Ф1400mm。
3. 尾水管尾水管与水轮机型号相对应。
4. 调速器装置调速器是水轮发电机组的关键辅机。
体现小型水电站的自动化程度取决于机组的调速设备。
推荐使用YWT-3000油压装置式微机型调速器。
5. 自动化元件自动化元件包括压力变换器、液位信号器及各种仪表等。
6.蜗壳进口断面平均流速与设计水头的关系蜗壳进口断面平均流速与设计水头的关系如图1-1所示。
图1-1 蜗壳进口断面平均流速曲线a)适用于设计水头小于60m;(b)适用于设计水头50~400m1.5.电气设备根据所选水轮机,配以SF3200-10/2150型的发电机(普通伞式),该机组额定功率3200KW,电压6300V,功率因数0.8。
发电机风罩内径D=5.4m,转子直径2.1m,定子埋入式布置,上机架直径3.4m,高度为0.5m。
(可利用水电站设计参考资料的有关公式估算)。
风罩外壁至上游墙内侧的净距为3m。
主变压器尺寸为3×3m。
1.6.附属设备起重机采用LH-20/5t型桥式起重机,主副钩起重量分别为16t及5t。
上游侧主钩极限位置距轨顶中心线距离1.65m,副钩极限位置距轨顶中心线距离0.75m,下游侧主钩极限位置距轨顶中心线距离1.47m,副钩极限位置距轨顶中心线距离2.14m。
轨顶至小车距离1.43m,轨顶至调运部件的距离为1.5m。
最大吊运部件的高度为3.831m。
2.设计及其计算2.1水轮机的计算2.1.1.确定水轮机和尾水管的主要尺寸本电站采用水轮机的型号为HL220-LJ-100,根据同一系列水轮机的几何相似原理,依据模型机的的尺寸(如图2-1),确定原型机的尺寸下表:D (cm ) Z1 Z0 b0 1.16D2.6D 蜗壳进水口 转轮直径 叶片数目活动导叶数目导叶高度 导叶直径 转轮到尾水管底部的距离 进口直径进水口中心线距离100.014.0 24.025.0 116.1 260.9 112.7 133.3肘管 尾水管水平段上端面直径 上端面高程 下端面直径 下端面水平距离 尾水管出口高度 尾水管出口水平距离尾水管水平宽度 尾水管水平长度 62.2 62.2 31.1 80.2 56.9 207.0 126.4 126.8 135.2135.267.6174.4123.7 450.0 274.8 275.7表2-1原型机主要尺寸(单位:cm )图2-1模型机尺寸示意图(单位:mm )2.1.2. 确定水轮机蜗壳尺寸max 0360Q Q ii Φ= (2-1)cii v Q r π360max Φ=(2-2)i a i r r R 2+= (2-3)式中 i Φ——从鼻端到计算断面的包角;i Q ——通过计算断面的流量; i r ——计算断面的半径;i R ——从蜗壳中心到计算断面外包线上点的距离; max Q ——最大引用流量;c v ——断面平均流速,可查图3得到; a r ——水轮机导叶外半径,取0.82D 1;b r ——水轮机导叶内半径,取0.68D 1。
根据1.6.1中水轮机的数据,s m Q /8.73max =,设计水头m H r 50=。
查图1-1得到s m v c /8.5=。
依据式2-1、2-2,2-3计算得到的蜗壳数据如表2-2,蜗壳单线图2-2蜗壳单线图图2-3金属蜗壳剖面图2.2 主厂房平面尺寸的拟定2.2.1. 机组段长度的拟定机组段长度考虑蜗壳层、尾水管层、发电机层需要的长度,取其中的最大值作为机组段长度。
1. 蜗壳层机组段长度按照下式计算x x L L L +-+=1 (2-4) 11δ+=+R L x (2-5) 22δ+=-R L x (2-6)式中,-21,δδ蜗壳外部混凝土厚度,此处取1.4m-21,R R 蜗壳两侧外包线到轴心的距离。
R 1 R 2 δ1 δ2L +xL -x L 1 2.1011.7061.4001.400 3.5013.1066.607表2-3蜗壳层机组段长度计算成果(单位:m )2. 尾水管层机组段长度按照下式计算(本工程采用对称尾水管)x x L L L +-+=1 (2-7)22δ+=+BL x (2-8)22δ+=-BL x (2-9)式中,-2δ尾水管混凝土边墩厚度,此处取1.9m 。
-B 尾水管宽度。
B δ2 L +x L -x L 1 2.7481.9003.2743.2746.548表2-4尾水管层机组段长度计算成果(单位:m )3. 发电机层机组段长度按照下式计算x x L L L +-+=1 (2-10)3322δφ++=+bL x (2-11)3322δφ++=-bL x (2-12)式中,-3δ发电机风罩壁厚,此处取0.4m 。
-b 两台机组之间风罩外壁净距,本工程在机组间设置楼梯,故取3.5m 。
表2-5发电机层机组段长度计算成果(单位:m )根据以上三种计算成果,取其中最大值,即m L 7.91=。
2.2.2. 端机组段长度计算本工程采用装配场位于厂房一段的布置方式,且位于厂房左岸,故端机组段长度与机组段长度相同,按照起重机吊装发电机转子时所需的尺寸校核满足要求,故m L L 7.912==。
2.2.3. 主机室宽度的拟定主机室宽度分为上游侧宽度和下游侧宽度,具体计算公式如下:x s B B B += (2-13)A B s ++=332δφ (2-14)式中,-s B 上游侧宽度。
-x B 下游侧宽度。
-A 风罩外壁至上游墙壁内侧的净距,此处取3m 。
-3φ发电机风罩内径。
-3δ发电机风罩壁厚,此处取0.4m 。
依据式2-14,计算得到m m m m B s 1.64.07.23=++=。
考虑下游侧蜗壳尺寸及蜗壳外混凝土厚度及风罩墙尺寸和交通要求,,得m B x 11.4=。
由式2-13得到,m B 21.10=,实取m B 0.11=。
2.2.4. 装配场长度的拟定装配场的长度3L 一般取1-1.5倍的机组段长度1L ,此处取 1.2倍的1L ,即m L 64.113=2.2.5. 装配场宽度的拟定装配场的宽度与主机室的宽度相同,即为11.0m 。
2.2.6.装配场尺寸的具体说明1.发电机转子直径应该留有2.0m间隙,以供安装磁极之用。
装配场楼板留有孔口,孔径比主轴法兰直径大0.5m,转子主轴伸入装配场的下层的转子主轴支承台,台上设有用以固定主轴的螺栓,螺栓数与主轴法兰上孔数相符;支承台的高度应使主轴在竖立后转子地面距装配场楼板约0.5-0.8m,以便在磁极下放进千斤顶和垫板。