北京交通大学理论力学——达朗贝尔原理共79页
合集下载
北京交通大学理论力学达朗贝尔原理课件

M gx
mi
zi
x i
2
mi yi zi
z
J yz J zy mi yi zi J zx J xz mi zi xi
刚体对z轴旳惯性积
ri
FIti
O
zi
yi
xi
x
FIin y
M gx J xz J yz 2 M gy J yz J xz 2
M gz miri2 J z
刚体作定轴转动时
FgR mac
M gc 0
(转轴与质量对称面垂直,向质量对称面与转轴交点简化)
FgR mac
M g0 M gz J z
刚体作平面运动时
(设运动平行于质量对称面、向质心C简化)
Fgc mac
M gc Jc
例1:
a
FgR maC
HC
M gc JC
a Hy
H
an HC
aA aC
均为均质物体,各重为P和Q,半径均为R,绳子不可伸长,其
质量不计,斜面倾角,如在鼓轮上作用一常力偶矩M,试求:
圆柱体A旳角加速度。
MI
FOy
FT
FOx
拓展:
M IA
FT
FIA
FN
已知:均质圆盘 m1, 纯R,滚动.均质杆 l 2R, m2.
求:F 多大,能使杆B 端刚好离开地面? 纯滚动旳条件?
FgO
FOY MgO O
FOX C1
MgC2 A
FgC2 C2 B
?拟定惯性力大小
mg
mg
例3长均为l,质量均为m旳均质杆OA、AB铰接于O,在图
示水平位置由静止释放,求初始瞬时OA、AB旳角加速度。
?列什么方程 aC1
理论力学PPT课件第7章 达郎贝尔原理

第7章 达朗贝尔原理
• 分析力学两个基本原理之一 • 提供研究约束动力系统的普遍方法—动静法
2020年5月19日
1
❖ 惯性力的概念 ❖ 达朗贝尔原理 ❖ 刚体惯性力系的简化 ❖ 达朗贝尔原理的应用
2020年5月19日
2
工程实例
问题:汽车底盘距路面的高度为什么不同?
2020年5月19日
3
底盘可升降的轿车
2 sin2
h
mg
B
FB
当角速度0时,情况怎样?
2020年5月19日
13
§7.3 惯性力系的简化
一、主矢与主矩
1.主矢: FIR maC 与质系运动形式无关
2.主矩:
e
QM OF Ii M OF i
故 同且 理 M M IIOC M O ddF ddiLO eC L ttdd L t,O 与质系运动形式相关
O
C
B
A
2020年5月19日
24
解:点C为系统的质心,且此瞬时角速度为零。
根据运动分析虚加惯性力、惯性力偶
FIy
I C
A
acxao r
acy
a CO
r
2020年5月19日
25
acxao r
acy
a CO
r
FIxmacxmr
FIy
a0 O
FIy macy mr
MICJC167mr2 Ff
FIx A
C
acy
acx M 2mg
IC
B
MA 0 M ICF IxrF Iyr2m grF N0
12g 29r
2020年5月19日
26
2020年5月19日
4
• 分析力学两个基本原理之一 • 提供研究约束动力系统的普遍方法—动静法
2020年5月19日
1
❖ 惯性力的概念 ❖ 达朗贝尔原理 ❖ 刚体惯性力系的简化 ❖ 达朗贝尔原理的应用
2020年5月19日
2
工程实例
问题:汽车底盘距路面的高度为什么不同?
2020年5月19日
3
底盘可升降的轿车
2 sin2
h
mg
B
FB
当角速度0时,情况怎样?
2020年5月19日
13
§7.3 惯性力系的简化
一、主矢与主矩
1.主矢: FIR maC 与质系运动形式无关
2.主矩:
e
QM OF Ii M OF i
故 同且 理 M M IIOC M O ddF ddiLO eC L ttdd L t,O 与质系运动形式相关
O
C
B
A
2020年5月19日
24
解:点C为系统的质心,且此瞬时角速度为零。
根据运动分析虚加惯性力、惯性力偶
FIy
I C
A
acxao r
acy
a CO
r
2020年5月19日
25
acxao r
acy
a CO
r
FIxmacxmr
FIy
a0 O
FIy macy mr
MICJC167mr2 Ff
FIx A
C
acy
acx M 2mg
IC
B
MA 0 M ICF IxrF Iyr2m grF N0
12g 29r
2020年5月19日
26
2020年5月19日
4
理论力学课件 第十三章 达朗贝尔原理

MO(F) 0
FΙC
r
l 2
MΙC
MΙO
M
0
联立求解,可得
1 7.9rad / s2 2 4.44rad / s2
由ΣFx=0 解得轴承O 水平方向的约束反力
FOy
O
FOx M mg
A
FΙ C
M ΙO
C
M ΙC
m1 g
B
FOx
FC
m1( r1
l 2
2
)
8.91N
由ΣFy=0 解得轴承O 铅垂方向的约束反力
Fii
F 0 Ii
MO (Fie ) MO (Fii ) MO (F Ii ) 0
由于质点系的内力总是成对出现的,且等值反向共线,它们相互抵消,这样, 上面两式可简化为
Fie FIi 0
MO (Fie )
MO (FIi ) 0
上式表明,作用于质点系上的所有外力与虚加在每一个质点上的惯性力 在形式上组成平衡力系,这就是质点系达朗贝尔原理的又一表述形式。
解得
FI mgtan
由于
FI
man
m
v2 lsin
FN
an
v
mg FI
解得
v gl tan sin
【例13-2】 如图所示的列车在水平轨道上行驶,车厢内悬挂一单摆,摆锤的
质量为m。当车厢向右做匀加速运动时,单摆向左偏转的角度为 ,求车厢
的加速度a。
解:选摆锤为研究对象,受力分析 如图所示。由达朗贝尔原理,列x方向 的平衡方程
解得
FAx FBx 0
FAy 200kN
FBy 200kN
FAz 20kN
z
B FBx
北大理论力学课件第十二章 达朗伯原理

sin
l
0
dF I r cos 0
dF I
方法二:直接法
q1
P a
2
g
l
q2
P ( a l sin )
2
q1
1 2 l
P l sin
2
B
a
g
FI2
l
g
l
x
q1
FI 1 q1 l
p g
l 2
2
sin
M
A
0,
P
l 2
sin F I 1
J O 1
l 2
M
I2
J C 2 2
a1 l 2
B
M
I2
a 2 l 1
2
O
1
C2 a2
FI 2
A
M
FI1
C1
I1
O F Ox
2
P
a1
P
1 F Oy
[整体]
3 2
M
0
( P FI2 )
l P
l 2
P 3g
l 1
2
P 12 g
e
FI
F B ( a b ) ( F I G )a 0
FA
b ab
a ab
( FI G )
b ab
a ab
(
e g
2
a
1 )G
b
FB
( FI G )
(
e g
2
1 )G
理论力学
本章结束
理论力学
理论力学——第14章 达朗贝尔原理

Fix(e) FIix 0 Fiy(e) FIiy 0 M O (Fi(e) ) M O (FIi ) 0
Fix(e) FIix 0 ,
M x (Fi(e) ) M x (FIi ) 0
Fiy(e) FIiy 0 ,
M y (Fi(e) ) M y (FIi ) 0
由于质点系的内力总是成对存在,且等值、反向、共线,有
F (i) i
0,
MO (Fi(i) ) 0
则上式可改写为
Fi(e) FIi 0 MO (Fi(e) ) MO (FIi ) 0
上式表明,作用于质点系上的所有外力与虚加在每个质点上 惯性力在形式上组成平衡力系,这就是质点系达朗贝尔原理 的又一表述。对整个质点系来说,动静法给出的平衡方程, 只是质点系的惯性力系与其外力的平衡,而与内力无关。
MIO ri (miai ) ( miri )aC mrC aC
若选质心C为简化中心,则 rC=0,有: M IC 0
故平移刚体的惯性力系可以简化
为通过质心的合力,其力大小等
于刚体质量与加速度的乘积,合
力的方向与加速度方向相反。
2、定轴转动刚体 如图示定轴转动刚体,考 虑质点i,以O为简化中。 有
l 2
2
0,aCt A
l
2
方向如图所示
角加速度的计算,以杆端点A为基点,B为动点
aB
aA
a
t BA
aB
aA
aBt A
aBt A aA
ll
aC aA aCt A
B
aBt A
aB
aA
aCt A C
aA
q
A aA
因此得此杆惯性力系得主矢为
FIR
理论力学——达郎贝尔原理

力和一个力偶,这个力等于刚体质量与质心的加速度的 乘积,方向与加速度方向相反,作用线通过转轴;这个 力偶的矩等于刚体对转轴的转动惯量与角加速度的乘积, 转向与角加速度相反。
(e) FIR - Fi -ma c
M IO M Iz -J z
讨论 ①刚体作匀速转动,转轴不通过质点C 。
求解步骤 ①选取研究对象。原则与静力学相同。 ②受力分析。画出全部主动力和外约束反力。
③运动分析。主要是刚体质心加速度,刚体角加速
度,标出方向。 ④虚加惯性力。在受力图上画上惯性力和惯性力偶, 一定要 在 正确进行运动分析的基础
上。熟记刚体惯 性力系的简化结果。
⑤列动静方程。选取适当的矩心和投影轴。 ⑦求解求知量。
M
y
解得
1 M y FRxOB M Ix M IxOB FAx AB
1 M x FRyOB M Ix FIyOB FAy AB
1 M y FRxOA M Ix FIxOA FBx AB
1 M x FRyOA M Ix FIyOA FBy AB
min
求:轴承A,B的约束力
解:
0.1 12000π 1 an e m 158 m 2 s s 1000 30
2
2
F man 3160N
n I
FNA FNB
1 20 9.8 3160N 1680N 2
内容
§13-1
惯性力〃质点的达朗贝尔原理
Force of Inertia ·D’Alembert’s Principle of a Particle
§13-2 质点系的达朗贝尔原理
(e) FIR - Fi -ma c
M IO M Iz -J z
讨论 ①刚体作匀速转动,转轴不通过质点C 。
求解步骤 ①选取研究对象。原则与静力学相同。 ②受力分析。画出全部主动力和外约束反力。
③运动分析。主要是刚体质心加速度,刚体角加速
度,标出方向。 ④虚加惯性力。在受力图上画上惯性力和惯性力偶, 一定要 在 正确进行运动分析的基础
上。熟记刚体惯 性力系的简化结果。
⑤列动静方程。选取适当的矩心和投影轴。 ⑦求解求知量。
M
y
解得
1 M y FRxOB M Ix M IxOB FAx AB
1 M x FRyOB M Ix FIyOB FAy AB
1 M y FRxOA M Ix FIxOA FBx AB
1 M x FRyOA M Ix FIyOA FBy AB
min
求:轴承A,B的约束力
解:
0.1 12000π 1 an e m 158 m 2 s s 1000 30
2
2
F man 3160N
n I
FNA FNB
1 20 9.8 3160N 1680N 2
内容
§13-1
惯性力〃质点的达朗贝尔原理
Force of Inertia ·D’Alembert’s Principle of a Particle
§13-2 质点系的达朗贝尔原理
理论力学--达朗贝尔原理及其应用 ppt课件

0tetftehtftegmmii2??????????????????????cossinsincoscos??????????0thftegmmi2????????????????coscos22i?emf?coscoscos22i2hgtemthftegmm??????????????????????31ppt课件?达朗贝尔原理应用示例例例题2长为l重为w的均质杆ab其a端闰接在铅垂轴z上并以匀角速绕此轴转动
FIti miait mi ri
FIni miain mi 2 ri
ppt课件
21
刚体作定轴转动时惯性力系的简化结果 再将平面惯性力系向点
O简化,得一力和一力偶。 因为所有质点的法向惯性力 都通过O点,所以所有质点 法向惯性力对O点之矩的和 等于零:
力偶的力偶矩等于惯性力系对转轴的主矩,其大小
为刚体对转轴的转动惯量与角加速度的乘积,方向与角
加速度的方向相反。
ppt课件
23
刚体作定轴转动时惯性力系的简化结果
讨论:
FIR
ma C
ma
t C
ma
n C
MI O MO ( FIti ) ( miri2 ) JO
电机所受真实力有m1g、 m2g 、 Fx 、Fy、M;惯性力如图所示。
惯性力的大小为 FI m2e 2
方向与质心加速度相反。因转子 匀速转动,只有法向加速度,故 惯性力方向沿O1O2向外。
应用动静法,由平衡方程
MA 0
M m2 g e cos t FI cos t(h e sin t) FI sin t(e cos t) 0
MIC MC (FIti ) ( miri2 ) JC
FIti miait mi ri
FIni miain mi 2 ri
ppt课件
21
刚体作定轴转动时惯性力系的简化结果 再将平面惯性力系向点
O简化,得一力和一力偶。 因为所有质点的法向惯性力 都通过O点,所以所有质点 法向惯性力对O点之矩的和 等于零:
力偶的力偶矩等于惯性力系对转轴的主矩,其大小
为刚体对转轴的转动惯量与角加速度的乘积,方向与角
加速度的方向相反。
ppt课件
23
刚体作定轴转动时惯性力系的简化结果
讨论:
FIR
ma C
ma
t C
ma
n C
MI O MO ( FIti ) ( miri2 ) JO
电机所受真实力有m1g、 m2g 、 Fx 、Fy、M;惯性力如图所示。
惯性力的大小为 FI m2e 2
方向与质心加速度相反。因转子 匀速转动,只有法向加速度,故 惯性力方向沿O1O2向外。
应用动静法,由平衡方程
MA 0
M m2 g e cos t FI cos t(h e sin t) FI sin t(e cos t) 0
MIC MC (FIti ) ( miri2 ) JC
理论力学达朗贝尔原理(动静法)

miri cosi zi (miri 2 sin i zi )
由
cos
i
xi ri
,
sin i
yi ri
有 MI x mix iz i2 m i y iz i
记 Jyz m i y iz i, Jxz m i x iz i
称对 y、z 轴的惯性积, 对x、z 轴的惯性积。
M Ix J xz J yz 2
已知: P, R, J , a, m.
求:支座A,B受到的附加约束力。
解 : FI ma
MI0
J
J
a R
M B 0 mgl2 FIl2 Pl3 M IO FAl1 l2 0
Fy 0 FA FB mg P FI 0
解得:FA
l1
1
l2
mgl2
Pl3
a
ml2
J R
第十五章 达朗贝尔原理(动静法)
§15-1 惯性力·质点的达朗贝尔原理
一、惯性力的概念
人用手推车 F ' F ma
力 F '是由于小车具有惯性,力图保持其原
有的运动状态,对于施力物体(人手)产生 的反抗力。称为小车的惯性力。
定义:质点惯性力
FI m a
质点惯性力的大小等于质点的质量与加速度的乘积,方
Fz 0 FBz FRz 0
M x 0 FB yOB FAyOA M x M I x 0
M y 0 FAxOA FBxOB M y M I y 0
解得
FAx
1 AB
M y FRxOB M Iy FIxOB
FAy
1 AB
M x FRyOB M Ix FIyOB
由 miar mi ar mar
由
cos
i
xi ri
,
sin i
yi ri
有 MI x mix iz i2 m i y iz i
记 Jyz m i y iz i, Jxz m i x iz i
称对 y、z 轴的惯性积, 对x、z 轴的惯性积。
M Ix J xz J yz 2
已知: P, R, J , a, m.
求:支座A,B受到的附加约束力。
解 : FI ma
MI0
J
J
a R
M B 0 mgl2 FIl2 Pl3 M IO FAl1 l2 0
Fy 0 FA FB mg P FI 0
解得:FA
l1
1
l2
mgl2
Pl3
a
ml2
J R
第十五章 达朗贝尔原理(动静法)
§15-1 惯性力·质点的达朗贝尔原理
一、惯性力的概念
人用手推车 F ' F ma
力 F '是由于小车具有惯性,力图保持其原
有的运动状态,对于施力物体(人手)产生 的反抗力。称为小车的惯性力。
定义:质点惯性力
FI m a
质点惯性力的大小等于质点的质量与加速度的乘积,方
Fz 0 FBz FRz 0
M x 0 FB yOB FAyOA M x M I x 0
M y 0 FAxOA FBxOB M y M I y 0
解得
FAx
1 AB
M y FRxOB M Iy FIxOB
FAy
1 AB
M x FRyOB M Ix FIyOB
由 miar mi ar mar
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
பைடு நூலகம்
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
北京交通大学理论力学——达朗贝尔 原理
6、法律的基础有两个,而且只有两个……公平和实用。——伯克 7、有两种和平的暴力,那就是法律和礼节。——歌德
8、法律就是秩序,有好的法律才有好的秩序。——亚里士多德 9、上帝把法律和公平凑合在一起,可是人类却把它拆开。——查·科尔顿 10、一切法律都是无用的,因为好人用不着它们,而坏人又不会因为它们而变得规矩起来。——德谟耶克斯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子